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Part I

Introduction, Applications, and Formulations
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The Problem of the Day

Mixed Integer Nonlinear Program (MINLP)
minimize

x ,y
f (x , y)

subject to c(x , y) ≤ 0
x ∈ X , y ∈ Y integer

f , c smooth (convex) functions

X ,Y polyhedral sets, e.g. Y = {y ∈ [0, 1]p | Ay ≤ b}
y ∈ Y integer ⇒ hard problem

f , c not convex ⇒ very hard problem
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Why the MI?

We can use 0-1 (binary) variables for a variety of purposes

Modeling yes/no decisions
Enforcing disjunctions
Enforcing logical conditions
Modeling fixed costs
Modeling piecewise linear functions

If the variable is associated with a physical entity that is indivisible,
then it must be integer

Number of aircraft carriers to to produce. Gomory’s Initial Motivation
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A Popular MINLP Method

Dantzig’s Two-Phase Method for MINLP Adapted by Leyffer and Linderoth

1 Convince the user that he or she does not wish to solve a mixed
integer nonlinear programming problem at all!

2 Otherwise, solve the continuous relaxation (NLP) and round off the
minimizer to the nearest integer.

For 0− 1 problems, or those in which the |y | is “small”, the
continuous approximation to the discrete decision is not accurate
enough for practical purposes.

Conclusion: MINLP methods must be studied!
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Example: Core Reload Operation (Quist, A.J., 2000)

max. reactor efficiency after reload
subject to diffusion PDE & safety

diffusion PDE ' nonlinear equation
⇒ integer & nonlinear model

avoid reactor becoming sub-critical
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Example: Core Reload Operation (Quist, A.J., 2000)

look for cycles for moving bundles:
e.g. 4 → 6 → 8 → 10
i.e. bundle moved from 4 to 6 ...

model with binary xilm ∈ {0, 1}
xilm = 1
⇔ node i has bundle l of cycle m
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AMPL Model of Core Reload Operation

Exactly one bundle per node:

L∑
l=1

M∑
m=1

xilm = 1 ∀i ∈ I

AMPL model:
var x {I,L,M} binary ;

Bundle {i in I}: sum{l in L, m in M} x[i,l,m] = 1 ;

Multiple Choice: One of the most common uses of IP

Full AMPL model c-reload.mod at
www.mcs.anl.gov/~leyffer/MacMINLP/
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Gas Transmission Problem (De Wolf and Smeers, 2000)

Belgium has no gas!

All natural gas is imported
from Norway, Holland, or
Algeria.

Supply gas to all demand
points in a network in a
minimum cost fashion.

Gas is pumped through the
network with a series of
compressors

There are constraints on the
pressure of the gas within
the pipe
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Pressure Loss is Nonlinear

Assume horizontal pipes and
steady state flows

Pressure loss p across a pipe is
related to the flow rate f as

p2
in − p2

out =
1

Ψ
sign(f )f 2

Ψ: “Friction Factor”
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Gas Transmission: Problem Input

Network (N,A). A = Ap ∪ Aa

Aa: active arcs have compressor. Flow rate can increase on arc
Ap: passive arcs simply conserve flow rate

Ns ⊆ N: set of supply nodes

ci , i ∈ Ns : Purchase cost of gas

s i , s i : Lower and upper bounds on gas “supply” at node i

p
i
, pi : Lower and upper bounds on gas pressure at node i

si , i ∈ N: supply at node i .

si > 0⇒ gas added to the network at node i
si < 0⇒ gas removed from the network at node i to meet demand

fij , (i , j) ∈ A: flow along arc (i , j)

f (i , j) > 0⇒ gas flows i → j
f (i , j) < 0⇒ gas flows j → i
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Gas Transmission Model

min
∑
j∈Ns

cjsj

subject to ∑
j |(i ,j)∈A

fij = si ∀i ∈ N

sign(fij)f
2
ij −Ψij(p

2
i − p2

j ) = 0 ∀(i , j) ∈ Ap

sign(fij)f
2
ij −Ψij(p

2
i − p2

j ) ≥ 0 ∀(i , j) ∈ Aa

si ∈ [s i , s i ] ∀i ∈ N
pi ∈ [p

i
, pi ] ∀i ∈ N

fij ≥ 0 ∀(i , j) ∈ Aa

24 / 160



Your First Modeling Trick

Don’t include nonlinearities or nonconvexities unless necessary!

