Mixed Integer Nonlinear Programming (MINLP)

SVEN LEYFFER

MCS Division Argonne National Lab leyffer@mcs.anl.gov

Jeff Linderoth

ISE Department Lehigh University jtl30lehigh.edu

Overview

- Introduction, Applications, and Formulations
- Classical Solution Methods
- Modern Developments in MINLP
- Implementation and Software

Part I

Introduction, Applications, and Formulations

$$\begin{cases} \underset{x,y}{\text{minimize}} & f(x, y) \\ \text{subject to} & c(x, y) \leq 0 \\ & x \in X, \ y \in Y \text{ integer} \end{cases}$$

$$\begin{cases} \underset{x,y}{\text{minimize}} & f(x, y) \\ \text{subject to} & c(x, y) \leq 0 \\ & x \in X, \ y \in Y \text{ integer} \end{cases}$$

- *f*, *c* smooth (convex) functions
- X, Y polyhedral sets, e.g. $Y = \{y \in [0,1]^p \mid Ay \le b\}$

$$\begin{cases} \underset{x,y}{\text{minimize}} & f(x, y) \\ \text{subject to} & c(x, y) \leq 0 \\ & x \in X, \ y \in Y \text{ integer} \end{cases}$$

- *f*, *c* smooth (convex) functions
- X, Y polyhedral sets, e.g. $Y = \{y \in [0,1]^p \mid Ay \le b\}$
- $y \in Y$ integer \Rightarrow hard problem

$$\begin{cases} \underset{x,y}{\text{minimize}} & f(x, y) \\ \text{subject to} & c(x, y) \leq 0 \\ & x \in X, \ y \in Y \text{ integer} \end{cases}$$

- *f*, *c* smooth (convex) functions
- X, Y polyhedral sets, e.g. $Y = \{y \in [0, 1]^p \mid Ay \le b\}$
- $y \in Y$ integer \Rightarrow hard problem
- $f, c \text{ not convex} \Rightarrow \text{very hard problem}$

Why the MI?

• We can use 0-1 (binary) variables for a variety of purposes

- Modeling yes/no decisions
- Enforcing disjunctions
- Enforcing logical conditions
- Modeling fixed costs
- Modeling piecewise linear functions

Why the MI?

• We can use 0-1 (binary) variables for a variety of purposes

- Modeling yes/no decisions
- Enforcing disjunctions
- Enforcing logical conditions
- Modeling fixed costs
- Modeling piecewise linear functions
- If the variable is associated with a physical entity that is indivisible, then it must be integer
 - Number of aircraft carriers to to produce. Gomory's Initial Motivation

Dantzig's Two-Phase Method for MINLP

Adapted by Leyffer and Linderoth

Dantzig's Two-Phase Method for MINLP

Adapted by Leyffer and Linderoth

Convince the user that he or she does not wish to solve a mixed integer nonlinear programming problem at all!

Dantzig's Two-Phase Method for MINLP

Adapted by Leyffer and Linderoth

- Convince the user that he or she does not wish to solve a mixed integer nonlinear programming problem at all!
- Otherwise, solve the continuous relaxation (NLP) and round off the minimizer to the nearest integer.

Dantzig's Two-Phase Method for MINLP

Adapted by Leyffer and Linderoth

- Convince the user that he or she does not wish to solve a mixed integer nonlinear programming problem at all!
- Otherwise, solve the continuous relaxation (NLP) and round off the minimizer to the nearest integer.
 - For 0 1 problems, or those in which the |y| is "small", the continuous approximation to the discrete decision is not accurate enough for practical purposes.
 - Conclusion: MINLP methods must be studied!

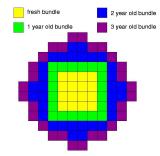
Example: Core Reload Operation (Quist, A.J., 2000)

- max. reactor efficiency after reload subject to diffusion PDE & safety
- diffusion PDE ≃ nonlinear equation
 ⇒ integer & nonlinear model
- avoid reactor becoming sub-critical



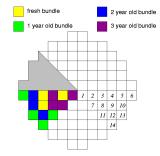
Example: Core Reload Operation (Quist, A.J., 2000)

- max. reactor efficiency after reload subject to diffusion PDE & safety
- diffusion PDE ≃ nonlinear equation
 ⇒ integer & nonlinear model
- avoid reactor becoming overheated



Example: Core Reload Operation (Quist, A.J., 2000)

- look for cycles for moving bundles: e.g. 4 \rightarrow 6 \rightarrow 8 \rightarrow 10 i.e. bundle moved from 4 to 6 ...
- model with binary $x_{ilm} \in \{0, 1\}$ $x_{ilm} = 1$ \Leftrightarrow node *i* has bundle *l* of cycle *m*



AMPL Model of Core Reload Operation

Exactly one bundle per node:

$$\sum_{l=1}^{L}\sum_{m=1}^{M}x_{ilm}=1 \qquad orall i\in I$$

AMPL model: var x {I,L,M} binary ; Bundle {i in I}: sum{l in L, m in M} x[i,l,m] = 1 ;

- Multiple Choice: One of the most common uses of IP
- Full AMPL model c-reload.mod at www.mcs.anl.gov/~leyffer/MacMINLP/

Gas Transmission Problem (De Wolf and Smeers, 2000)

• Belgium has no gas!

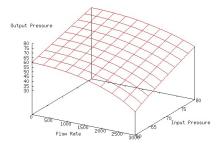
Gas Transmission Problem (De Wolf and Smeers, 2000)

- Belgium has no gas!
- All natural gas is imported from Norway, Holland, or Algeria.
- Supply gas to all demand points in a network in a minimum cost fashion.

Gas Transmission Problem (De Wolf and Smeers, 2000)

- Belgium has no gas!
- All natural gas is imported from Norway, Holland, or Algeria.
- Supply gas to all demand points in a network in a minimum cost fashion.
- Gas is pumped through the network with a series of compressors
- There are constraints on the pressure of the gas within the pipe

Pressure Loss is Nonlinear



- Assume horizontal pipes and steady state flows
- Pressure loss *p* across a pipe is related to the flow rate *f* as

$$p_{in}^2 - p_{out}^2 = \frac{1}{\Psi} \operatorname{sign}(f) f^2$$

Ψ: "Friction Factor"

Gas Transmission: Problem Input

- Network (N, A). $A = A_p \cup A_a$
 - A_a : active arcs have compressor. Flow rate can increase on arc
 - A_p : passive arcs simply conserve flow rate
- $N_s \subseteq N$: set of supply nodes
- $c_i, i \in N_s$: Purchase cost of gas
- $\underline{s}_i, \overline{s}_i$: Lower and upper bounds on gas "supply" at node i
- $\underline{p}_i, \overline{p}_i$: Lower and upper bounds on gas pressure at node i

Gas Transmission: Problem Input

- Network (N, A). $A = A_p \cup A_a$
 - A_a : active arcs have compressor. Flow rate can increase on arc
 - A_p: passive arcs simply conserve flow rate
- $N_s \subseteq N$: set of supply nodes
- $c_i, i \in N_s$: Purchase cost of gas
- $\underline{s}_i, \overline{s}_i$: Lower and upper bounds on gas "supply" at node i
- p_i, \overline{p}_i : Lower and upper bounds on gas pressure at node i
- $s_i, i \in N$: supply at node i.
 - $s_i > 0 \Rightarrow$ gas added to the network at node i
 - $s_i < 0 \Rightarrow$ gas removed from the network at node i to meet demand
- $f_{ij}, (i, j) \in A$: flow along arc (i, j)
 - $f(i,j) > 0 \Rightarrow$ gas flows $i \rightarrow j$
 - $f(i,j) < 0 \Rightarrow$ gas flows $j \rightarrow i$

Gas Transmission Model

 $\min\sum_{j\in N_s}c_js_j$

subject to

$$\sum_{\substack{j \mid (i,j) \in A \\ \text{sign}(f_{ij})f_{ij}^2 - \Psi_{ij}(p_i^2 - p_j^2) = 0 \quad \forall (i,j) \in A_p \\ \text{sign}(f_{ij})f_{ij}^2 - \Psi_{ij}(p_i^2 - p_j^2) \geq 0 \quad \forall (i,j) \in A_a \\ s_i \in [\underline{s}_i, \overline{s}_i] \quad \forall i \in N \\ p_i \in [\underline{p}_i, \overline{p}_i] \quad \forall i \in N \\ f_{ij} \geq 0 \quad \forall (i,j) \in A_a \end{cases}$$

Your First Modeling Trick

- Don't include nonlinearities or nonconvexities unless necessary!
- Replace $p_i^2 \leftarrow \rho_i$

Your First Modeling Trick

Don't include nonlinearities or nonconvexities unless necessary!
Replace p²_i ← ρ_i

$$sign(f_{ij})f_{ij}^{2} - \Psi_{ij}(\rho_{i} - \rho_{j}) = 0 \quad \forall (i,j) \in A_{p}$$

$$f_{ij}^{2} - \Psi_{ij}(\rho_{i} - \rho_{j}) \geq 0 \quad \forall (i,j) \in A_{a}$$

$$\rho_{i} \in [\sqrt{\underline{p}_{i}}, \sqrt{\overline{p}_{i}}] \quad \forall i \in N$$

Your First Modeling Trick

Don't include nonlinearities or nonconvexities unless necessary!
Replace p²_i ← ρ_i

$$sign(f_{ij})f_{ij}^2 - \Psi_{ij}(\rho_i - \rho_j) = 0 \quad \forall (i,j) \in A_p$$

$$f_{ij}^2 - \Psi_{ij}(\rho_i - \rho_j) \geq 0 \quad \forall (i,j) \in A_a$$

$$\rho_i \in [\sqrt{\underline{p}_i}, \sqrt{\overline{p}_i}] \quad \forall i \in N$$

• This trick only works because

• p_i^2 terms appear only in the bound constraints

2) Also
$$f_{ij} \geq 0 \; orall (i,j) \in A_{a}$$

- This model is nonconvex: $sign(f_{ij})f_{ij}^2$ is a nonconvex function
- Some solvers do not like sign

Dealing with sign(\cdot): The NLP Way

• Use auxiliary binary variables to indicate direction of flow

• Let
$$|f_{ij}| \leq F \ \forall (i,j) \in A_p$$

$$z_{ij} = \left\{ egin{array}{ccc} 1 & f_{ij} \geq 0 & f_{ij} \geq -F(1-z_{ij}) \ 0 & f_{ij} \leq 0 & f_{ij} \leq Fz_{ij} \end{array}
ight.$$

Note that

$$\mathsf{sign}(f_{ij}) = 2z_{ij} - 1$$

Write constraint as

$$(2z_{ij}-1)f_{ij}^2 - \Psi_{ij}(\rho_i - \rho_j) = 0.$$

Special Ordered Sets

• Sven thinks this 'NLP trick' is pretty cool

Special Ordered Sets

- Sven thinks this 'NLP trick' is pretty cool
- It is not how it is done in De Wolf and Smeers (2000).

