
High Performance Quadrature Rules
How Numerical Integration Affects a Popular Model of Product

Differentiation

Benjamin S. Skrainka (UCL)
Kenneth L. Judd (Hoover)

June 9, 2011

The Big Picture

The goals of this talk are:
� To demonstrate importance of fast, accurate approximations

of multi-dimensional integrals
� To introduce polynomial-based quadrature methods
� To show how polynomial-based rules out perform Monte Carlo

rules in the context of the Berry, Levinsohn, and Pakes (1995)
model of differentiated products

Benefits

Better quadrature methods allow us to build richer models of
behavior:

� Higher dimensional integrals
� Faster execution permits:

� Nesting in estimation/optimization loop

� Larger data sets

� More robustness checks

� Quicker feedback on ideas

Numerical approximation of integrals is often the limiting factor
which determines the cost of numerical calculations.

A Bit of Literature

Some integration literature:
� Stroud (1971)
� Genz (1993)
� Cools (1997, 2002, 2003)
� Judd (1998)
� Heiss & Winschel (2008)

Some discrete choice literature:
� Berry, Levinsohn, & Pakes (1995, 2004); Nevo (2000a, 2000b,

2001)
� McFadden & Train (2000)
� Train (2009)

Integration is ubiquitous

Choice Models with Heterogeneity

The BLP model (and mixed logit) depends on equation equating
predicted and observed market shares

sjt (δjt ; θ2) =

ˆ
exp (δjt + µjt (ν))

1 +
�
k∈J

exp (δkt + µkt (ν))
dF (ν)

� Accuracy ⇒ correct point estimates
� Quickly ⇒ complete calculations (Nested Fixed Point

Algorithm)

Introduction to
Numerical Integration

Numerical Integration Basics

Most rules approximate a (multidimensional) integral

I [f] :=
ˆ
Ω

f (x)w (x) dx , Ω ⊂ Rd , w (x) ≥ 0∀x ∈ Ω

as

QR [f] :=
R�

j=1

wj f (yj) , yj ∈ Ω

� The crucial issue is how to choose the nodes and weights,
{wj , yj}

� Ideally, a rule should have lim
R→∞

QR [f] = I [f], i.e. converge to
the truth

Overview of Methods

Approaches differ in how the nodes are chosen:
� pseudo-Monte Carlo (pMC)
� polynomial-based methods such as a Gaussian rule, e.g.:

Rule w (x) Domain
Gauss-Hermite exp

�
−x2� (−∞,∞)

Gauss-Legendre 1 [−1, 1]
Gauss-Laguerre exp (−x) [0,∞)

Example: Mixed Logit
The mixed logit is a common example.

� Conditional shares with linear utility & Type I Extreme value:

sij (αi) =
exp

�
−αi log pj + xT

j β
�

�
k

exp
�
−αi log pk + xT

k β
�

� Computed market shares are then:

sj =

∞̂

−∞

sij (αi)
1√

2πσ2
exp

�
− 1

2σ2 (αi − α)2
�

dαi

=
1√
π

∞̂

−∞

sij
�√

2σu
�

exp
�
−u2� du

≈ 1√
π

�

k

wksij
�√

2σyk

�
.

Note: mixed logit ↔ random coefficients

Integration in higher

dimensions

Some Terminology

A monomial is the product of powers of the different variables:
� xp1

1 · xp2
2 · · · xpn

n

� I.e, a monomial is xp ≡ Π
j
xpj
j

� where p = (p1, p2, . . . , pJ)

� Degree is
�
j
pj

� A fundamental building block of multi-dimensional polynomials
� Analogous to xn in one dimension

Monte Carlo

Monte Carlo methods:
� Draw nodes yk = (x1, . . . , xn) from a suitable distribution
� Uses weights wk = 1/R, ∀k
� Intuition based on statistics
� Inefficient: need 100x more draws to increase precision by one

decimal place!

