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Introduction to MCMC

Markov chain Monte Carlo (MCMC) is the most
sophisticated method for simulating draws from a
random variable.

The only thing we need to know is the probability density
function, up to a constant factor.

Surprisingly indirect.
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Markov Chain

A Markov chain is sequence of random variables, xi so
that probability distribution of the next variable depends
(only) on the current value.

Example: A random walk,

xi+1 = xi + εi

Note that in this literature the Markov chains have
continuous state spaces.
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Stationary Distribution

Under some conditions, long sequences of draws from a
Markov chain converge to draws from a single
distribution, the stationary distribution.

For example, long draws from an AR(1) process

xi+1 = ρxi + εi

converge to draws from Normal(0, σ2ε/(1− ρ2)), if
−1 < ρ < 1.
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Delicate Balance Condition

So if we can find a Markov chain with a specified
stationary distribution, we can use the chain to simulate
draws from the that distribution.

One condition that ensures it is the delicate balance
condition,

T (xi−1|xi)p(xi) = T (xi |xi−1)p(xi−1)

where p is the pdf of the stationary distribution, while T
is the conditional distribution of the Markov chain.
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Delicate Balance Condition, cont’d

This family has another convenient property: it imposes
no condition on T (xi |xi).

We exploit this.
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Outline of MCMC

Let xi be the current draw.

We draw x∗ from an arbitrary Markov chain, with
conditional density q(x∗|xi).

We turn it into the desired chain by changing how
often we stay in the current state.

We do this by performing additional draws from a
0-1 random variable. If 1, we accept x∗ as the next
draw, xi+1. Otherwise, we reject, and use the
previous draw, xi as the next draw.
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Acceptance Probability

It’s not hard to show that the following choice of
acceptance probability does the trick.

min

(
1,

p(x∗)q(xi |x∗)
p(xi)q(x∗|xi)

)
This is the Metropolis-Hastings algorithm.
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Metropolis Algorithm

If we specialize to a symmetric random walk,

q(x ′|x) = q(x |x ′),

this simplifies to

min

(
1,

p(x∗)

p(xi)

)
.

This is the Metropolis algorithm.
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Why MCMC?

So why would you need such an elaborate Monte Carlo
procedure?

The main application: Bayesian estimation in statistics.

The output of Bayesian estimation is the pdf of a
probability distribution.
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Bayesian estimation: The Model

In Bayesian estimation, you start with a completely
specified model (depending on parameters), including
distributional assumptions for all variables.

Example:
xi = µ + εi ,

Must specify distribution for εi , such as

εi ∼ Normal(0, σ2).

So this model depends on µ and σ2. The model tells us
a density, p(ε1, . . . , εn|µ, σ2).
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Bayesian estimation: The Prior

You assume that the parameters themselves are random,
and pick a probability distribution for them. This is the
prior.

Example:

µ ∼ Normal(µ′, σ′)

1/σ2 ∼ Γ(k , θ)

The prior gives us a density p(µ, σ2).

What about µ′, σ′, k , and θ? These are called
hyperparameters, but they’re just constants we fit at the
beginning of the analysis.
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Bayesian estimation: The Posterior

We compute the posterior for the data ε1, . . . , εn.

p(µ, σ2|ε1, . . . , εn) =
p(ε1, . . . , εn|µ, σ2)p(µ, σ2)∫

p(ε1, . . . , εn|µ, σ2)p(µ, σ2)dµdσ2

The posterior tells us the probability of seeing the
parameters, given the data. This clearly depends on the
choice of prior.
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Choosing a Prior

So where does the prior come from?

In theory: the prior should represent your subjective
probability assessment of the outcomes.

In practice: there are customary choices of priors,
such as in the previous example.

Asymptotically, the posterior converges to the correct
point estimate – it’s a consistent estimator. So we can
think of Bayesian posteriors as just another class of
estimators.
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Summarizing the Posterior

To summarize the posterior, one usually reports:

Mean of posterior – point estimate.

