
Finding All Pure-Strategy Equilibria in Dynamic
and Static Games with Continuous Strategies

Kenneth L. Judd1 Philipp Renner2 Karl Schmedders3

1Hoover Institution, Stanford University

2Dept. of Business Administration, University of Zurich

3Dept. of Business Administration, Univ. of Zurich and Swiss Finance Institute

ZICE Workshop – University of Zurich

September 6, 2011



Discrete-Time Finite-State Stochastic Games

Central tool in analysis of strategic interactions among
forward-looking players in dynamic environments

Example: The Ericson & Pakes (1995) model of dynamic
competition in an oligopolistic industry

Little analytical tractability

Most popular tool in the analysis: The Pakes & McGuire (1994)
algorithm to solve numerically for an MPE (and variants
thereof)



Applications

Advertising (Doraszelski & Markovich 2007)

Capacity accumulation (Besanko & Doraszelski 2004, Chen 2005,
Ryan 2005, Beresteanu & Ellickson 2005)

Collusion (Fershtman & Pakes 2000, 2005, de Roos 2004)

Consumer learning (Ching 2002)

Firm size distribution (Laincz & Rodrigues 2004)

Learning by doing (Benkard 2004, Besanko, Doraszelski, Kryukov
& Satterthwaite 2010)



Applications cont’d

Mergers (Berry & Pakes 1993, Gowrisankaran 1999)

Network externalities (Jenkins, Liu, Matzkin & McFadden 2004,
Markovich 2004, Markovich & Moenius 2007)

Productivity growth (Laincz 2005)

R&D (Gowrisankaran & Town 1997, Auerswald 2001, Song 2002,
Judd et al. 2011)

Technology adoption (Schivardi & Schneider 2005)

International trade (Erdem & Tybout 2003)

Finance (Goettler, Parlour & Rajan 2004, Kadyrzhanova 2005).



Need for better Computational Techniques

Doraszelski and Pakes (Handbook of IO, 2007)

“Moreover the burden of currently available techniques for
computing the equilibria to the models we do know how to analyze
is still large enough to be a limiting factor in the analysis of many
empirical and theoretical issues of interest.”



Need for better Computational Techniques II

Weintraub, Benkard, van Roy (Econometrica, 2008)

“There remain, however, some substantial hurdles in the
application of EP-type models. Because EP-type models are
analytically intractable, analyzing market outcomes is typically
done by solving for Markov perfect equilibria (MPE) numerically on
a computer, using dynamic programming algorithms (e.g., Pakes
and McGuire (1994)). This is a computational problem of the
highest order. [...] in practice computational concerns have
typically limited the analysis [...] Such limitations have made it
difficult to construct realistic empirical models, and application of
the EP framework to empirical problems is still quite difficult [...]
Furthermore, even where applications have been deemed feasible,
model details are often dictated as much by computational
concerns as economic ones.”



Multiplicity of Equilibria

Besanko, Doraszelski, Kryukov, Satterthwaite (Econometrica,
2010)

“... we show that multiple equilibria in our model arise from firms’
expectations regarding the value of continued play. Being able to
pinpoint the driving force behind multiple equilibria is a first step
toward tackling the multiplicity problem that plagues the
estimation of dynamic stochastic games and inhibits the use of
counterfactuals in policy analysis.”



Multiplicity of Equilibria II

Besanko, Doraszelski, Kryukov, Satterthwaite (Econometrica,
2010)

“... we point out a weakness of the P-M algorithm, the major tool
for computing equilibria in the literature following Ericson and
Pakes (1995). Specifically, we prove that our dynamic stochastic
game has equilibria that the P-M algorithm cannot compute.
Roughly speaking, in the presence of multiple equilibria, “in
between” two equilibria that it can compute there is one
equilibrium it cannot. This severely limits its ability to provide a
complete picture of the set of solutions to the model.”
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Polynomials

Polynomial f over the variables z1, . . . , zn

f (z1, . . . , zn) =
d∑

j=0

 ∑
d1+...+dn=j

a(d1,...,dn)

n∏
k=1

zdkk


with a(d1,...,dn) ∈ C, d ∈ N

Degree of f

deg f = max
a(d1,...,dn) 6=0

n∑
k=1

dk



Homotopy

Continuous functions f : Cn → Cn, g : Cn → Cn

Homotopy from g to f is a continuous function

H : [0, 1]× Cn −→ Cn

(t, z) 7−→ H(t, z)

such that H(0, z) = g(z) and H(1, z) = f (z)



Polynomials in One Variable

Univariate polynomial f (z) =
∑

i≤d aiz
i with ad 6= 0

and so deg f = d

Fundamental Theorem of Algebra: f has d complex roots
(counting multiplicities)