Replace p2
i ← ρi

sign(fij)f
2
ij −Ψij(ρi − ρj) = 0 ∀(i , j) ∈ Ap

f 2
ij −Ψij(ρi − ρj) ≥ 0 ∀(i , j) ∈ Aa

ρi ∈ [
√
p
i
,
√

pi ] ∀i ∈ N

This trick only works because
1 p2

i terms appear only in the bound constraints
2 Also fij ≥ 0 ∀(i , j) ∈ Aa

This model is nonconvex: sign(fij)f
2
ij is a nonconvex function

Some solvers do not like sign
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Dealing with sign(·): The NLP Way

Use auxiliary binary variables to indicate direction of flow

Let |fij | ≤ F ∀(i , j) ∈ Ap

zij =

{
1 fij ≥ 0 fij ≥ −F (1− zij)
0 fij ≤ 0 fij ≤ Fzij

Note that
sign(fij) = 2zij − 1

Write constraint as

(2zij − 1)f 2
ij −Ψij(ρi − ρj) = 0.
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Special Ordered Sets

Sven thinks this ’NLP trick’ is pretty cool

It is not how it is done in De Wolf and Smeers (2000).

Heuristic for finding a good starting solution, then a local
optimization approach based on a piecewise-linear simplex method

Another (similar) approach involves approximating the nonlinear
function by piecewise linear segments, but searching for the globally
optimal solution: Special Ordered Sets of Type 2

If the “multidimensional” nonlinearity cannot be removed, resort to
Special Ordered Sets of Type 3

29 / 160



Special Ordered Sets

Sven thinks this ’NLP trick’ is pretty cool

It is not how it is done in De Wolf and Smeers (2000).

Heuristic for finding a good starting solution, then a local
optimization approach based on a piecewise-linear simplex method

Another (similar) approach involves approximating the nonlinear
function by piecewise linear segments, but searching for the globally
optimal solution: Special Ordered Sets of Type 2

If the “multidimensional” nonlinearity cannot be removed, resort to
Special Ordered Sets of Type 3

30 / 160



Special Ordered Sets

Sven thinks this ’NLP trick’ is pretty cool

It is not how it is done in De Wolf and Smeers (2000).

Heuristic for finding a good starting solution, then a local
optimization approach based on a piecewise-linear simplex method

Another (similar) approach involves approximating the nonlinear
function by piecewise linear segments, but searching for the globally
optimal solution: Special Ordered Sets of Type 2

If the “multidimensional” nonlinearity cannot be removed, resort to
Special Ordered Sets of Type 3

31 / 160



Portfolio Management

N: Universe of asset to purchase

xi : Amount of asset i to hold

B: Budget

min
x∈R|N|+

{
u(x) |

∑
i∈N

xi = B

}

Markowitz: u(x)
def
= −αT x + λxTQx

α: Expected returns
Q: Variance-covariance matrix of expected returns
λ: Risk aversion parameter
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More Realistic Models

b ∈ R|N| of “benchmark” holdings

Benchmark Tracking: u(x)
def
= (x − b)TQ(x − b)

Constraint on E[Return]: αT x ≥ r

Limit Names: |i ∈ N : xi > 0| ≤ K

Use binary indicator variables to model the implication
xi > 0⇒ yi = 1
Implication modeled with variable upper bounds:

xi ≤ Byi ∀i ∈ N∑
i∈N yi ≤ K
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Even More Models

Min Holdings: (xi = 0) ∨ (xi ≥ m)

Model implication: xi > 0⇒ xi ≥ m
xi > 0⇒ yi = 1⇒ xi ≥ m
xi ≤ Byi , xi ≥ myi ∀i ∈ N

Round Lots: xi ∈ {kLi , k = 1, 2, . . .}
xi − ziLi = 0, zi ∈ Z+ ∀i ∈ N

Vector h of initial holdings

Transactions: ti = |xi − hi |
Turnover:

∑
i∈N ti ≤ ∆

Transaction Costs:
∑

i∈N ci ti in objective

Market Impact:
∑

i∈N γi t
2
i in objective
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Multiproduct Batch Plants (Kocis and Gross-

mann, 1988)

M: Batch Processing Stages

N: Different Products

H: Horizon Time

Qi : Required quantity of product i

tij : Processing time product i stage j

Sij : “Size Factor” product i stage j

Bi : Batch size of product i ∈ N

Vj : Stage j size: Vj ≥ SijBi ∀i , j
Nj : Number of machines at stage j

Ci : Longest stage time for product i : Ci ≥ tij/Nj ∀i , j
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Multiproduct Batch Plants

min
∑
j∈M

αjNjV
βj
j

s.t.

Vj − SijBi ≥ 0 ∀i ∈ N,∀j ∈ M
CiNj ≥ tij ∀i ∈ N,∀j ∈ M∑

i∈N

Qi

Bi
Ci ≤ H

Bound Constraints on Vj ,Ci ,Bi ,Nj

Nj ∈ Z ∀j ∈ M
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Modeling Trick #2

Horizon Time and Objective Function Nonconvex. :-(

Sometimes variable transformations work!

vj = ln(Vj), nj = ln(Nj), bi = ln(Bi ), ci = lnCi

min
∑
j∈M

αje
Nj+βjVj

s.t. vj − ln(Sij)bi ≥ 0 ∀i ∈ N,∀j ∈ M
ci + nj ≥ ln(τij) ∀i ∈ N,∀j ∈ M∑

i∈N
Qie

Ci−Bi ≤ H

(Transformed) Bound Constraints on Vj ,Ci ,Bi
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How to Handle the Integrality?