Special Ordered Sets

- Sven thinks this 'NLP trick' is pretty cool
- It is not how it is done in De Wolf and Smeers (2000).
- Heuristic for finding a good starting solution, then a local optimization approach based on a piecewise-linear simplex method
- Another (similar) approach involves approximating the nonlinear function by piecewise linear segments, but searching for the globally optimal solution: Special Ordered Sets of Type 2
- If the "multidimensional" nonlinearity cannot be removed, resort to Special Ordered Sets of Type 3

Portfolio Management

- N: Universe of asset to purchase
- x_i: Amount of asset i to hold
- B: Budget

$$\min_{x\in\mathbb{R}^{|N|}_+}\left\{u(x)\mid\sum_{i\in\mathbb{N}}x_i=B\right\}$$

Portfolio Management

- N: Universe of asset to purchase
- x_i: Amount of asset i to hold
- B: Budget

$$\min_{x\in\mathbb{R}^{|N|}_+}\left\{u(x)\mid\sum_{i\in\mathbb{N}}x_i=B\right\}$$

- Markowitz: $u(x) \stackrel{\text{def}}{=} -\alpha^T x + \lambda x^T Q x$
 - α : Expected returns
 - Q: Variance-covariance matrix of expected returns
 - λ: Risk aversion parameter

More Realistic Models

• $b \in \mathbb{R}^{|N|}$ of "benchmark" holdings

- Benchmark Tracking: $u(x) \stackrel{\text{def}}{=} (x-b)^T Q(x-b)$
 - Constraint on $\mathbb{E}[\text{Return}]$: $\alpha^T x \ge r$

More Realistic Models

• $b \in \mathbb{R}^{|N|}$ of "benchmark" holdings

- Benchmark Tracking: $u(x) \stackrel{\text{def}}{=} (x-b)^T Q(x-b)$
 - Constraint on $\mathbb{E}[\text{Return}]$: $\alpha^T x \ge r$
- Limit Names: $|i \in N : x_i > 0| \le K$
 - Use binary indicator variables to model the implication $x_i > 0 \Rightarrow y_i = 1$
 - Implication modeled with variable upper bounds:

$$x_i \leq By_i \qquad \forall i \in N$$

•
$$\sum_{i \in N} y_i \leq K$$

Even More Models

- Min Holdings: $(x_i = 0) \lor (x_i \ge m)$
 - Model implication: $x_i > 0 \Rightarrow x_i \ge m$
 - $x_i > 0 \Rightarrow y_i = 1 \Rightarrow x_i \ge m$
 - $x_i \leq By_i, x_i \geq my_i \ \forall i \in N$

Even More Models

- Min Holdings: (x_i = 0) ∨ (x_i ≥ m)

 Model implication: x_i > 0 ⇒ x_i ≥ m
 x_i > 0 ⇒ y_i = 1 ⇒ x_i ≥ m
 x_i ≤ By_i, x_i ≥ my_i ∀i ∈ N

 Round Lots: x_i ∈ {kL_i, k = 1, 2, ...}
 - $x_i z_i L_i = 0, z_i \in \mathbb{Z}_+ \ \forall i \in N$

Even More Models

- Min Holdings: (x_i = 0) ∨ (x_i ≥ m)
 Model implication: x_i > 0 ⇒ x_i ≥ m
 x_i > 0 ⇒ y_i = 1 ⇒ x_i ≥ m
 x_i ≤ By_i, x_i ≥ my_i ∀i ∈ N
 Round Lots: x_i ∈ {kL_i, k = 1, 2, ...}
 x_i z_iL_i = 0, z_i ∈ Z₊ ∀i ∈ N
 Vector h of initial holdings
- Transactions: $t_i = |x_i h_i|$
- Turnover: $\sum_{i \in N} t_i \leq \Delta$
- Transaction Costs: $\sum_{i \in N} c_i t_i$ in objective
- Market Impact: $\sum_{i \in N} \gamma_i t_i^2$ in objective

Multiproduct Batch Plants (Kocis and Gross-

mann, 1988)

- M: Batch Processing Stages
- N: Different Products
- H: Horizon Time
- Q_i: Required quantity of product i
- *t_{ij}*: Processing time product *i* stage *j*
- S_{ij}: "Size Factor" product *i* stage *j*

Multiproduct Batch Plants (Kocis and Grossmann, 1988)

- M: Batch Processing Stages
- N: Different Products
- H: Horizon Time
- Q_i: Required quantity of product i
- *t_{ij}*: Processing time product *i* stage *j*
- S_{ij}: "Size Factor" product *i* stage *j*
- B_i : Batch size of product $i \in N$
- V_j : Stage *j* size: $V_j \ge S_{ij}B_i \ \forall i, j$
- N_j: Number of machines at stage j
- C_i : Longest stage time for product i: $C_i \ge t_{ij}/N_j \ \forall i, j$

Multiproduct Batch Plants

s.t.

 $V_{j} - S_{ij}B_{i} \geq 0 \qquad \forall i \in N, \forall j \in M \\ C_{i}N_{j} \geq t_{ij} \qquad \forall i \in N, \forall j \in M \\ \sum_{i \in N} \frac{Q_{i}}{B_{i}}C_{i} \leq H$ Bound Constraints on V_i, C_i, B_i, N_i $N_i \in \mathbb{Z} \quad \forall i \in M$

 $\min \sum_{i \in M} \alpha_j N_j V_j^{\beta_j}$

Modeling Trick #2

• Horizon Time and Objective Function Nonconvex. :-(

Modeling Trick #2

- Horizon Time and Objective Function Nonconvex. :-(
- Sometimes variable transformations work!

$$v_j = \ln(V_j), n_j = \ln(N_j), b_i = \ln(B_i), c_i = \ln C_i$$

Modeling Trick #2

- Horizon Time and Objective Function Nonconvex. :-(
- Sometimes variable transformations work!

$$\begin{aligned} v_j &= \ln(V_j), n_j = \ln(N_j), b_i = \ln(B_i), c_i = \ln C_i \\ \min \sum_{j \in M} \alpha_j e^{N_j + \beta_j V_j} \\ \text{s.t. } v_j - \ln(S_{ij}) b_i &\geq 0 \quad \forall i \in N, \forall j \in M \\ c_i + n_j &\geq \ln(\tau_{ij}) \quad \forall i \in N, \forall j \in M \\ \sum_{i \in N} Q_i e^{C_i - B_i} &\leq H \\ \end{aligned}$$
(Transformed) Bound Constraints on V_j, C_i, B_i

How to Handle the Integrality?

• But what to do about the integrality?

$$1 \leq N_j \leq \overline{N}_j \qquad \forall j \in M, N_j \in \mathbb{Z} \qquad \forall j \in M$$

• $n_j \in \{0, \ln(2), \ln(3), \ldots\}$

$$Y_{kj} = \left\{ egin{array}{cc} 1 & n_j ext{ takes value } \ln(k) \ 0 & ext{ Otherwise } \end{array}
ight.$$

$$n_j - \sum_{k=1}^{K} \ln(k) Y_{kj} = 0 \quad \forall j \in M$$

 $\sum_{k=1}^{K} Y_{kj} = 1 \quad \forall j \in M$

 This model is available at http://www-unix.mcs.anl.gov/ ~leyffer/macminlp/problems/batch.mod

A Small Smattering of Other Applications

- Chemical Engineering Applications:
 - process synthesis (Kocis and Grossmann, 1988)
 - batch plant design (Grossmann and Sargent, 1979)
 - cyclic scheduling (Jain, V. and Grossmann, I.E., 1998)
 - design of distillation columns (Viswanathan and Grossmann, 1993)
 - pump configuration optimization (Westerlund, T., Pettersson, F. and Grossmann, I.E., 1994)
- Forestry/Paper
 - production (Westerlund, T., Isaksson, J. and Harjunkoski, I., 1995)
 - trimloss minimization (Harjunkoski, I., Westerlund, T., Pörn, R. and Skrifvars, H., 1998)
- Topology Optimization (Sigmund, 2001)

Part II

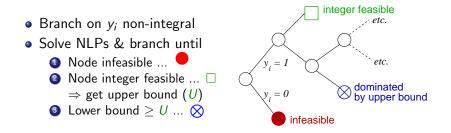
Classical Solution Methods

Classical Solution Methods for MINLP

- Classical Branch-and-Bound
- Outer Approximation & Benders Decomposition
- O Hybrid Methods
 - LP/NLP Based Branch-and-Bound
 - Integrating SQP with Branch-and-Bound

Branch-and-Bound

Solve relaxed NLP ($0 \le y \le 1$ continuous relaxation) ... solution value provides lower bound



Search until no unexplored nodes on tree

Variable Selection for Branch-and-Bound

Assume $y_i \in \{0, 1\}$ for simplicity ... (\hat{x}, \hat{y}) fractional solution to parent node; $\hat{f} = f(\hat{x}, \hat{y})$

1 maximal fractional branching: choose \hat{y}_i closest to $\frac{1}{2}$

 $\max_{i} \{\min(1-\hat{y}_i,\hat{y}_i)\}$

Variable Selection for Branch-and-Bound

Assume $y_i \in \{0, 1\}$ for simplicity ... (\hat{x}, \hat{y}) fractional solution to parent node; $\hat{f} = f(\hat{x}, \hat{y})$

1 maximal fractional branching: choose \hat{y}_i closest to $\frac{1}{2}$

$$\max_{i} \{\min(1-\hat{y}_i,\hat{y}_i)\}$$

3 strong branching: (approx) solve all NLP children:

$$f_i^{+/-} \leftarrow \begin{cases} \underset{x,y}{\text{minimize}} & f(x,y) \\ \text{subject to} & c(x,y) \leq 0 \\ & x \in X, \ y \in Y, \ y_i = 1/0 \end{cases}$$

branching variable y_i that changes objective the most:

$$\max_{i} \left\{ \min(\mathbf{f}_{i}^{+}, \mathbf{f}_{i}^{-}) \right\}$$

Node Selection for Branch-and-Bound

Which node n on tree T should be solved next?