Simple polynomial of degree d with d distinctive complex roots

g(z) = zd − 1

g has roots e
2πik
d for k = 0, . . . , d − 1

Homotopy H = (1− t)g + tf



Numerical Example

Polynomial f (z) = z3 + z2 + z + 1 with roots −1, −i , i

Start polynomial g(z) = z3− 1 with roots −1
2 −

√
3
2 i , −1

2 +
√
3
2 i , 1

Homotopy between f and g

H(t, z) = (1− t)(z3 − 1) + t(z3 + z2 + z + 1)



Homotopy Paths
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Things can go wrong

Polynomial f (z) = 5− z2 with roots ±
√

5

Start polynomial g(z) = z2 − 1 with roots ±1

Homotopy

H(t, z) = t(5− z2) + (1− t)(z2 − 1) = (1− 2t)z2 + 6t − 1

H(16 , z) = 2
3z

2 has the double root z = 0, and detDzH(16 , 0) = 0

H(12 , z) = 2



Failure of Convergence
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Circumventing “Bad” Points

Points of trouble
(1) Non-regular points detDzH(t, z) = 0
(2) Leading coefficient drops to zero

These points are the solution set to a system of equations

Theorem. Let F = (f1, . . . , fk) = 0 be a system of polynomial
equations in n variables, with fi 6= 0 for some i . Then
Cn \ {F = 0} is a pathwise connected and dense subset of Cn.

Theorem implies that we can find a path between any two points
without running into bad points

Gamma trick

H(t, z) = t(5− z2) + (1− t)e iγ(z2 − 1)



Gamma Trick: Homotopy Paths
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Bezout Number

Polynomial function F = (f1, . . . fn) : Cn → Cn

Total degree or Bezout number of F ,

d =
∏
i

deg fi

Bezout’s Theorem: system F = 0 has at most d isolated solutions
(counting multiplicities)

Garcia and Li (1980): generic polynomial systems have exactly d
distinct isolated solutions



Homotopy for Multivariate Functions

F (z) = (f1(z), . . . , fn(z)) = 0 with di = deg fi

Start system G (z) = (g1(z), . . . , gn(z)) = 0 such that

gi (z) = zdii − 1

gi (z) depends only on zi , and deg gi = deg fi

F and G have the same Bezout number

Homotopy with gamma trick

H(t, z) = eγi (1− t)G (z) + tF (z)

For almost all γ ∈ [0, 2π)

|{z |H(t1, z) = 0}| = |{z |H(t2, z) = 0}| for all t1, t2 ∈ [0, 1)



Convergence Theorem

For almost all γ ∈ [0, 2π), the following properties hold.

1. The preimage H−1(0) consists of d regular paths.

2. Each path either diverges to infinity or converges to a solution
of F (z) = 0 as t approaches 1.

3. If ẑ is an isolated solution with multiplicity m, then there are
m paths converging to it.

4. Paths are monotonically increasing in t.



Example

f1(z1, z2) = z1z2 − z1 − z2 + 1 = 0 d1 = 2

f2(z1, z2) = (z1)2z2 − z1(z2)2 + 1 = 0 d2 = 3

Start system

g1(z1, z2) = (z1)2 − 1 = 0 d1 = 2

g2(z1, z2) = (z2)3 − 1 = 0 d2 = 3

has exactly 6 solutions

Two real and two complex solutions(
1,

1

2
(1±

√
5)

)
and

(
1

2
(1± i

√
3), 1

)

Two paths diverge to infinity



Two Difficulties

Homotopy approach is intuitive, but has significant drawbacks

1. Number of finite solutions is usually much smaller than
Bezout number d

– Bezout number grows exponentially in the number of nonlinear
equations

– Most paths diverge

2. Paths diverging to infinity are a nuisance

– Of no economic interest
– Large computational effort
– Require decision to truncate
– Risk of truncating very long but converging path



Dealing with the Difficulties

Diverging paths: homogenization
compactification allows simple representation of
“points at infinity”

Reduction in the number of paths
m-homogeneous Bezout number

Parameter continuation



Parameter Continuation Homotopy
Let F (z , q) = (f1(z , q), . . . , fn(z , q)) be a system of polynomials in
the variables z ∈ Cn with parameters q ∈ Cm,

F (z , q) : Cn × Cm → Cn.

Additionally let q0 ∈ Cm be a point in the parameter space, where
all isolated solutions zi , i = 1, . . . k are regular. For any other set
of parameters q1 and a parameter γ ∈ [0, 2π) define

ϕ(s) = sq1 + (1− s)q0 + e iγs(1− s)

Then the following statements hold for almost all γ ∈ [0, 2π).