Gaussian Tensor Products

A first attempt at a better multi-dimensional rule just takes tensor
products of a one-dimensional Gaussian rule:

� Converges to the truth if Riemann-Stieltjes integral exists +
regularity conditions

� Does not scale well: n-dimensional problem requires Rn nodes

Polynomial Rules

But, it is possible to exploit structure of the problem to create more
efficient rules:

� Monomial Rules
� Efficient

� Derived by solving a system of polynomial equations

� See Stroud (1971)

� Sparse Grids Integration (SGI)
� Also parsimonious

� See Heiss & Winschel (2008) and Gerstner & Griebel (1998)

� Both rules have desired properties:
� Exact for all monomials ≤ chosen degree

� Scale well as degree of exactness or number of dimensions

increases

� Number of nodes is polynomial in degree and exactness

Sparse Grid 11-1 L |pMC | σ(pMC)
1 6.7e-15 5.2e-12 2e-14 0

x1
1 2.3e-17 7.1e-15 0.0075 0.0092

x1
1 x1

2 2.8e-17 0 0.008 0.01
x1
1 x1

2 x1
3 x1

4 x1
5 0 0 0.0086 0.011

x2
1 -5.2e-14 9.6e-13 0.012 0.014

x4
1 -1.5e-13 3.9e-13 0.076 0.096

x6
1 -7.6e-13 4e-13 0.76 0.94

x6
2 x4

4 -2.2e-12 -3.1e-13 7.4 9.4
x10
1 -4.9e-11 2.9e-11 1.8e+02 2.1e+02

x5
1 x4

2 x2
3 -6.9e-16 1.8e-15 3.9 6.8

x12
1 -5e-10 -7.2e+02 3.2e+03 3.9e+03

x13
1 -1e-11 -2.9e-11 1.3e+04 2e+04

x14
1 -7.2e-09 -3.1e+04 6.2e+04 8.2e+04

x15
1 -5.8e-11 2.3e-10 2.4e+05 4.3e+05

x16
1 -3.4e+04 -8.9e+05 1.3e+06 1.8e+06

x6
1 x6

2 x4
3 x2

4 x2
5 -4.3e+02 1.6e+05 8.5e+02 2.6e+03

x8
1 x6

2 x4
3 x2

4 x2
5 -4e+03 1.8e+06 6.7e+03 1.9e+04

x10
1 x5

2 x4
3 x2

4 x2
5 0 5.8e-11 1.9e+04 6.5e+04

How quadrature rules

affect results in BLP

BLP Estimation

Estimation uses GMM moments formed from ξjt :
� Invert observed vs. predicted shares to recover ξjt :

sobs
jt = spred

jt (ξ;X , θ)

where

spred
jt (ξ;X , θ) =

ˆ
exp (δjt + µjt (ν))

1 +
�
k

exp (δkt + µkt (ν))
dF (ν)

� Perform GMM using residual
� Historically, used Nested Fixed Point Algorithm
� MPEC (Su & Judd (2010)) is current state of the art.

Overview of Results

Choice of quadrature rule impacts results:
� Predicted market share integrals
� Computational cost & accuracy
� Point estimates
� Standard errors, especially for GMM asymptotic variance

formula
� Solver convergence

To make these issues concrete, we examine how pMC and
polynomial rules affect results in BLP model of differentiated
products.

Monte Carlo Experiments

We investigate the performance of BLP using synthetic data:
� Simulate a typical BLP setup with five random coefficients and

endogenous price
� Currently five MC data sets

� Code based on Dubé, Fox, & Su (2009)

� Sparse grids generated using code from Heiss & Winschel
(2008)

� Monomial rule 11-1 from Stroud (1971)

Market Shares in Numbers

Rule Nnodes Ave Abs
Error*

pMC 100 6.73236e-04
1,000 2.19284e-04
10,000 6.82600e-05

Gaussian 35 = 243 1.60235e-05
Product 45 = 1, 024 2.51356e-06
Rule 55 = 3, 125 5.42722e-07

75 = 16, 807 0*
Stroud
11-1

983 2.80393e-05

Sparse 993 4.09252e-06

* Errors relative to Gaussian product rule with 75 nodes.

Results: Market Shares

Polynomial rules clearly superior to pMC:
� Clustered in center of pMC cloud, usually at exactly the same

point
� Close to mean of pMC simulations, as expected, because pMC

is unbiased.
� Monomial rule and SGI use many fewer nodes than GH

product rule or MC.
� But, more problems with overflow/underflow because of better

approximation of tails.
� Must increase number of pMC draws 100x for each additional

decimal place of accuracy
Polynomial rules also approximate the gradient of the GMM
objective function more accurately!

Results: Optimization

Optimization across multiple starts and datasets shows:
� pMC R = 1, 000 vs. Monomial and SGI rules:

� Comparable numbers of nodes

� Polynomial rules are 10 − 100x more accurate!

� pMC R = 10, 000 vs. Monomial and SGI rules:
� Polynomial rules are 10x faster!