- **0** depth-first search: select deepest node in tree
 - minimizes number of NLP nodes stored
 - exploit warm-starts (MILP/MIQP only)

Node Selection for Branch-and-Bound

Which node n on tree T should be solved next?

O depth-first search: select deepest node in tree

- minimizes number of NLP nodes stored
- exploit warm-starts (MILP/MIQP only)

Ø best estimate: choose node with best expected integer soln

$$\min_{n \in \mathcal{T}} \left\{ f_{p(n)} + \sum_{i: y_i \text{fractional}} \min \left\{ e_i^+ (1 - y_i), e_i^- y_i \right\} \right\}$$

where $f_{p(n)}$ = value of parent node, $e_i^{+/-}$ = pseudo-costs summing pseudo-cost estimates for all integers in subtree

Outer Approximation (Duran and Grossmann, 1986)

Motivation: avoid solving huge number of NLPs

• Exploit MILP/NLP solvers: decompose integer/nonlinear part

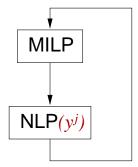
Key idea: reformulate MINLP as MILP (implicit)

• Solve alternating sequence of MILP & NLP

NLP subproblem y_j fixed:

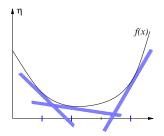
$$\mathsf{NLP}(\mathbf{y}_j) \begin{cases} \min_{x} & f(x, \mathbf{y}_j) \\ \text{subject to} & c(x, \mathbf{y}_j) \leq 0 \\ & x \in X \end{cases}$$

Main Assumption: f, c are convex



Outer Approximation (Duran and Grossmann, 1986)

- let (x_j, y_j) solve NLP (y_j)
- linearize f, c about $(x_j, y_j) =: z_j$
- new objective variable $\eta \ge f(x, y)$
- MINLP $(P) \equiv$ MILP (M)

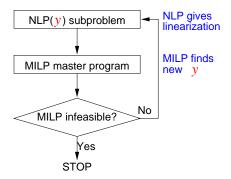


$$(M) \begin{cases} \begin{array}{ll} \underset{z=(x,y),\eta}{\text{minimize}} & \eta \\ \text{subject to} & \eta \ge f_j + \nabla f_j^T (z - z_j) & \forall y_j \in Y \\ & 0 \ge c_j + \nabla c_j^T (z - z_j) & \forall y_j \in Y \\ & x \in X, \ y \in Y \text{ integer} \end{cases} \end{cases}$$

SNAG: need all $y_j \in Y$ linearizations

Outer Approximation (Duran and Grossmann, 1986)

 (M_k) : lower bound (underestimate convex f, c) NLP (y_j) : upper bound U (fixed y_j)



 \Rightarrow stop, if lower bound \ge upper bound

Outer Approximation & Benders Decomposition

Take OA cuts for $z_j := (x_j, y_j) \dots$ wlog $X = \mathbb{R}^n$

$$\eta \geq f_j + \nabla f_j^{\mathsf{T}}(z - z_j)$$
 & $0 \geq c_j + \nabla c_j^{\mathsf{T}}(z - z_j)$

sum with $(1, \lambda_j) \dots \lambda_j$ multipliers of NLP (y_j)

$$\eta \geq f_j + \lambda_j^T c_j + (\nabla f_j + \nabla c_j \lambda_j)^T (z - z_j)$$

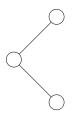
KKT conditions of NLP $(y_j) \Rightarrow \nabla_x f_j + \nabla_x c_j \lambda_j = 0$... eliminate x components from valid inequality in y

$$\Rightarrow \quad \eta \geq f_j + (\nabla_{\mathbf{y}} f_j + \nabla_{\mathbf{y}} c_j \lambda_j)^T (\mathbf{y} - \mathbf{y}_j)$$

NB: $\mu_j = \nabla_y f_j + \nabla_y c_j \lambda_j$ multiplier of $y = y_j$ in NLP (y_j) **References**: (Geoffrion, 1972)

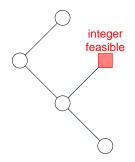
AIM: avoid re-solving MILP master (*M*)

• Consider MILP branch-and-bound



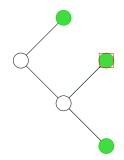
AIM: avoid re-solving MILP master (*M*)

- Consider MILP branch-and-bound
- interrupt MILP, when y_j found
 ⇒ solve NLP(y_j) get x_j



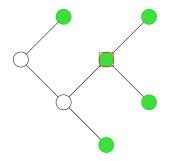
AIM: avoid re-solving MILP master (*M*)

- Consider MILP branch-and-bound
- interrupt MILP, when y_j found \Rightarrow solve NLP(y_j) get x_j
- linearize f, c about (x_j, y_j) \Rightarrow add linearization to tree



AIM: avoid re-solving MILP master (*M*)

- Consider MILP branch-and-bound
- interrupt MILP, when y_j found \Rightarrow solve NLP(y_j) get x_j
- linearize f, c about (x_j, y_j) \Rightarrow add linearization to tree
- continue MILP tree-search



... until lower bound \geq upper bound

need access to MILP solver ... call back
 exploit good MILP (branch-cut-price) solver
 (Akrotirianakis et al., 2001) use Gomory cuts in tree-search

- preliminary results: order of magnitude faster than OA
 same number of NLPs, but only one MILP
- similar ideas for Benders & Extended Cutting Plane methods
- recent implementation by CMU/IBM group

References: (Quesada and Grossmann, 1992)

Integrating SQP & Branch-and-Bound

AIM: Avoid solving NLP node to convergence.

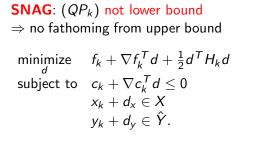
Sequential Quadratic Programming (SQP) \rightarrow solve sequence (*QP*_k) at every node

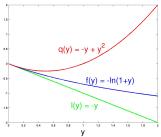
$$(QP_k) \begin{cases} \text{minimize} & f_k + \nabla f_k^T d + \frac{1}{2} d^T H_k d \\ \text{subject to} & c_k + \nabla c_k^T d \leq 0 \\ & x_k + d_x \in X \\ & y_k + d_y \in \hat{Y}. \end{cases}$$

Early branching:

After QP step choose non-integral y_i^{k+1} , branch & continue SQP **References**: (Borchers and Mitchell, 1994; Leyffer, 2001)

Integrating SQP & Branch-and-Bound





NB: (QP_k) inconsistent and trust-region active \Rightarrow do not fathom

Integrating SQP & Branch-and-Bound

SNAG: (QP_k) not lower bound \Rightarrow no fathoming from upper bound minimize $f_k + \nabla f_k^T d + \frac{1}{2} d^T H_k d$ subject to $c_k + \nabla c_k^T d \le 0$ $x_k + d_x \in X$ $y_k + d_y \in \hat{Y}$.

Remedy: Exploit OA underestimating property (Leyffer, 2001):

- add objective cut $f_k + \nabla f_k^T d \leq U \epsilon$ to (QP_k)
- fathom node, if (QP_k) inconsistent

NB: (QP_k) inconsistent and trust-region active \Rightarrow do not fathom

Comparison of Classical MINLP Techniques

Summary of numerical experience

- Quadratic OA master: usually fewer iteration MIQP harder to solve
- NLP branch-and-bound faster than OA ... depends on MIP solver
- LP/NLP-based-BB order of magnitude faster than OA ...also faster than B&B
- Section ECP works well, if function/gradient evals expensive

Part III

Modern Developments in MINLP

Modern Methods for MINLP

Formulations

- Relaxations
- Good formulations: big M's and disaggregation
- Outting Planes
 - Cuts from relaxations and special structures
 - Cuts from integrality
- Handling Nonconvexity
 - Envelopes
 - Methods

Relaxations



• Independent of f, S, T: $z(T) \le z(S)$

69/160

Relaxations

•
$$z(S) \stackrel{\text{def}}{=} \min_{x \in S} f(x)$$

• $z(T) \stackrel{\text{def}}{=} \min_{x \in T} f(x)$
S
T

- Independent of f, S, T: $z(T) \le z(S)$
- If $x_T^* = \arg \min_{x \in T} f(x)$
- And $x_T^* \in S$, then

Relaxations

•
$$z(S) \stackrel{\text{def}}{=} \min_{x \in S} f(x)$$

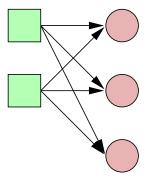
• $z(T) \stackrel{\text{def}}{=} \min_{x \in T} f(x)$
s
T

- Independent of f, S, T: $z(T) \le z(S)$
- If $x_T^* = \arg \min_{x \in T} f(x)$
- And $x_T^* \in S$, then

•
$$x_T^* = \arg\min_{x \in S} f(x)$$

UFL: Uncapacitated Facility Location

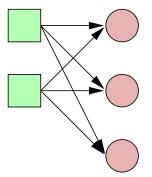
- Facilities: J
- Customers: I



$$\min \sum_{j \in J} f_j x_j + \sum_{i \in I} \sum_{j \in J} f_{ij} y_{ij}$$
$$\sum_{j \in J} y_{ij} = 1 \quad \forall i \in I$$
$$\sum_{i \in I} y_{ij} \leq |I| x_j \quad \forall j \in J \qquad (1)$$
$$OR \quad y_{ij} \leq x_j \quad \forall i \in I, \ j \in J \qquad (2)$$

UFL: Uncapacitated Facility Location

- Facilities: J
- Customers: I



$$\min \sum_{j \in J} f_j x_j + \sum_{i \in I} \sum_{j \in J} f_{ij} y_{ij}$$

$$\sum_{j \in J} y_{ij} = 1 \quad \forall i \in I$$

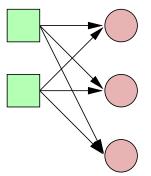
$$\sum_{i \in I} y_{ij} \leq |I| x_j \quad \forall j \in J \quad (1)$$

$$OR \quad y_{ij} \leq x_j \quad \forall i \in I, \ j \in J \quad (2)$$

• Which formulation is to be preferred?