But what to do about the integrality?

1 ≤ Nj ≤ N j ∀j ∈ M,Nj ∈ Z ∀j ∈ M

nj ∈ {0, ln(2), ln(3), . . . ...}

Ykj =

{
1 nj takes value ln(k)
0 Otherwise

nj −
K∑

k=1

ln(k)Ykj = 0 ∀j ∈ M

K∑
k=1

Ykj = 1 ∀j ∈ M

This model is available at http://www-unix.mcs.anl.gov/

~leyffer/macminlp/problems/batch.mod
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A Small Smattering of Other Applications

Chemical Engineering Applications:

process synthesis (Kocis and Grossmann, 1988)
batch plant design (Grossmann and Sargent, 1979)
cyclic scheduling (Jain, V. and Grossmann, I.E., 1998)
design of distillation columns (Viswanathan and Grossmann, 1993)
pump configuration optimization (Westerlund, T., Pettersson, F. and
Grossmann, I.E., 1994)

Forestry/Paper

production (Westerlund, T., Isaksson, J. and Harjunkoski, I., 1995)
trimloss minimization (Harjunkoski, I., Westerlund, T., Pörn, R. and
Skrifvars, H., 1998)

Topology Optimization (Sigmund, 2001)
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Part II

Classical Solution Methods
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Classical Solution Methods for MINLP

1 Classical Branch-and-Bound

2 Outer Approximation & Benders Decomposition
3 Hybrid Methods

LP/NLP Based Branch-and-Bound
Integrating SQP with Branch-and-Bound
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Branch-and-Bound

Solve relaxed NLP (0 ≤ y ≤ 1 continuous relaxation)
. . . solution value provides lower bound

Branch on yi non-integral

Solve NLPs & branch until
1 Node infeasible ... •
2 Node integer feasible ... �
⇒ get upper bound (U)

3 Lower bound ≥ U ...
⊗

y  = 1

y  = 0
i

i

dominated 
by upper bound

infeasible

integer feasible
etc.

etc.

Search until no unexplored nodes on tree
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Variable Selection for Branch-and-Bound
Assume yi ∈ {0, 1} for simplicity ...
(x̂ , ŷ) fractional solution to parent node; f̂ = f (x̂ , ŷ)

1 maximal fractional branching: choose ŷi closest to 1
2

max
i
{min(1− ŷi , ŷi )}

2 strong branching: (approx) solve all NLP children:

f
+/−
i ←


minimize

x ,y
f (x , y)

subject to c(x , y) ≤ 0
x ∈ X , y ∈ Y , yi = 1/0

branching variable yi that changes objective the most:

max
i

{
min(f +

i , f
−
i )
}
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Node Selection for Branch-and-Bound

Which node n on tree T should be solved next?
1 depth-first search: select deepest node in tree

minimizes number of NLP nodes stored
exploit warm-starts (MILP/MIQP only)

2 best estimate: choose node with best expected integer soln

min
n∈T

fp(n) +
∑

i :yi fractional

min
{
e+
i (1− yi ), e

−
i yi
}

where fp(n) = value of parent node, e
+/−
i = pseudo-costs

summing pseudo-cost estimates for all integers in subtree
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Outer Approximation (Duran and Grossmann, 1986)

Motivation: avoid solving huge number of NLPs
• Exploit MILP/NLP solvers: decompose integer/nonlinear part

Key idea: reformulate MINLP as MILP (implicit)
• Solve alternating sequence of MILP & NLP

NLP subproblem yj fixed:

NLP(yj)


minimize

x
f (x , yj)

subject to c(x , yj) ≤ 0
x ∈ X

Main Assumption: f , c are convex

(y )jNLP

MILP
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Outer Approximation (Duran and Grossmann, 1986)

• let (xj , yj) solve NLP(yj)
• linearize f , c about (xj , yj) =: zj
• new objective variable η ≥ f (x , y)
• MINLP (P) ≡ MILP (M)

f(x)

η

(M)


minimize
z=(x ,y),η

η

subject to η ≥ fj +∇f Tj (z − zj) ∀yj ∈ Y

0 ≥ cj +∇cTj (z − zj) ∀yj ∈ Y

x ∈ X , y ∈ Y integer

SNAG: need all yj ∈ Y linearizations
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Outer Approximation (Duran and Grossmann, 1986)

(Mk): lower bound (underestimate convex f , c)
NLP(yj): upper bound U (fixed yj)

NLP(   ) subproblemy
linearization
NLP gives

MILP finds
new y

MILP infeasible?