� Polynomial rules still more accurate....

Results: Optimization

pMC results are not reliable:
� Different starting values and the same pMC draws produce

different local optima
� Same starting value and different pMC draws produce different

local optima
Polynomial rules are robust when using the Dubé, Fox, & Su data
generating process:

� Solver always finds the same optimum (point estimates)
� Solver also finds this optimum when started at the best pMC

optimum

Point Estimates: SGI vs. pMC

Bias Mean Abs Dev Med Abs Dev RMSE
SGI pMC SGI pMC SGI pMC SGI pMC

θ11 0.96 12.34 2.29 13.25 1.20 3.64 4.00 28.92
θ12 0.02 −0.13 0.52 0.38 0.22 0.33 0.94 0.48
θ13 −0.28 −0.38 1.47 1.21 0.62 0.99 3.01 1.51
θ21 22.57 128.22 23.01 128.24 2.62 34.06 81.76 253.87
θ22 0.02 −0.04 0.12 0.16 0.07 0.13 0.19 0.20
θ23 0.08 0.64 0.36 0.75 0.16 0.79 0.75 0.90

Table: Comparison of bias in point estimates : SGI vs. pMC for T=2

markets and J=24 products with 165 nodes.

Point Estimates

Polynomial rules dominate pMC for the same number of nodes:
� Need fewer starts to find best optimum because simulation

error creates:
� False local optima

� Non-convexities in surface

� Polynomial rules produce
� Much lower bias

� More robust estimates

� Conjecture: errors in share integrals propagate to point
estimates à la Dubé, Fox, and Su (2011).

Results: Standard Errors
θ21 θ22 θ23 θ24 θ25
0.6103 1.1014 0.2332 0.5633 0.3884
(2.189) (0.09419) (0.2608) (0.1058) (0.04790)
1.3931 1.1934 0.3408 0.5283 0.5531
(0.6929) (0.08841) (0.1647) (0.1012) (0.04609)
0.7923 0.9923 0.4481 0.7718 0.3472
(2.189) (0.09419) (0.2608) (0.1058) (0.04790)
0.7923 0.9923 0.4481 0.7718 0.3472
(2.189) (0.09419) (0.2608) (0.1058) (0.04790)
1.3931 1.1934 0.3408 0.5283 0.5531
(0.6929) (0.08841) (0.1647) (0.1012) (0.04609)

Table: Point Estimates: pMC with R = 10, 000 draws

θ21 θ22 θ23 θ24 θ25
1.250e-07 1.055 1.578e-06 0.7183 0.3442
(5.628E+06) (0.07972) (4.830E+04) (0.1011) (0.04931)
1.639e-07 1.055 1.072e-06 0.7183 0.3442
(4.293E+06) (0.07972) (7.111E+04) (0.1011) (0.04931)
1.819e-06 1.055 5.292e-07 0.7183 0.3442
(3.868E+05) (0.07972) (1.440E+05) (0.1011) (0.04931)
1.852e-07 1.055 7.546e-07 0.7183 0.3442
(3.800E+06) (0.07972) (1.010E+05) (0.1011) (0.04931)
3.086e-06 1.055 2.230e-06 0.7183 0.3442
(2.280E+05) (0.07972) (3.417E+04) (0.1011) (0.04931)

Table: Point Estimates: Gauss-Hermite with first 5 good starts and 7
5

nodes

Identification and Standard Errors

Polynomial rules often produce much larger standard errors than
pMC:

� Simulation error increases curvature around local optima,
making standard errors artificially small

� Polynomial-rules more accurately approximate derivatives and
hence standard errors

� Polynomial rules can show when a model is poorly identified
� pMC standard errors are too tight

� Polynomial rules without sufficient exactness also mask

identification problems

� Walker (2002) shows that taking too few draws will mask
identification problems in mixed logit models

Importance Sampling

Importance sampling will not rescue pMC:
� Importance sampling is really just a non-linear change of

variables
� Consequently, it should help any numerical method
� The fundamental problem with pMC is using an inaccurate

method to approximate the integral

Conclusion

Using better quadrature rules has many benefits and essentially no
drawbacks:

� > 10x more accurate for the same number of nodes
� > 10x faster for the same accuracy
� Reliable point estimates
� More accurate standard errors
� Improved performance permits:

� Richer models, especially with costly estimation algorithms

� Larger data sets

� More robustness checks