UFL: Uncapacitated Facility Location

- Facilities: J
- Customers: I



$$\min \sum_{j \in J} f_j x_j + \sum_{i \in I} \sum_{j \in J} f_{ij} y_{ij}$$

$$\sum_{j \in J} y_{ij} = 1 \quad \forall i \in I$$

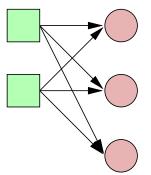
$$\sum_{i \in I} y_{ij} \leq |I| x_j \quad \forall j \in J \quad (1)$$

$$OR \quad y_{ij} \leq x_i \quad \forall i \in I, \ j \in J \quad (2)$$

- Which formulation is to be preferred?
- I = J = 40. Costs random.

UFL: Uncapacitated Facility Location

- Facilities: J
- Customers: I



$$\min \sum_{j \in J} f_j x_j + \sum_{i \in I} \sum_{j \in J} f_{ij} y_{ij}$$
$$\sum_{j \in J} y_{ij} = 1 \quad \forall i \in I$$
$$\sum_{i \in I} y_{ij} \leq |I| x_j \quad \forall j \in J \qquad (1)$$
$$OR \quad y_{ij} \leq x_i \quad \forall i \in I, \ j \in J \qquad (2)$$

- Which formulation is to be preferred?
- I = J = 40. Costs random.
 - Formulation 1. 53,121 seconds, optimal solution.
 - Formulation 2. 2 seconds, optimal solution.

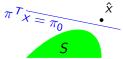
Valid Inequalities

- Sometimes we can get a better formulation by dynamically improving it.
- An inequality $\pi^T x \le \pi_0$ is a valid inequality for S if $\pi^T x \le \pi_0 \ \forall x \in S$
- Alternatively: $\max_{x \in S} \{\pi^T x\} \le \pi_0$

Valid Inequalities

- Sometimes we can get a better formulation by dynamically improving it.
- An inequality $\pi^T x \le \pi_0$ is a valid inequality for S if $\pi^T x \le \pi_0 \ \forall x \in S$
- Alternatively: $\max_{x \in S} \{\pi^T x\} \le \pi_0$
- Thm: (Hahn-Banach). Let $S \subset \mathbb{R}^n$ be a closed, convex set, and let $\hat{x} \notin S$. Then there exists $\pi \in \mathbb{R}^n$ such that $\pi^T \chi =$

$$\pi^T \hat{x} > \max_{x \in S} \{\pi^T x\}$$



Nonlinear Branch-and-Cut

Consider MINLP

$$\begin{cases} \underset{x,y}{\text{minimize}} & f_x^T x + f_y^T y\\ \text{subject to} & c(x,y) \le 0\\ & y \in \{0,1\}^p, \ 0 \le x \le U \end{cases}$$

- Note the Linear objective
- This is WLOG:

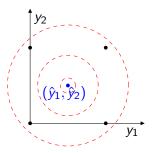
$$\min f(x,y) \qquad \Leftrightarrow \qquad \min \eta \ \text{ s.t. } \eta \geq f(x,y)$$

78/160

It's Actually Important!

- We want to approximate the convex hull of integer solutions, but without a linear objective function, the solution to the relaxation might occur in the interior.
- No Separating Hyperplane! :-(

$$\begin{split} \min(y_1 - 1/2)^2 + (y_2 - 1/2)^2 \\ \text{s.t. } y_1 \in \{0, 1\}, y_2 \in \{0, 1\} \end{split}$$

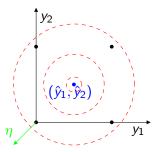


It's Actually Important!

- We want to approximate the convex hull of integer solutions, but without a linear objective function, the solution to the relaxation might occur in the interior.
- No Separating Hyperplane! :-(

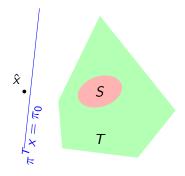
$$\begin{split} \min(y_1 - 1/2)^2 + (y_2 - 1/2)^2 \\ \text{s.t.} \ y_1 \in \{0, 1\}, y_2 \in \{0, 1\} \end{split}$$

 $\eta \ge (y_1 - 1/2)^2 + (y_2 - 1/2)^2$



Valid Inequalities From Relaxations

- Idea: Inequalities valid for a relaxation are valid for original
- Generating valid inequalities for a relaxation is often easier.



• Separation Problem over T: Given \hat{x} , T find (π, π_0) such that $\pi^T \hat{x} > \pi_0$, $\pi^T x \le \pi_0 \forall x \in T$

• Idea: Consider one row relaxations **P**

- Idea: Consider one row relaxations **P**
- If $P = \{x \in \{0,1\}^n \mid Ax \le b\}$, then for any row *i*, $P_i = \{x \in \{0,1\}^n \mid a_i^T x \le b_i\}$ is a relaxation of *P*.

- Idea: Consider one row relaxations **P**
- If $P = \{x \in \{0,1\}^n \mid Ax \le b\}$, then for any row *i*, $P_i = \{x \in \{0,1\}^n \mid a_i^T x \le b_i\}$ is a relaxation of *P*.
- If the intersection of the relaxations is a good approximation to the true problem, then the inequalities will be quite useful.

- Idea: Consider one row relaxations **P**
- If $P = \{x \in \{0,1\}^n \mid Ax \le b\}$, then for any row *i*, $P_i = \{x \in \{0,1\}^n \mid a_i^T x \le b_i\}$ is a relaxation of *P*.
- If the intersection of the relaxations is a good approximation to the true problem, then the inequalities will be quite useful.
- Crowder et al. (1983) is the seminal paper that shows this to be true for IP.

- Idea: Consider one row relaxations **P**
- If $P = \{x \in \{0,1\}^n \mid Ax \le b\}$, then for any row *i*, $P_i = \{x \in \{0,1\}^n \mid a_i^T x \le b_i\}$ is a relaxation of *P*.
- If the intersection of the relaxations is a good approximation to the true problem, then the inequalities will be quite useful.
- Crowder et al. (1983) is the seminal paper that shows this to be true for IP.
- MINLP: Single (linear) row relaxations are also valid ⇒ same inequalities can also be used

Knapsack Covers

$$K = \{x \in \{0,1\}^n \mid a^T x \le b\}$$

- A set $C \subseteq N$ is a cover if $\sum_{j \in C} a_j > b$
- A cover *C* is a minimal cover if $C \setminus j$ is not a cover $\forall j \in C$

Knapsack Covers

$$K = \{x \in \{0,1\}^n \mid a^T x \le b\}$$

- A set $C \subseteq N$ is a cover if $\sum_{j \in C} a_j > b$
- A cover C is a minimal cover if $C \setminus j$ is not a cover $\forall j \in C$
- If $C \subseteq N$ is a cover, then the cover inequality

$$\sum_{j\in C} x_j \le |C| - 1$$

is a valid inequality for S

• Sometimes (minimal) cover inequalities are facets of conv(K)

Other Substructures

• Single node flow: (Padberg et al., 1985)

$$S = \left\{ x \in \mathbb{R}_+^{|N|}, y \in \{0,1\}^{|N|} \mid \sum_{j \in N} x_j \le b, x_j \le u_j y_j \ \forall \ j \in N \right\}$$

• Knapsack with single continuous variable: (Marchand and Wolsey, 1999)

$$\mathcal{S} = \left\{ x \in \mathbb{R}_+, y \in \{0,1\}^{|\mathcal{N}|} \mid \sum_{j \in \mathcal{N}} \mathsf{a}_j y_j \leq b + x
ight\}$$

• Set Packing: (Borndörfer and Weismantel, 2000)

$$S = \left\{ y \in \{0,1\}^{|N|} \mid Ay \le e \right\}$$

 $A \in \{0,1\}^{|M| \times |N|}, e = (1,1,\ldots,1)^T$

The Chvátal-Gomory Procedure

• A general procedure for generating valid inequalities for integer programs

The Chvátal-Gomory Procedure

- A general procedure for generating valid inequalities for integer programs
- Let the columns of $A \in \mathbb{R}^{m \times n}$ be denoted by $\{a_1, a_2, \dots a_n\}$

The Chvátal-Gomory Procedure

- A general procedure for generating valid inequalities for integer programs
- Let the columns of $A \in \mathbb{R}^{m \times n}$ be denoted by $\{a_1, a_2, \dots a_n\}$

valid inequality for an integer program

Extension to MINLP (Çezik and Iyengar, 2005)

• This simple idea also extends to mixed 0-1 conic programming

$$\begin{cases} \begin{array}{ll} \underset{z \stackrel{\text{def}}{=} (x,y) \\ \text{subject to} & Az \succeq_{\mathcal{K}} b \\ & y \in \{0,1\}^p, \ 0 \le x \le U \end{cases} \end{cases}$$