Yes

STOP

No

MILP master program

⇒ stop, if lower bound ≥ upper bound
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Outer Approximation & Benders Decomposition

Take OA cuts for zj := (xj , yj) ... wlog X = Rn

η ≥ fj +∇f Tj (z − zj) & 0 ≥ cj +∇cTj (z − zj)

sum with (1, λj) ... λj multipliers of NLP(yj)

η ≥ fj + λTj cj + (∇fj +∇cjλj)T (z − zj)

KKT conditions of NLP(yj) ⇒ ∇x fj +∇xcjλj = 0
... eliminate x components from valid inequality in y

⇒ η ≥ fj + (∇y fj +∇ycjλj)
T (y − yj)

NB: µj = ∇y fj +∇ycjλj multiplier of y = yj in NLP(yj)
References: (Geoffrion, 1972)
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LP/NLP Based Branch-and-Bound

AIM: avoid re-solving MILP master (M)

Consider MILP branch-and-bound

interrupt MILP, when yj found
⇒ solve NLP(yj) get xj

linearize f , c about (xj , yj)
⇒ add linearization to tree

continue MILP tree-search

... until lower bound ≥ upper bound
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LP/NLP Based Branch-and-Bound

need access to MILP solver ... call back
◦ exploit good MILP (branch-cut-price) solver
◦ (Akrotirianakis et al., 2001) use Gomory cuts in tree-search

preliminary results: order of magnitude faster than OA
◦ same number of NLPs, but only one MILP

similar ideas for Benders & Extended Cutting Plane methods

recent implementation by CMU/IBM group

References: (Quesada and Grossmann, 1992)
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Integrating SQP & Branch-and-Bound

AIM: Avoid solving NLP node to convergence.

Sequential Quadratic Programming (SQP)
→ solve sequence (QPk) at every node

(QPk)


minimize

d
fk +∇f Tk d + 1

2d
THkd

subject to ck +∇cTk d ≤ 0
xk + dx ∈ X

yk + dy ∈ Ŷ .

Early branching:
After QP step choose non-integral yk+1

i , branch & continue SQP
References: (Borchers and Mitchell, 1994; Leyffer, 2001)
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Integrating SQP & Branch-and-Bound

SNAG: (QPk) not lower bound
⇒ no fathoming from upper bound

minimize
d

fk +∇f Tk d + 1
2d

THkd

subject to ck +∇cTk d ≤ 0
xk + dx ∈ X

yk + dy ∈ Ŷ .

Remedy: Exploit OA underestimating property (Leyffer, 2001):

add objective cut fk +∇f Tk d ≤ U − ε to (QPk)

fathom node, if (QPk) inconsistent

NB: (QPk) inconsistent and trust-region active ⇒ do not fathom
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Comparison of Classical MINLP Techniques

Summary of numerical experience

1 Quadratic OA master: usually fewer iteration
MIQP harder to solve

2 NLP branch-and-bound faster than OA
... depends on MIP solver

3 LP/NLP-based-BB order of magnitude faster than OA
. . . also faster than B&B

4 Integrated SQP-B&B up to 3× faster than B&B
' number of QPs per node

5 ECP works well, if function/gradient evals expensive
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Part III

Modern Developments in MINLP
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Modern Methods for MINLP

1 Formulations

Relaxations
Good formulations: big M ′s and disaggregation

2 Cutting Planes

Cuts from relaxations and special structures
Cuts from integrality

3 Handling Nonconvexity

Envelopes
Methods
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Relaxations

z(S)
def
= minx∈S f (x)

z(T )
def
= minx∈T f (x)

S

T

Independent of f , S ,T :
z(T ) ≤ z(S)

If x∗T = arg minx∈T f (x)

And x∗T ∈ S , then

x∗T = arg minx∈S f (x)
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UFL: Uncapacitated Facility Location
Facilities: J

Customers: I
min

∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

fijyij

∑
j∈J

yij = 1 ∀i ∈ I∑
i∈I

yij ≤ |I |xj ∀j ∈ J (1)

OR yij ≤ xj ∀i ∈ I , j ∈ J (2)

Which formulation is to be preferred?

I = J = 40. Costs random.

Formulation 1. 53,121 seconds, optimal solution.
Formulation 2. 2 seconds, optimal solution.
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Valid Inequalities

Sometimes we can get a better formulation by dynamically
improving it.

An inequality πT x ≤ π0 is a valid inequality for S if
πT x ≤ π0 ∀x ∈ S

Alternatively: maxx∈S{πT x} ≤ π0

Thm: (Hahn-Banach). Let S ⊂ Rn be
a closed, convex set, and let x̂ 6∈ S .
Then there exists π ∈ Rn such that

πT x̂ > max
x∈S
{πT x} S

x̂πTx = π0
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Nonlinear Branch-and-Cut

Consider MINLP
minimize

x ,y
f Tx x + f Ty y

subject to c(x , y) ≤ 0
y ∈ {0, 1}p, 0 ≤ x ≤ U

Note the Linear objective

This is WLOG:

min f (x , y) ⇔ min η s.t. η ≥ f (x , y)
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It’s Actually Important!