1. |{F (z , ϕ(s)) = 0}| = k for all s ∈ [0, 1).

2. The homotopy F (z , ϕ(s)) = 0 has k nonsingular solution
paths.

3. All solution paths converge to all isolated nonsingular
solutions of F (z , ϕ(1)) = 0.



Bertrand Price Competition

Two firms x and y produce goods x and y , prices px , py

Three types of customers with demand functions:

Dx1 = A− px Dy1 = 0 Dx3 = 0 Dy3 = A− py

Dx2 = np−σx

(
p1−σx + p1−σy

) γ−σ
−1+σ Dy2 = np−σy

(
p1−σx + p1−σy

) γ−σ
−1+σ

Total Demand Dx = Dx1 + Dx2 + Dx3

Unit cost m, thus profit Rx = (px −m)

Necessary optimality condition MRx = MRy = 0



First-order Conditions

σ = 3; γ = 2; n = 2700; m = 1; A = 50

First-order conditions for the two firms

MRx = 50− px + (px − 1)

(
−1 +

2700

p6x
(
p−2x + p−2y

)3/2−
8100

p4x

√
p−2x + p−2y

+
2700

p3x

√
p−2x + p−2y

Polynomial equations ?



Polynomial System

Auxiliary variable Z =
√

p−2x + p−2y yields a polynomial equation

0 = −p2x − p2y + Z 2p2xp
2
y

Substitute Z into denominator of MRx and MRy

0 = −2700 + 2700px + 8100Z 2p2x − 5400Z 2p3x + 51Z 3p6x − 2Z 3p7x

0 = −2700 + 2700py + 8100Z 2p2y − 5400Z 2p3y + 51Z 3p6y − 2Z 3p7y

Bezout number d = 6 · 10 · 10 = 600



Solving the System with Bertini

600 paths to track

18 real, 44 complex, 538 (truncated) infinite solutions

9 real solutions with negative values: economically meaningless

px py
1.757 1.757
8.076 8.076

22.987 22.987

2.036 5.631
5.631 2.036

2.168 25.157
25.157 2.168

7.698 24.259
24.259 7.698



Two equilibria

Second-order conditions eliminate 5 of the 9 solutions

Check for global vs. local optimality eliminates 2 more solutions

Two equilibria

px py
2.168 25.157

25.157 2.168

m-homogeneity: 182 paths

18 real, 44 complex, 120 (truncated) infinite solutions



Parameter Continuation Homotopy

We solved the Bertrand price game for n = 2700

Now we want so solve it for n = 1000

Parameter continuation homotopy

n = 2700(1−s)+(0.22334546453233+0.974739352i)s(1−s)+1000s

62 paths, 14 real, 48 complex solutions

Real, positive solutions

px py
3.333 2.247
2.247 3.333
3.613 3.613

2.045 2.045
24.689 24.689



Parameter Continuation in Real Space

Parameter continuation

n = 2700(1−s)+(0.22334546453233+0.974739352i)s(1−s)+1000s

Problem: for s /∈ {0, 1} the parameter n is not a real number

Alternative approach

n = 2700(1− s) + 1000s

Can we trace out the equilibrium manifold?



Parameter Continuation Homotopy

500 1000 1500 2500 30001188.6 2000 2700

22.08

23.5

25.07



Parameter Continuation Homotopy

500 1500 2000 2500 30001188.6813.8 2700

6.258

1.736
2.0232.124

9.737
9.49



Static Cournot Duopoly Game

Two firms and two goods

Firm i produces good i , i = 1, 2

Firm i ’s production quantity qi

Cost to firm i of producing qi is ci (qi ;ωi ) = ωiqi

Price of good i , Pi (q1, q2) = wq
− 1
σ

i

(
q
σ−1
σ

1 + q
σ−1
σ

2

) γ−σ
γ(σ−1)

Firms’ profit functions (revenue minus cost)

π1(q1, q2;ω1, ω2) = q1 P1(q1, q2)− c1(q1;ω1)

π2(q1, q2;ω1, ω2) = q2 P2(q1, q2)− c2(q2;ω2)



Dynamic Setting

Infinite-horizon game in discrete time t = 0, 1, 2, . . .