 $\bullet~\mathcal{K}:$ Homogeneous, self-dual, proper, convex cone

•
$$x \succeq_{\mathcal{K}} y \Leftrightarrow (x - y) \in \mathcal{K}$$

Gomory On Cones (Çezik and Iyengar, 2005)

- LP: $\mathcal{K}_I = \mathbb{R}^n_+$
- SOCP: $\mathcal{K}_q = \{(x_0, \bar{x}) \mid x_0 \ge \|\bar{x}\|\}$
- SDP: $\mathcal{K}_s = \{x = \operatorname{vec}(X) \mid X = X^T, X \text{ p.s.d}\}$

Gomory On Cones (Çezik and Iyengar, 2005)

• LP: $\mathcal{K}_I = \mathbb{R}^n_+$

• SOCP:
$$\mathcal{K}_q = \{(x_0, \bar{x}) \mid x_0 \ge \|\bar{x}\|\}$$

- SDP: $\mathcal{K}_s = \{x = \operatorname{vec}(X) \mid X = X^T, X \text{ p.s.d}\}$
- Dual Cone: $\mathcal{K}^* \stackrel{\text{def}}{=} \{ u \mid u^T z \ge 0 \ \forall z \in \mathcal{K} \}$
- Extension is clear from the following equivalence:

$$Az \succeq_{\mathcal{K}} b \iff u^T Az \ge u^T b \; \forall u \succeq_{\mathcal{K}^*} 0$$

Gomory On Cones (Çezik and Iyengar, 2005)

• LP: $\mathcal{K}_I = \mathbb{R}^n_+$

• SOCP:
$$\mathcal{K}_q = \{(x_0, \bar{x}) \mid x_0 \ge \|\bar{x}\|\}$$

- SDP: $\mathcal{K}_s = \{x = \operatorname{vec}(X) \mid X = X^T, X \text{ p.s.d}\}$
- Dual Cone: $\mathcal{K}^* \stackrel{\text{def}}{=} \{ u \mid u^T z \ge 0 \ \forall z \in \mathcal{K} \}$
- Extension is clear from the following equivalence:

$$Az \succeq_{\mathcal{K}} b \quad \Leftrightarrow \quad u^{\mathsf{T}} Az \geq u^{\mathsf{T}} b \ \forall u \succeq_{\mathcal{K}^*} 0$$

• Many classes of nonlinear inequalities can be represented as

$$Ax \succeq_{\mathcal{K}_q} b \text{ or } Ax \succeq_{\mathcal{K}_s} b$$

Using Gomory Cuts in MINLP (Akrotirianakis et al., 2001)

• LP/NLP Based Branch-and-Bound solves MILP instances:

$$\begin{array}{ll} \begin{array}{ll} \underset{z \stackrel{\mathrm{def}}{=}(x,y),\eta}{\text{subject to}} & \eta \\ 0 \geq c_j + \nabla f_j^T(z-z_j) & \forall y_j \in Y^k \\ 0 \geq c_j + \nabla c_j^T(z-z_j) & \forall y_j \in Y^k \\ x \in X, \ y \in Y \ \text{integer} \end{array}$$

Using Gomory Cuts in MINLP (Akrotirianakis et al., 2001)

• LP/NLP Based Branch-and-Bound solves MILP instances:

$$\begin{array}{ll} \begin{array}{ll} \underset{z \stackrel{\text{def}}{=} (x,y), \eta}{\text{subject to}} & \eta \\ 0 \geq c_j + \nabla f_j^T (z - z_j) & \forall y_j \in Y^k \\ 0 \geq c_j + \nabla c_j^T (z - z_j) & \forall y_j \in Y^k \\ x \in X, \ y \in Y \ \text{integer} \end{array}$$

• Create Gomory mixed integer cuts from

$$\begin{aligned} \eta &\geq f_j + \nabla f_j^T(z - z_j) \\ 0 &\geq c_j + \nabla c_j^T(z - z_j) \end{aligned}$$

• Akrotirianakis et al. (2001) shows modest improvements

Using Gomory Cuts in MINLP (Akrotirianakis et al., 2001)

• LP/NLP Based Branch-and-Bound solves MILP instances:

$$\begin{array}{ll} \begin{array}{ll} \underset{z \stackrel{\mathrm{def}}{=}(x,y),\eta}{\text{subject to}} & \eta \\ 0 \geq c_j + \nabla f_j^T(z-z_j) & \forall y_j \in Y^k \\ 0 \geq c_j + \nabla c_j^T(z-z_j) & \forall y_j \in Y^k \\ x \in X, \ y \in Y \ \text{integer} \end{array}$$

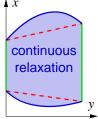
• Create Gomory mixed integer cuts from

$$\begin{aligned} \eta &\geq f_j + \nabla f_j^T(z - z_j) \\ 0 &\geq c_j + \nabla c_j^T(z - z_j) \end{aligned}$$

- Akrotirianakis et al. (2001) shows modest improvements
- Research Question: Other cut classes?
- Research Question: Exploit "outer approximation" property?

Disjunctive Cuts for MINLP (Stubbs and Mehrotra, 1999)

Extension of Disjunctive Cuts for MILP: (Balas, 1979; Balas et al., 1993) Continuous relaxation $(z \stackrel{\text{def}}{=} (x, y))$ • $C \stackrel{\text{def}}{=} \{z | c(z) < 0, \ 0 < y < 1, \ 0 < x < U\}$

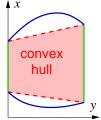


Disjunctive Cuts for MINLP (Stubbs and Mehrotra, 1999)

Extension of Disjunctive Cuts for MILP: (Balas, 1979; Balas et al., 1993) Continuous relaxation $(z \stackrel{\text{def}}{=} (x, y))$

• $C \stackrel{\text{def}}{=} \{ z | c(z) \le 0, \ 0 \le y \le 1, \ 0 \le x \le U \}$

• $\mathcal{C} \stackrel{\text{def}}{=} \operatorname{conv}(\{x \in C \mid y \in \{0,1\}^p\})$



Disjunctive Cuts for MINLP (Stubbs and Mehrotra, 1999)

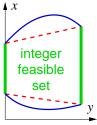
Extension of Disjunctive Cuts for MILP: (Balas, 1979; Balas et al., 1993) Continuous relaxation $(z \stackrel{\text{def}}{=} (x, y))$

• $C \stackrel{\text{def}}{=} \{ z | c(z) \le 0, \ 0 \le y \le 1, \ 0 \le x \le U \}$

•
$$\mathcal{C} \stackrel{\text{def}}{=} \operatorname{conv}(\{x \in \mathcal{C} \mid y \in \{0,1\}^p\})$$

•
$$C_j^{0/1} \stackrel{\text{def}}{=} \{ z \in C | y_j = 0/1 \}$$

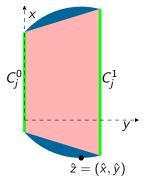
$$\det \mathcal{M}_j(\mathcal{C}) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} z = \lambda_0 u_0 + \lambda_1 u_1 \\ \lambda_0 + \lambda_1 = 1, \ \lambda_0, \lambda_1 \ge 0 \\ u_0 \in \mathcal{C}_j^0, \ u_1 \in \mathcal{C}_j^1 \end{array} \right.$$



 $\Rightarrow \mathcal{P}_j(\mathcal{C}) := \text{projection of } \mathcal{M}_j(\mathcal{C}) \text{ onto } z$

 $\Rightarrow \mathcal{P}_{j}(\mathcal{C}) = \mathsf{conv}\left(\mathcal{C} \cap y_{j} \in \{0,1\}\right) \text{ and } \mathcal{P}_{1...p}(\mathcal{C}) = \mathcal{C}$

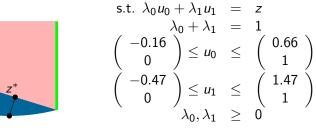
$$\underset{x,y}{\text{minimize}} \left\{ x \mid (x - 1/2)^2 + (y - 3/4)^2 \le 1, -2 \le x \le 2, y \in \{0, 1\} \right\}$$

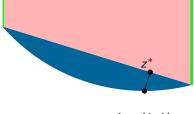


Given \hat{z} with $\hat{y}_j \notin \{0,1\}$ find separating hyperplane

$$\Rightarrow \begin{cases} \begin{array}{l} \text{minimize} & \|z - \hat{z}\| \\ \text{subject to} & z \in \mathcal{P}_j(\mathcal{C}) \end{cases} \end{cases}$$

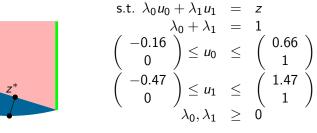
$$z^* \stackrel{\text{def}}{=} \arg\min \|z - \hat{z}\|$$





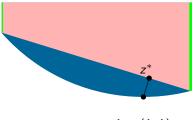
 $\hat{z} = (\hat{x}, \hat{y})$

$$z^* \stackrel{\text{def}}{=} \arg\min \|z - \hat{z}\|_2^2$$



$$\hat{z} = (\hat{x}, \hat{y})$$

$$z^* \stackrel{\text{def}}{=} \arg\min \|z - \hat{z}\|_{\infty}$$



$$\hat{z} = (\hat{x}, \hat{y})$$

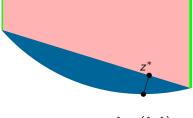
s.t.
$$\lambda_0 u_0 + \lambda_1 u_1 = z$$

 $\lambda_0 + \lambda_1 = 1$
 $\begin{pmatrix} -0.16 \\ 0 \end{pmatrix} \le u_0 \le \begin{pmatrix} 0.66 \\ 1 \end{pmatrix}$
 $\begin{pmatrix} -0.47 \\ 0 \end{pmatrix} \le u_1 \le \begin{pmatrix} 1.47 \\ 1 \end{pmatrix}$
 $\lambda_0, \lambda_1 \ge 0$

$$z^* \stackrel{\text{def}}{=} \arg\min \|z - \hat{z}\|$$

s.t.
$$\lambda_0 u_0 + \lambda_1 u_1 = z$$

 $\lambda_0 + \lambda_1 = 1$
 $\begin{pmatrix} -0.16 \\ 0 \end{pmatrix} \le u_0 \le \begin{pmatrix} 0.66 \\ 1 \end{pmatrix}$
 $\begin{pmatrix} -0.47 \\ 0 \end{pmatrix} \le u_1 \le \begin{pmatrix} 1.47 \\ 1 \end{pmatrix}$
 $\lambda_0, \lambda_1 \ge 0$