We want to approximate the convex hull of integer solutions, but
without a linear objective function, the solution to the relaxation
might occur in the interior.

No Separating Hyperplane! :-(

min(y1 − 1/2)2 + (y2 − 1/2)2

s.t. y1 ∈ {0, 1}, y2 ∈ {0, 1}

η ≥ (y1 − 1/2)2 + (y2 − 1/2)2

y1

y2

(ŷ1, ŷ2)
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Valid Inequalities From Relaxations

Idea: Inequalities valid for a relaxation are valid for original

Generating valid inequalities for a relaxation is often easier.

T

S
x̂

π
T
x

=
π

0

Separation Problem over T:
Given x̂ ,T find (π, π0) such
that πT x̂ > π0,
πT x ≤ π0∀x ∈ T
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Simple Relaxations

Idea: Consider one row relaxations

If P = {x ∈ {0, 1}n | Ax ≤ b}, then for any row i ,
Pi = {x ∈ {0, 1}n | aTi x ≤ bi} is a relaxation of P.

If the intersection of the relaxations is a good approximation to the
true problem, then the inequalities will be quite useful.

Crowder et al. (1983) is the seminal paper that shows this to be true
for IP.

MINLP: Single (linear) row relaxations are also valid ⇒ same
inequalities can also be used
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Knapsack Covers

K = {x ∈ {0, 1}n | aT x ≤ b}

A set C ⊆ N is a cover if
∑

j∈C aj > b

A cover C is a minimal cover if C \ j is not a cover ∀j ∈ C

If C ⊆ N is a cover, then the cover inequality∑
j∈C

xj ≤ |C | − 1

is a valid inequality for S

Sometimes (minimal) cover inequalities are facets of conv(K )
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Other Substructures

Single node flow: (Padberg et al., 1985)

S =

x ∈ R|N|+ , y ∈ {0, 1}|N| |
∑
j∈N

xj ≤ b, xj ≤ ujyj ∀ j ∈ N


Knapsack with single continuous variable: (Marchand and Wolsey,

1999)

S =

x ∈ R+, y ∈ {0, 1}|N| |
∑
j∈N

ajyj ≤ b + x


Set Packing: (Borndörfer and Weismantel, 2000)

S =
{
y ∈ {0, 1}|N| | Ay ≤ e

}
A ∈ {0, 1}|M|×|N|, e = (1, 1, . . . , 1)T
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The Chvátal-Gomory Procedure

A general procedure for generating valid inequalities for integer
programs

Let the columns of A ∈ Rm×n be denoted by {a1, a2, . . . an}
S = {y ∈ Zn

+ | Ay ≤ b}.
1 Choose nonnegative multipliers u ∈ Rm

+
2 uTAy ≤ uTb is a valid inequality (

∑
j∈N uTajyj ≤ uTb).

3
∑

j∈NbuTajcyj ≤ uTb (Since y ≥ 0).
4
∑

j∈NbuTajcyj ≤ buTbc is valid for S since buTajcyj is an integer

Simply Amazing: This simple procedure suffices to generate every
valid inequality for an integer program
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Extension to MINLP (Çezik and Iyengar, 2005)

This simple idea also extends to mixed 0-1 conic programming
minimize
z
def
= (x ,y)

f T z

subject to Az �K b
y ∈ {0, 1}p, 0 ≤ x ≤ U

K: Homogeneous, self-dual, proper, convex cone

x �K y ⇔ (x − y) ∈ K
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Gomory On Cones (Çezik and Iyengar, 2005)

LP: Kl = Rn
+

SOCP: Kq = {(x0, x̄) | x0 ≥ ‖x̄‖}
SDP: Ks = {x = vec(X ) | X = XT ,X p.s.d}

Dual Cone: K∗ def
= {u | uT z ≥ 0 ∀z ∈ K}

Extension is clear from the following equivalence:

Az �K b ⇔ uTAz ≥ uTb ∀u �K∗ 0

Many classes of nonlinear inequalities can be represented as

Ax �Kq b or Ax �Ks b
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Using Gomory Cuts in MINLP (Akrotirianakis et al., 2001)

LP/NLP Based Branch-and-Bound solves MILP instances:
minimize
z
def
= (x ,y),η

η

subject to η ≥ fj +∇f Tj (z − zj) ∀yj ∈ Y k

0 ≥ cj +∇cTj (z − zj) ∀yj ∈ Y k

x ∈ X , y ∈ Y integer

Create Gomory mixed integer cuts from

η ≥ fj +∇f Tj (z − zj)

0 ≥ cj +∇cTj (z − zj)

Akrotirianakis et al. (2001) shows modest improvements

Research Question: Other cut classes?