Standard deviation of posterior – estimate of
precision (analogous to the standard error).

How do we compute these? We know the pdf of the
posterior up to a constant factor,

p(ε1, . . . , εn|µ, σ2)p(µ, σ2),

so we can use Monte Carlo simulation of the posterior
using MCMC.
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Structural Estimation

What do we want to use it for? Structural estimation.

Take a fully-parametrized model such as the RBC
model.

The model makes predictions for endogenous
variables as a function of exogenous variables.

Choose data to represent the variables, and choose
parameters that best match the data.

Alternative to calibration.
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Bayesian Structural Estimation

Bayesian estimation using MCMC can be used for a
relatively simple approach to structural estimation.

Easy part, thanks to MCMC: draw parameters from
the posterior.

Hard part, solve the model using the parameters.
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Advantages of Bayesian Structural
Estimation

Since we have a complete model, we have the likelihood,
and could use maximum likelihood estimation. The
advantages of the Bayesian approach is:

The likelihood may not be concave, so a local solver
may have find a local maximum. MCMC explores a
large part of parameter space.

Smooth solvers require derivatives, so the model
solution must approximate the derivatives well.

The disadvantage of MCMC is that you usually have to
do a gigantic number of draws, say 10,000,000. So you
have to solve your model 10,000,000 times.
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Endowment Economy

Example application: asset prices in an endowment
economy. How well do aggregate consumption and
dividend data explain stock and bond prices?

The question is studied in a standard framework:

A single representative investor optimizing over
time.

Investor has CRRA preferences.

Model is tested using US consumption and price
data: 1889-2004.
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Choice Variables

Each period, representative investor has wealth Wt , and
chooses between:

Consumption, quantity Ct , price 1,

Buying a risky asset, quantity St , price Pt ,

Buying a risk free bond, quantity Bt , price P f
t .

Budget constraint:

Wt = Ct + StPt + BtP
f
t .

In equilibrium St = S , Bt = 0.
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Wealth

Each period, representative investor receives:

Endowment income, Qt .

Dividends from risky asset, DtSt−1.

Bond payment, Bt−1.

Wealth is

Wt = Qt + (Pt + Dt) St−1 + Bt−1

In equilibrium, Wt = Qt + Pt + SDt .
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Agent Objective

Agent objective is a dynamic programming problem:

V (Wt) = max u(Ct) + βEtV (Wt+1)

where

u(x) =
x1−γ

1− γ
.
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Solving the Model

Suppose Ct and Dt are log-AR(1). Then you can use one
of many numerical methods to find:

P(Dt ,Ct)

Pf (Dt ,Ct)

I used Galerkin.

Note that this predicts prices exactly as a function of the
state variables. Unless we have a model that fits exactly,
we can’t fit this model.
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What To Estimate?

We assume that prices are observed with error.

We have a model for four series:

logCt+1 = (1− ρc)µc + ρc logCt + εct ,

logDt+1 = (1− ρd)µd + ρd logDt + εdt ,

logPt = logP(Dt ,Ct) + εpt ,

logP f
t = logP f (Dt ,Ct) + εpft .

All innovations are normally distributed.

Walt Pohl (UZH QBA) Stochastic Models September 9, 2011 24 / 27



Data

I use:

Ct is annual US consumption.

Pt and Dt are annual prices and dividends for the
S&P.

P f
t is the annualized 3-month interest rate on US

debt.

The first three grow over time, so I detrend them.
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Parameters

The model depends on a bunch of parameters:

Time-series parameters, ε, µ, and ρ.

Utility parameters: β, γ.

For a prior, I let the parameters be uniformly distributed
over their domain of definition.

I simulate the posterior using the Metropolis algorithm
with normal draws.
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My Experience with MCMC

I spent a month implementing the Galerkin solution
step (in C).

I spent less than a day implementing the MCMC.

The Galerkin step takes about a second.

To run it 10,000,000 times took about a month.
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