 $\hat{z} = \left(\hat{x}, \hat{y}\right)$

What to do? (Stubbs and Mehrotra, 1999)

• Look at the perspective of c(z)

$$\mathcal{P}(\boldsymbol{c}(\tilde{z}),\mu) = \mu \boldsymbol{c}(\tilde{z}/\mu)$$

• Think of $\tilde{z} = \mu z$

What to do? (Stubbs and Mehrotra, 1999)

• Look at the perspective of c(z)

$$\mathcal{P}(c(\tilde{z}),\mu) = \mu c(\tilde{z}/\mu)$$

- Think of $\tilde{z} = \mu z$
- Perspective gives a convex reformulation of $\mathcal{M}_j(\mathcal{C})$: $\mathcal{M}_j(\tilde{\mathcal{C}})$, where

$$\tilde{C} := \left\{ (z,\mu) \middle| \begin{array}{l} \mu c_i(z/\mu) \leq 0 \\ 0 \leq \mu \leq 1 \\ 0 \leq x \leq \mu U, \ 0 \leq y \leq \mu \end{array} \right\}$$

• $c(0/0) = 0 \Rightarrow$ convex representation

Disjunctive Cuts Example

$$\tilde{C} = \left\{ \begin{pmatrix} x \\ y \\ \mu \end{pmatrix} \middle| \begin{array}{c} \mu \left[(x/\mu - 1/2)^2 + (y/\mu - 3/4)^2 - 1 \right] \leq 0 \\ -2\mu \leq x \leq 2\mu \\ 0 \leq y \leq \mu \\ 0 \leq \mu \leq 1 \\ \mu \\ 0 \leq \mu \\ 0$$

Example, cont.

$$ilde{C}_{j}^{0} = \{(z,\mu) \mid y_{j} = 0\} \quad ilde{C}_{j}^{1} = \{(z,\mu) \mid y_{j} = \mu\}$$

Example, cont.

$$ilde{C}_{j}^{0} = \{(z,\mu) \mid y_{j} = 0\} \quad ilde{C}_{j}^{1} = \{(z,\mu) \mid y_{j} = \mu\}$$

• Take
$$v_0 \leftarrow \mu_0 u_0 \ v_1 \leftarrow \mu_1 u_1$$

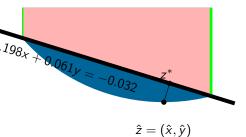
min $||z - \hat{z}||$
Solution to example:

s.t.
$$v_0 + v_1 = z$$

 $\mu_0 + \mu_1 = 1$
 $(v_0, \mu_0) \in \tilde{C}_j^0$
 $(v_1, \mu_1) \in \tilde{C}_j^1$
 $\mu_0, \mu_1 \ge 0$
 $(x^*) = \begin{pmatrix} -0.401 \\ 0.780 \end{pmatrix}$

• separating hyperplane: $\psi^{T}(z - \hat{z})$, where $\psi \in \partial \|z - \hat{z}\|$

Example, Cont.



$$\psi = \begin{pmatrix} 2x^* + 0.5\\ 2y^* - 0.75 \end{pmatrix}$$
$$0.198x + 0.061y \ge -0.032$$

Nonlinear Branch-and-Cut (Stubbs and Mehrotra, 1999)

- Can do this at all nodes of the branch-and-bound tree
- Generalize disjunctive approach from MILP
 - solve one convex NLP per cut
- Generalizes Sherali and Adams (1990) and Lovász and Schrijver (1991)
 - tighten cuts by adding semi-definite constraint
- Stubbs and Mehrohtra (2002) also show how to generate convex quadratic inequalities, but computational results are not that promising

Generalized Disjunctive Programming (Raman and Grossmann,

1994; Lee and Grossmann, 2000)

Consider disjunctive NLP

$$\begin{array}{ll} \underset{x,Y}{\text{minimize}} & \sum f_i + f(x) \\ \text{subject to} & \begin{bmatrix} Y_i \\ c_i(x) \leq 0 \\ f_i = \gamma_i \end{bmatrix} \bigvee \begin{bmatrix} \neg Y_i \\ B_i x = 0 \\ f_i = 0 \end{bmatrix} \forall i \in I \\ f_i = 0 \\ 0 \leq x \leq U, \ \Omega(Y) = \text{true}, \ Y \in \{\text{true}, \text{false}\}^p \end{array}$$

Application: process synthesis

- Y_i represents presence/absence of units
- $B_i x = 0$ eliminates variables if unit absent

Exploit disjunctive structure

• special branching ... OA/GBD algorithms

Generalized Disjunctive Programming (Raman and Grossmann,

1994; Lee and Grossmann, 2000)

Consider disjunctive NLP

$$\begin{array}{ll} \underset{x,Y}{\text{minimize}} & \sum f_i + f(x) \\ \text{subject to} & \begin{bmatrix} Y_i \\ c_i(x) \leq 0 \\ f_i = \gamma_i \end{bmatrix} \bigvee \begin{bmatrix} \neg Y_i \\ B_i x = 0 \\ f_i = 0 \end{bmatrix} \forall i \in I \\ f_i = 0 \\ 0 \leq x \leq U, \ \Omega(Y) = \text{true}, \ Y \in \{\text{true}, \text{false}\}^p \end{array}$$

Big-M formulation (notoriously bad), M > 0:

$$\begin{array}{l} c_i(x) \leq M(1-y_i) \\ -My_i \leq B_i x \leq My_i \\ f_i = y_i \gamma_i \qquad \Omega(Y) \text{ converted to linear inequalities} \end{array}$$

Generalized Disjunctive Programming (Raman and Grossmann,

1994; Lee and Grossmann, 2000)

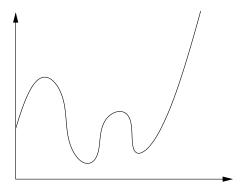
Consider disjunctive NLP

$$\begin{array}{ll} \underset{x,Y}{\text{minimize}} & \sum f_i + f(x) \\ \text{subject to} & \begin{bmatrix} Y_i \\ c_i(x) \leq 0 \\ f_i = \gamma_i \end{bmatrix} \bigvee \begin{bmatrix} \neg Y_i \\ B_i x = 0 \\ f_i = 0 \end{bmatrix} \forall i \in I \\ f_i = 0 \\ 0 \leq x \leq U, \ \Omega(Y) = \text{true}, \ Y \in \{\text{true}, \text{false}\}^p \end{array}$$

convex hull representation ...

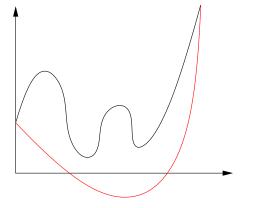
$$\begin{aligned} x &= v_{i1} + v_{i0}, & \lambda_{i1} + \lambda_{i0} = 1 \\ \lambda_{i1} c_i (v_{i1}/\lambda_{i1}) &\leq 0, & B_i v_{i0} = 0 \\ 0 &\leq v_{ij} &\leq \lambda_{ij} U, & 0 &\leq \lambda_{ij} \leq 1, \\ \end{aligned}$$

Dealing with Nonconvexities



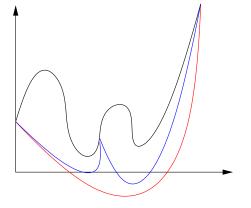
- Functional nonconvexity causes serious problems.
 - Branch and bound must have true lower bound (global solution)

Dealing with Nonconvexities



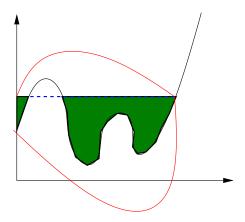
- Functional nonconvexity causes serious problems.
 - Branch and bound must have true lower bound (global solution)
- Underestimate nonconvex functions. Solve relaxation. Provides lower bound.

Dealing with Nonconvexities



- Functional nonconvexity causes serious problems.
 - Branch and bound must have true lower bound (global solution)
- Underestimate nonconvex functions. Solve relaxation. Provides lower bound.
- If relaxation is not exact, then branch

Dealing with Nonconvex Constraints

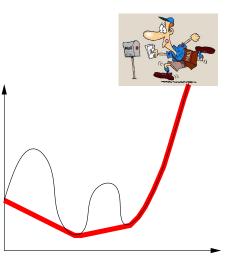


 If nonconvexity in constraints, may need to overestimate and underestimate the function to get a convex region

Envelopes

$$f:\Omega \to \mathbb{R}$$

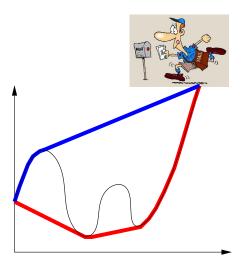
 Convex Envelope (vex_Ω(f)): Pointwise supremum of convex underestimators of f over Ω.



Envelopes

$$f:\Omega \to \mathbb{R}$$

- Convex Envelope (vex_Ω(f)): Pointwise supremum of convex underestimators of f over Ω.
- Concave Envelope (cav_Ω(f)): Pointwise infimum of concave overestimators of f over Ω.