Research Question: Exploit “outer approximation” property?
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Disjunctive Cuts for MINLP (Stubbs and Mehrotra, 1999)

Extension of Disjunctive Cuts for MILP: (Balas, 1979; Balas et al., 1993)

Continuous relaxation (z
def
= (x , y))

C
def
= {z |c(z) ≤ 0, 0 ≤ y ≤ 1, 0 ≤ x ≤ U}

C def
= conv({x ∈ C | y ∈ {0, 1}p})

C
0/1
j

def
= {z ∈ C |yj = 0/1}

letMj(C )
def
=


z = λ0u0 + λ1u1

λ0 + λ1 = 1, λ0, λ1 ≥ 0
u0 ∈ C 0

j , u1 ∈ C 1
j


⇒ Pj(C ) := projection of Mj(C ) onto z

y

x

continuous
relaxation

⇒ Pj(C ) = conv (C ∩ yj ∈ {0, 1}) and P1...p(C ) = C
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Disjunctive Cuts: Example

minimize
x ,y

{
x | (x − 1/2)2 + (y − 3/4)2 ≤ 1,−2 ≤ x ≤ 2, y ∈ {0, 1}

}

C 0
j C 1

j

ẑ = (x̂ , ŷ)

y

x
Given ẑ with ŷj 6∈ {0, 1} find separating
hyperplane

⇒

{
minimize

z
‖z − ẑ‖

subject to z ∈ Pj(C )
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Disjunctive Cuts Example
C 0
j C 1

j

ẑ = (x̂ , ŷ)

z∗

z∗
def
= arg min ‖z − ẑ‖

s.t. λ0u0 + λ1u1 = z
λ0 + λ1 = 1(

−0.16
0

)
≤ u0 ≤

(
0.66

1

)
(
−0.47

0

)
≤ u1 ≤

(
1.47

1

)
λ0, λ1 ≥ 0

NONCONVEX
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1

)
λ0, λ1 ≥ 0

NONCONVEX
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What to do? (Stubbs and Mehrotra, 1999)

Look at the perspective of c(z)

P(c(z̃), µ) = µc(z̃/µ)

Think of z̃ = µz

Perspective gives a convex reformulation of Mj(C ): Mj(C̃ ), where

C̃ :=

(z , µ)

∣∣∣∣∣∣
µci (z/µ) ≤ 0
0 ≤ µ ≤ 1
0 ≤ x ≤ µU, 0 ≤ y ≤ µ


c(0/0) = 0 ⇒ convex representation
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Disjunctive Cuts Example

C̃ =


 x

y
µ


∣∣∣∣∣∣∣∣
µ
[
(x/µ− 1/2)2 + (y/µ− 3/4)2 − 1

]
≤ 0

−2µ ≤ x ≤ 2µ
0 ≤ y ≤ µ
0 ≤ µ ≤ 1



C 0
j C 1

j y

x

µ

C 0
j

C 1
jy

x

µ

C 0
j

C 1
j

y

x

µ

110 / 160



Example, cont.

C̃ 0
j = {(z , µ) | yj = 0} C̃ 1

j = {(z , µ) | yj = µ}

Take v0 ← µ0u0 v1 ← µ1u1

min ‖z − ẑ‖

s.t. v0 + v1 = z
µ0 + µ1 = 1
(v0, µ0) ∈ C̃ 0

j

(v1, µ1) ∈ C̃ 1
j

µ0, µ1 ≥ 0

Solution to example:(
x∗

y∗

)
=

(
−0.401
0.780

)

separating hyperplane: ψT (z − ẑ), where ψ ∈ ∂‖z − ẑ‖

111 / 160



Example, cont.

C̃ 0
j = {(z , µ) | yj = 0} C̃ 1

j = {(z , µ) | yj = µ}

Take v0 ← µ0u0 v1 ← µ1u1

min ‖z − ẑ‖

s.t. v0 + v1 = z
µ0 + µ1 = 1
(v0, µ0) ∈ C̃ 0

j

(v1, µ1) ∈ C̃ 1
j

µ0, µ1 ≥ 0

Solution to example:(
x∗

y∗

)
=

(
−0.401
0.780

)

separating hyperplane: ψT (z − ẑ), where ψ ∈ ∂‖z − ẑ‖
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Example, Cont.C 0
j C 1

j

ẑ = (x̂ , ŷ)

z∗

0.198x + 0.061y = −0.032

ψ =

(
2x∗ + 0.5

2y∗ − 0.75

)
0.198x + 0.061y ≥ −0.032
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Nonlinear Branch-and-Cut (Stubbs and Mehrotra, 1999)

Can do this at all nodes of the branch-and-bound tree

Generalize disjunctive approach from MILP

solve one convex NLP per cut

Generalizes Sherali and Adams (1990) and Lovász and Schrijver
(1991)

tighten cuts by adding semi-definite constraint

Stubbs and Mehrohtra (2002) also show how to generate convex
quadratic inequalities, but computational results are not that
promising
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Generalized Disjunctive Programming (Raman and Grossmann,