At time t firm i is in one of finitely many states,

ωi ,t ∈ Ωi = {1, 2, . . . ,S}

State space of the game Ω1 × Ω2

State of the game: production cost of two firms

Firms engage in Cournot competition in each period t



Learning-by-doing

Firms’ states can change over time

Learning: current output may lead to lower production cost

Stochastic transition to state in next period

Possible transitions from state ωi to states ωi , ωi − 1 in
next period

Transition probability for firm i depends on qi

Pri [ωi − 1|qi ;ωi ] =
Fqi

1 + Fqi
, Pri [ωi |qi ;ωi ] =

1

1 + Fqi



Transition Probabilities

Law of motion: State follows a controlled discrete-time,
finite-state, first-order Markov process with transition
probability

Pr
(
(ω+

1 , ω
+
2 )|q1,t , q2,t ;ω1,t , ω2,t)

)
Typical assumption of independent transitions:

Pr
(
(ω+

1 , ω
+
2 )|q1,t , q2,t ;ω1,t , ω2,t)

)
=

2∏
i=1

Pri
(
ω+
i |qi ,t ;ωi ,t

)



Objective Function

Objective of firm i is to maximize the expected NPV of future
cash flows

E

{ ∞∑
t=0

βtπi (q1,t , q2,t ;ω1,t , ω2,t)

}

with discount factor β ∈ (0, 1)



Markov Perfect Equilibrium

Markov perfect equilibrium (MPE): pure equilibrium strategies only
depend on current state and are otherwise history-independent

Firm i ’s strategy: Qi : Ω→ R+, (ω1, ω2) 7→ qi

Vi (ω) is the expected NPV to firm i if current state is ω = (ω1, ω2)

Value function Vi : Ω→ R, (ω1, ω2) 7→ Vi (ω)

Firm i faces a discounted infinite-horizon dynamic programming
problem, given a Markovian strategy Q−i of the other firm

Bellman’s optimality principle: optimal solution is again a
Markovian strategy



Bellman Equation

Bellman equation for firm i is

Vi (ω) = max
qi

{
πi (qi ,Q−i (ω);ω) + βE

[
Vi (ω

+)|qi ,Q−i (ω);ω
]}

with Markovian strategy Q−i (ω) of the other firm

Player i ’s strategy Qi (ω) must satisfy

Qi (ω) = arg max
qi

{
πi (qi ,Q−i (ω);ω) + βE

[
Vi (ω

+)|qi ,Q−i (ω);ω
]}

System of equations defined above for each firm i and each
state ω ∈ Ω defines a pure-strategy Markov Perfect Equilibrium



Equilibrium Conditions

Unknowns Qi (ω), Vi (ω) for each state ω

Vi (ω) = πi (qi ,Q−i (ω);ω) + βE
[
Vi (ω

+)|qi ,Q−i (ω);ω
]

∂

∂qi

{
πi (qi ,Q−i (ω);ω) + βE

[
Vi (ω

+)|qi ,Q−i (ω);ω
]}

= 0

First-order conditions are necessary and sufficient

Assumptions ensure interior solutions qi > 0

Transformation into polynomial system of equations

Two equations per firm per state, total of 4S2 equations



Simplification

Nature of transitions induces a partial order on the state space Ω

Instead of one system with 4S2 equations solve S2 systems
of 4 equations each

Solve games for

1) lowest-cost state (1, 1) (static Cournot game)

2) for states (ω1, 1) for ω1 = 2, . . . ,S and for states
(1, ω2) for ω2 = 2, . . . ,S

3) for states (ω1, 2) for ω1 = 2, . . . ,S and for states
(2, ω2) for ω2 = 2, . . . ,S

and so on ...



Numerical Example in Bertini

σ = 2, γ = 3/2, w = 100/3, F = 1/5, β = 0.95.

After transformations: 6 equations in 6 unknowns

state Bezout # m-hom. # time

(1, 1) 216 44 4 sec
(1, ω2) 360 140 1 min
(2, 2) 1176 364 5 min

Identical degree structure for all states (ω1, ω2) with ω1, ω2 ≥ 2

Parameter continuation: 152 paths in 25 sec



Quantities and Value Function of Firm 1

ω1 \ ω2 5 4 3

5 7.202 874 7.108 861 7.009 851
4 8.850 939 8.748 925 8.620 913
3 11.475 996 11.385 982 11.233 969
2 16.921 1042 16.840 1027 16.699 1014
1 38.228 1072 38.171 1057 38.056 1043

ω1 \ ω2 2 1

5 6.889 843 6.626 838
4 8.464 905 8.137 899
3 11.016 959 10.573 953
2 16.401 1003 15.714 997
1 37.773 1032 36.600 1025



Summary and Outlook

All-solution homotopy methods for polynomial systems of
equations have applications in economics

Find all solutions to equilibrium equations

Computational approach to “proving” uniqueness

Drawback: “curse of dimensionality” as number of equations
increases

Parameter-continuation homotopies greatly reduce number
of paths

Parallelization
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