Branch-and-Bound Global Optimization Methods

- Under/Overestimate "simple" parts of (Factorable) Functions individually
 - Bilinear Terms
 - Trilinear Terms
 - Fractional Terms
 - Univariate convex/concave terms

Branch-and-Bound Global Optimization Methods

- Under/Overestimate "simple" parts of (Factorable) Functions individually
 - Bilinear Terms
 - Trilinear Terms
 - Fractional Terms
 - Univariate convex/concave terms
- General nonconvex functions f(x) can be underestimated over a region [I, u] "overpowering" the function with a quadratic function that is ≤ 0 on the region of interest

$$\mathcal{L}(x) = f(x) + \sum_{i=1}^{n} \alpha_i (l_i - x_i) (u_i - x_i)$$

Refs: (McCormick, 1976; Adjiman et al., 1998; Tawarmalani and Sahinidis, 2002)

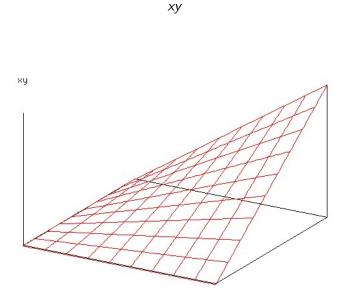
Bilinear Terms

The convex and concave envelopes of the bilinear function xy over a rectangular region

$$R \stackrel{\mathrm{def}}{=} \{(x, y) \in \mathbb{R}^2 \mid I_x \leq x \leq u_x, \ I_y \leq y \leq u_y\}$$

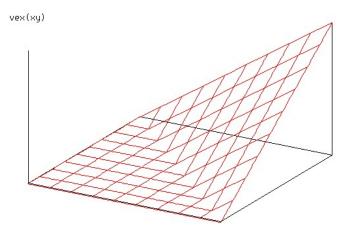
are given by the expressions

Worth 1000 Words?



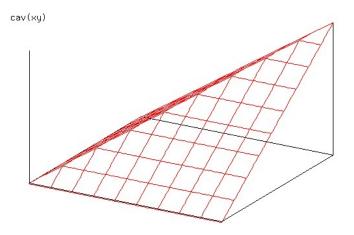
Worth 1000 Words?

 $vex_R(xy)$



Worth 1000 Words?

 $cav_R(xy)$



Summary

- MINLP: Good relaxations are important
- Relaxations can be improved
 - Statically: Better formulation/preprocessing
 - Dynamically: Cutting planes
- Nonconvex MINLP:
 - Methods exist, again based on relaxations
- Tight relaxations is an active area of research
- Lots of empirical questions remain

Part IV

Implementation and Software

Implementation and Software for MINLP

- Special Ordered Sets
- Implementation & Software Issues

SOS1: $\sum \lambda_i = 1$ & at most one λ_i is nonzero

Example 1: $d \in \{d_1, \ldots, d_p\}$ discrete diameters $\Leftrightarrow d = \sum \lambda_i d_i$ and $\{\lambda_1, \ldots, \lambda_p\}$ is SOS1 $\Leftrightarrow d = \sum \lambda_i d_i$ and $\sum \lambda_i = 1$ and $\lambda_i \in \{0, 1\}$

 $\ldots d$ is convex combination with coefficients λ_i

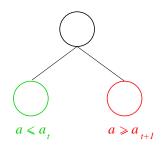
Example 2: nonlinear function c(y) of single integer $\Leftrightarrow y = \sum i\lambda_i$ and $c = \sum c(i)\lambda_i$ and $\{\lambda_1, \dots, \lambda_p\}$ is SOS1

References: (Beale, 1979; Nemhauser, G.L. and Wolsey, L.A., 1988; Williams, 1993) ...

SOS1: $\sum \lambda_i = 1$ & at most one λ_i is nonzero

Branching on SOS1

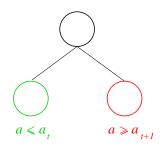
- reference row a₁ < ... < a_p
 e.g. diameters
- **2** fractionality: $a := \sum a_i \lambda_i$



SOS1: $\sum \lambda_i = 1$ & at most one λ_i is nonzero

Branching on SOS1

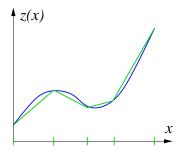
- reference row a₁ < ... < a_p
 e.g. diameters
- **2** fractionality: $a := \sum a_i \lambda_i$
- branch: $\{\lambda_{t+1}, \dots, \lambda_p\} = 0$ or $\{\lambda_1, \dots, \lambda_t\} = 0$



135 / 160

SOS2: $\sum \lambda_i = 1$ & at most two adjacent λ_i nonzero

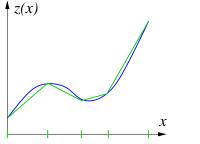
Example: Approximation of nonlinear function z = z(x)



- breakpoints $x_1 < \ldots < x_p$
- function values $z_i = z(x_i)$
- piece-wise linear

SOS2: $\sum \lambda_i = 1$ & at most two adjacent λ_i nonzero

Example: Approximation of nonlinear function z = z(x)



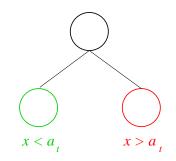
- breakpoints $x_1 < \ldots < x_p$
- function values $z_i = z(x_i)$
- piece-wise linear
- $x = \sum \lambda_i x_i$
- $z = \sum \lambda_i z_i$
- $\{\lambda_1, \ldots, \lambda_p\}$ is SOS2

... convex combination of two breakpoints

SOS2: $\sum \lambda_i = 1$ & at most two adjacent λ_i nonzero

Branching on SOS2

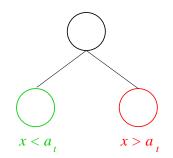
- reference row *a*₁ < ... < *a*_p
 e.g. *a*_i = *x*_i
- 2 fractionality: $a := \sum a_i \lambda_i$



SOS2: $\sum \lambda_i = 1$ & at most two adjacent λ_i nonzero

Branching on SOS2

- reference row *a*₁ < ... < *a*_p
 e.g. *a*_i = *x*_i
- **2** fractionality: $a := \sum a_i \lambda_i$
- branch: $\{\lambda_{t+1}, \ldots, \lambda_p\} = 0$ or $\{\lambda_1, \ldots, \lambda_{t-1}\}$



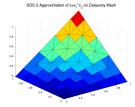
Example: Approximation of 2D function u = g(v, w)

Triangularization of $[v_L, v_U] \times [w_L, w_U]$ domain

1
$$v_L = v_1 < \ldots < v_k = v_U$$

$$w_L = w_1 < \ldots < w_l = w_L$$

- 3 function $u_{ij} := g(v_i, w_j)$
- λ_{ij} weight of vertex (i, j)



Example: Approximation of 2D function u = g(v, w)

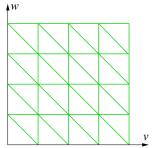
Triangularization of $[v_L, v_U] \times [w_L, w_U]$ domain

v_L = v₁ < ... < v_k = v_U
 w_L = w₁ < ... < w_l = w_U
 function u_{ij} := g(v_i, w_j)
 λ_{ii} weight of vertex (i, j)

•
$$v = \sum \lambda_{ij} v_i$$

•
$$w = \sum \lambda_{ij} w_j$$

•
$$u = \sum \lambda_{ij} u_{ij}$$



Example: Approximation of 2D function u = g(v, w)

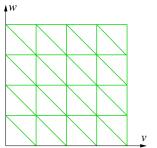
Triangularization of $[v_L, v_U] \times [w_L, w_U]$ domain

v_L = v₁ < ... < v_k = v_U
 w_L = w₁ < ... < w_l = w_U
 function u_{ij} := g(v_i, w_j)
 λ_{ii} weight of vertex (i, j)

•
$$v = \sum \lambda_{ij} v_i$$

• $w = \sum \lambda_{ij} w_j$
• $u = \sum \lambda_{ij} u_{ij}$

 $1 = \sum \lambda_{ij}$ is SOS3 . . .



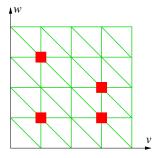
SOS3: $\sum \lambda_{ij} = 1$ & set condition holds

v = ∑ λ_{ij}v_i ... convex combinations
w = ∑ λ_{ij}w_j
u = ∑ λ_{ij}u_{ij}

 $\{\lambda_{11},\ldots,\lambda_{kl}\}$ satisfies set condition

 $\Leftrightarrow \ \exists \ \mathsf{trangle} \ \Delta : \{(i,j) : \lambda_{ij} > 0\} \subset \Delta$

i.e. nonzeros in single triangle Δ



violates set condn

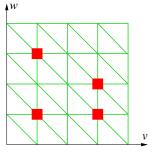
Branching on SOS3

λ violates set condition

o compute centers:

$$\hat{\mathbf{v}} = \sum \lambda_{ij} \mathbf{v}_i \ \& \\ \hat{\mathbf{w}} = \sum \lambda_{ij} \mathbf{w}_i$$

- find s, t such that $v_s \leq \hat{v} < v_{s+1} \&$ $w_s \leq \hat{w} < w_{s+1}$
- branch on v or w



violates set condn

Branching on SOS3

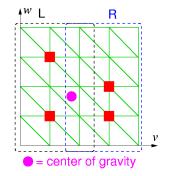
λ violates set condition

o compute centers:

$$\hat{\mathbf{v}} = \sum \lambda_{ij} \mathbf{v}_i \&$$

 $\hat{\mathbf{w}} = \sum \lambda_{ij} \mathbf{w}_i$

- find s, t such that $v_s \leq \hat{v} < v_{s+1} \&$ $w_s \leq \hat{w} < w_{s+1}$
- branch on v or w



vertical branching:

$$\sum_{L} \lambda_{ij} = 1 \qquad \sum_{R} \lambda_{ij} = 1$$

Branching on SOS3

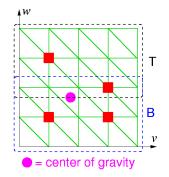
λ violates set condition

o compute centers:

$$\hat{\mathbf{v}} = \sum \lambda_{ij} \mathbf{v}_i \&$$

 $\hat{\mathbf{w}} = \sum \lambda_{ij} \mathbf{w}_i$

- find s, t such that $v_s \leq \hat{v} < v_{s+1} \&$ $w_s \leq \hat{w} < w_{s+1}$
- branch on v or w



horizontal branching:

$$\sum_{T} \lambda_{ij} = 1 \qquad \sum_{B} \lambda_{ij} = 1$$

Example: electricity transmission network:

$$c(x) = 4x_1 - x_2^2 - 0.2 \cdot x_2 x_4 \sin(x_3)$$

(Martin et al., 2005) extend SOS3 to SOSk models for any $k \Rightarrow$ function with p variables on N grid needs $N^p \lambda$'s