1994; Lee and Grossmann, 2000)

Consider disjunctive NLP

minimize
x ,Y

∑
fi + f (x)

subject to

 Yi

ci (x) ≤ 0
fi = γi

∨ ¬Yi

Bix = 0
fi = 0

∀i ∈ I

0 ≤ x ≤ U, Ω(Y ) = true, Y ∈ {true, false}p

Application: process synthesis
• Yi represents presence/absence of units
• Bix = 0 eliminates variables if unit absent
Exploit disjunctive structure
• special branching ... OA/GBD algorithms
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Generalized Disjunctive Programming (Raman and Grossmann,

1994; Lee and Grossmann, 2000)

Consider disjunctive NLP

minimize
x ,Y

∑
fi + f (x)

subject to

 Yi

ci (x) ≤ 0
fi = γi

∨ ¬Yi

Bix = 0
fi = 0

∀i ∈ I

0 ≤ x ≤ U, Ω(Y ) = true, Y ∈ {true, false}p

Big-M formulation (notoriously bad), M > 0:

ci (x) ≤ M(1− yi )
−Myi ≤ Bix ≤ Myi
fi = yiγi Ω(Y ) converted to linear inequalities
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Generalized Disjunctive Programming (Raman and Grossmann,

1994; Lee and Grossmann, 2000)

Consider disjunctive NLP

minimize
x ,Y

∑
fi + f (x)

subject to

 Yi

ci (x) ≤ 0
fi = γi

∨ ¬Yi

Bix = 0
fi = 0

∀i ∈ I

0 ≤ x ≤ U, Ω(Y ) = true, Y ∈ {true, false}p

convex hull representation ...

x = vi1 + vi0, λi1 + λi0 = 1
λi1ci (vi1/λi1) ≤ 0, Bivi0 = 0
0 ≤ vij ≤ λijU, 0 ≤ λij ≤ 1, fi = λi1γi
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Dealing with Nonconvexities

Functional nonconvexity causes
serious problems.

Branch and bound must have
true lower bound (global
solution)

Underestimate nonconvex
functions. Solve relaxation.
Provides lower bound.

If relaxation is not exact, then
branch
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Dealing with Nonconvex Constraints

If nonconvexity in constraints,
may need to overestimate and
underestimate the function to
get a convex region
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Envelopes

f : Ω→ R

Convex Envelope (vexΩ(f )):
Pointwise supremum of convex
underestimators of f over Ω.

Concave Envelope (cavΩ(f )):
Pointwise infimum of concave
overestimators of f over Ω.

122 / 160



Envelopes

f : Ω→ R

Convex Envelope (vexΩ(f )):
Pointwise supremum of convex
underestimators of f over Ω.

Concave Envelope (cavΩ(f )):
Pointwise infimum of concave
overestimators of f over Ω.

123 / 160



Branch-and-Bound Global Optimization Methods

Under/Overestimate “simple” parts of (Factorable) Functions
individually

Bilinear Terms
Trilinear Terms
Fractional Terms
Univariate convex/concave terms

General nonconvex functions f (x) can be underestimated over a
region [l , u] “overpowering” the function with a quadratic function
that is ≤ 0 on the region of interest

L(x) = f (x) +
n∑

i=1

αi (li − xi )(ui − xi )

Refs: (McCormick, 1976; Adjiman et al., 1998; Tawarmalani and
Sahinidis, 2002)
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Bilinear Terms

The convex and concave envelopes of the bilinear function xy over a
rectangular region

R
def
= {(x , y) ∈ R2 | lx ≤ x ≤ ux , ly ≤ y ≤ uy}

are given by the expressions

vexxyR(x , y) = max{lyx + lxy − lx ly , uyx + uxy − uxuy}
cavxyR(x , y) = min{uyx + lxy − lxuy , lyx + uxy − ux ly}
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Worth 1000 Words?
xy
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Worth 1000 Words?
vexR(xy)
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Worth 1000 Words?
cavR(xy)
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Summary

MINLP: Good relaxations are important

Relaxations can be improved

Statically: Better formulation/preprocessing
Dynamically: Cutting planes

Nonconvex MINLP:

Methods exist, again based on relaxations

Tight relaxations is an active area of research

Lots of empirical questions remain
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Part IV

Implementation and Software
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Implementation and Software for MINLP

1 Special Ordered Sets

2 Implementation & Software Issues
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Special Ordered Sets of Type 1

SOS1:
∑
λi = 1 & at most one λi is nonzero

Example 1: d ∈ {d1, . . . , dp} discrete diameters

⇔ d =
∑
λidi and {λ1, . . . , λp} is SOS1

⇔ d =
∑
λidi and

∑
λi = 1 and λi ∈ {0, 1}

. . . d is convex combination with coefficients λi

Example 2: nonlinear function c(y) of single integer

⇔ y =
∑

iλi and c =
∑

c(i)λi and {λ1, . . . , λp} is SOS1

References: (Beale, 1979; Nemhauser, G.L. and Wolsey, L.A., 1988;
Williams, 1993) . . .
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Special Ordered Sets of Type 1