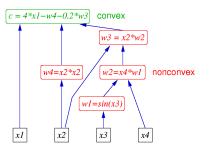
Example: electricity transmission network:

$$c(x) = 4x_1 - x_2^2 - 0.2 \cdot x_2 x_4 \sin(x_3)$$

(Martin et al., 2005) extend SOS3 to SOSk models for any k \Rightarrow function with p variables on N grid needs N^p λ 's

Alternative (Gatzke, 2005):

• exploit computational graph \simeq automatic differentiation



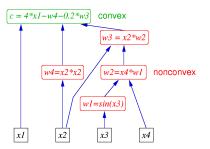
Example: electricity transmission network:

$$c(x) = 4x_1 - x_2^2 - 0.2 \cdot x_2 x_4 \sin(x_3)$$

(Martin et al., 2005) extend SOS3 to SOSk models for any k \Rightarrow function with p variables on N grid needs N^p λ 's

Alternative (Gatzke, 2005):

- exploit computational graph \simeq automatic differentiation
- only need SOS2 & SOS3 ... replace nonconvex parts



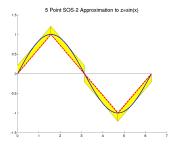
Example: electricity transmission network:

$$c(x) = 4x_1 - x_2^2 - 0.2 \cdot x_2 x_4 \sin(x_3)$$

(Martin et al., 2005) extend SOS3 to SOSk models for any k \Rightarrow function with p variables on N grid needs N^p λ 's

Alternative (Gatzke, 2005):

- exploit computational graph \simeq automatic differentiation
- only need SOS2 & SOS3 ... replace nonconvex parts
- piece-wise polyhedral approx.



Software for MINLP

- Outer Approximation: DICOPT++ (& AIMMS) NLP solvers: CONOPT, MINOS, SNOPT MILP solvers: CPLEX, OSL2
- Branch-and-Bound Solvers: SBB & MINLP NLP solvers: CONOPT, MINOS, SNOPT & FilterSQP variable & node selection; SOS1 & SOS2 support
- Global MINLP: BARON & MINOPT underestimators & branching CPLEX, MINOS, SNOPT, OSL
- Online Tools: MINLP World, MacMINLP & NEOS MINLP World www.gamsworld.org/minlp/ NEOS server www-neos.mcs.anl.gov/

COIN-OR

http://www.coin-or.org

- COmputational INfrastructure for Operations Research
- A library of (interoperable) software tools for optimization
- A development platform for open source projects in the OR community
- Possibly Relevant Modules:
 - OSI: Open Solver Interface
 - CGL: Cut Generation Library
 - CLP: Coin Linear Programming Toolkit
 - CBC: Coin Branch and Cut
 - IPOPT: Interior Point OPTimizer for NLP
 - NLPAPI: NonLinear Programming API

MINLP with COIN-OR

New implementation of LP/NLP based BB

- MIP branch-and-cut: CBC & CGL
- NLPs: IPOPT interior point ... OK for NLP(y_i)
- New hybrid method:
 - solve more NLPs at non-integer y_i
 - \Rightarrow better outer approximation
 - allow complete MIP at some nodes
 - \Rightarrow generate new integer assignment

... faster than DICOPT++, SBB

- simplifies to OA and BB at extremes ... less efficient
- ... see Bonami et al. (2005) ... coming in 2006.

Conclusions

MINLP rich modeling paradigm o most popular solver on NEOS

Algorithms for MINLP: • Branch-and-bound (branch-and-cut) • Outer approximation et al.

Conclusions

MINLP rich modeling paradigm o most popular solver on NEOS

Algorithms for MINLP: • Branch-and-bound (branch-and-cut) • Outer approximation et al.

"MINLP solvers lag 15 years behind MIP solvers"

 \Rightarrow many research opportunities!!!

$\mathsf{Part}\ \mathsf{V}$

References

- C. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A global optimization method, aBB, for general twice-differentiable constrained NLPs I. Theoretical advances. Computers and Chemical Engineering, 22:1137–1158, 1998.
- I. Akrotirianakis, I. Maros, and B. Rustem. An outer approximation based branch-and-cut algorithm for convex 0-1 MINLP problems. **Optimization Methods and Software**, 16: 21–47, 2001.
- E. Balas. Disjunctive programming. In Annals of Discrete Mathematics 5: Discrete Optimization, pages 3–51. North Holland, 1979.
- E. Balas, S. Ceria, and G. Corneujols. A lift-and-project cutting plane algorithm for mixed 0-1 programs. Mathematical Programming, 58:295–324, 1993.
- E. M. L. Beale. Branch-and-bound methods for mathematical programming systems. Annals of Discrete Mathematics, 5:201–219, 1979.
- P. Bonami, L. Biegler, A. Conn, G. Cornuéjols, I. Grossmann, C. Laird, J. Lee, A. Lodi, F. Margot, N. Saaya, and A. Wächter. An algorithmic framework for convex mixed integer nonlinear programs. Technical report, IBM Research Division, Thomas J. Watson Research Center, 2005.
- B. Borchers and J. E. Mitchell. An improved branch and bound algorithm for Mixed Integer Nonlinear Programming. **Computers and Operations Research**, 21(4):359–367, 1994.
- R. Borndörfer and R. Weismantel. Set packing relaxations of some integer programs. Mathematical Programming, 88:425 – 450, 2000.
- M. T. Çezik and G. Iyengar. Cuts for mixed 0-1 conic programming. Mathematical Programming, 2005. to appear.
- H. Crowder, E. L. Johnson, and M. W. Padberg. Solving large scale zero-one linear programming problems. **Operations Research**, 31:803–834, 1983.

- D. De Wolf and Y. Smeers. The gas transmission problem solved by an extension of the simplex algorithm. **Management Science**, 46:1454–1465, 2000.
- M. Duran and I. E. Grossmann. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Mathematical Programming, 36:307–339, 1986.
- A. M. Geoffrion. Generalized Benders decomposition. Journal of Optimization Theory and Applications, 10:237–260, 1972.
- I. E. Grossmann and R. W. H. Sargent. Optimal design of multipurpose batch plants. Ind. Engng. Chem. Process Des. Dev., 18:343–348, 1979.
- Harjunkoski, I., Westerlund, T., Pörn, R. and Skrifvars, H. Different transformations for solving non-convex trim-loss problems by MINLP. European Journal of Opertational Research, 105:594–603, 1998.
- Jain, V. and Grossmann, I.E. Cyclic scheduling of continuous parallel-process units with decaying performance. AIChE Journal, 44:1623–1636, 1998.
- G. R. Kocis and I. E. Grossmann. Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis. Industrial Engineering Chemistry Research, 27:1407–1421, 1988.
- S. Lee and I. Grossmann. New algorithms for nonlinear disjunctive programming. **Computers** and **Chemical Engineering**, 24:2125–2141, 2000.
- S. Leyffer. Integrating SQP and branch-and-bound for mixed integer nonlinear programming. Computational Optimization & Applications, 18:295–309, 2001.
- L. Lovász and A. Schrijver. Cones of matrices and setfunctions, and 0-1 optimization. SIAM Journal on Optimization, 1, 1991.
- H. Marchand and L. Wolsey. The 0-1 knapsack problem with a single continuous variable. **Mathematical Programming**, 85:15–33, 1999.

Δ

- A. Martin, M. Möller, and S. Moritz. Mixed integer models for the stationary case of gas network optimization. Technical report, Darmstadt University of Technology, 2005.
- G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. Mathematical Programming, 10:147–175, 1976.
- Nemhauser, G.L. and Wolsey, L.A. Integer and Combinatorial Optimization. John Wiley, New York, 1988.
- M. Padberg, T. J. Van Roy, and L. Wolsey. Valid linear inequalities for fixed charge problems. Operations Research, 33:842–861, 1985.
- I. Quesada and I. E. Grossmann. An LP/NLP based branch-and-bound algorithm for convex MINLP optimization problems. Computers and Chemical Engineering, 16:937–947, 1992.
- Quist, A.J. Application of Mathematical Optimization Techniques to Nuclear Reactor Reload Pattern Design. PhD thesis, Technische Universiteit Delft, Thomas Stieltjes Institute for Mathematics, The Netherlands, 2000.
- R. Raman and I. E. Grossmann. Modeling and computational techniques for logic based integer programming. **Computers and Chemical Engineering**, 18:563–578, 1994.
- H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics, 3:411–430, 1990.
- O. Sigmund. A 99 line topology optimization code written in matlab. Structural Multidisciplinary Optimization, 21:120–127, 2001.
- R. Stubbs and S. Mehrohtra. Generating convex polynomial inequalities for mixed 0-1 programs. Journal of Global Optimization, 24:311–332, 2002.
- R. A. Stubbs and S. Mehrotra. A branch–and–cut method for 0–1 mixed convex programming. Mathematical Programming, 86:515–532, 1999.

- M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic Publishers, Boston MA, 2002.
- J. Viswanathan and I. E. Grossmann. Optimal feed location and number of trays for distillation columns with multiple feeds. **I&EC Research**, 32:2942–2949, 1993.
- Westerlund, T., Isaksson, J. and Harjunkoski, I. Solving a production optimization problem in the paper industry. Report 95–146–A, Department of Chemical Engineering, Abo Akademi, Abo, Finland, 1995.
- Westerlund, T., Pettersson, F. and Grossmann, I.E. Optimization of pump configurations as MINLP problem. **Computers & Chemical Engineering**, 18(9):845–858, 1994.
- H. P. Williams. Model Solving in Mathematical Programming. John Wiley & Sons Ltd., Chichester, 1993.