SOS1:
∑
λi = 1 & at most one λi is nonzero

Branching on SOS1

1 reference row a1 < . . . < ap
e.g. diameters

2 fractionality: a :=
∑

aiλi

3 find t : at < a ≤ at+1

4 branch: {λt+1, . . . , λp} = 0
or {λ1, . . . , λt} = 0

a < a
t

a > a
t+1
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Special Ordered Sets of Type 2

SOS2:
∑
λi = 1 & at most two adjacent λi nonzero

Example: Approximation of nonlinear function z = z(x)

z(x)

x

breakpoints x1 < . . . < xp

function values zi = z(xi )

piece-wise linear

x =
∑
λixi

z =
∑
λizi

{λ1, . . . , λp} is SOS2

. . . convex combination of two breakpoints . . .
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Special Ordered Sets of Type 2

SOS2:
∑
λi = 1 & at most two adjacent λi nonzero

Example: Approximation of nonlinear function z = z(x)

z(x)

x

breakpoints x1 < . . . < xp

function values zi = z(xi )

piece-wise linear

x =
∑
λixi

z =
∑
λizi

{λ1, . . . , λp} is SOS2

. . . convex combination of two breakpoints . . .
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Special Ordered Sets of Type 2

SOS2:
∑
λi = 1 & at most two adjacent λi nonzero

Branching on SOS2

1 reference row a1 < . . . < ap
e.g. ai = xi

2 fractionality: a :=
∑

aiλi

3 find t : at < a ≤ at+1

4 branch: {λt+1, . . . , λp} = 0
or {λ1, . . . , λt−1}

t
x > ax < a

t
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Special Ordered Sets of Type 2

SOS2:
∑
λi = 1 & at most two adjacent λi nonzero

Branching on SOS2

1 reference row a1 < . . . < ap
e.g. ai = xi

2 fractionality: a :=
∑

aiλi
3 find t : at < a ≤ at+1

4 branch: {λt+1, . . . , λp} = 0
or {λ1, . . . , λt−1} t

x > ax < a
t
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Special Ordered Sets of Type 3

Example: Approximation of 2D function u = g(v ,w)

Triangularization of [vL, vU ]× [wL,wU ] domain

1 vL = v1 < . . . < vk = vU
2 wL = w1 < . . . < wl = wU

3 function uij := g(vi ,wj)

4 λij weight of vertex (i , j)

v =
∑
λijvi

w =
∑
λijwj

u =
∑
λijuij

1 =
∑
λij is SOS3 . . .
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Special Ordered Sets of Type 3

SOS3:
∑
λij = 1 & set condition holds

1 v =
∑
λijvi ... convex combinations

2 w =
∑
λijwj

3 u =
∑
λijuij

{λ11, . . . , λkl} satisfies set condition

⇔ ∃ trangle ∆ : {(i , j) : λij > 0} ⊂ ∆ v

w

violates set condn

i.e. nonzeros in single triangle ∆
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Branching on SOS3

λ violates set condition

compute centers:
v̂ =

∑
λijvi &

ŵ =
∑
λijwi

find s, t such that
vs ≤ v̂ < vs+1 &
ws ≤ ŵ < ws+1

branch on v or w

v

w

violates set condn
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Branching on SOS3

λ violates set condition

compute centers:
v̂ =

∑
λijvi &

ŵ =
∑
λijwi

find s, t such that
vs ≤ v̂ < vs+1 &
ws ≤ ŵ < ws+1

branch on v or w

vertical branching:
∑
L

λij = 1
∑
R

λij = 1
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Branching on SOS3

λ violates set condition

compute centers:
v̂ =

∑
λijvi &

ŵ =
∑
λijwi

find s, t such that
vs ≤ v̂ < vs+1 &
ws ≤ ŵ < ws+1

branch on v or w

horizontal branching:
∑
T

λij = 1
∑
B

λij = 1
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Extension to SOS-k

Example: electricity transmission network:

c(x) = 4x1 − x2
2 − 0.2 · x2x4 sin(x3)

(Martin et al., 2005) extend SOS3 to SOSk models for any k
⇒ function with p variables on N grid needs Np λ’s

Alternative (Gatzke, 2005):

exploit computational graph
' automatic differentiation

only need SOS2 & SOS3 ...
replace nonconvex parts

piece-wise polyhedral approx.
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Software for MINLP

Outer Approximation: DICOPT++ (& AIMMS)
NLP solvers: CONOPT, MINOS, SNOPT
MILP solvers: CPLEX, OSL2

Branch-and-Bound Solvers: SBB & MINLP
NLP solvers: CONOPT, MINOS, SNOPT & FilterSQP
variable & node selection; SOS1 & SOS2 support

Global MINLP: BARON & MINOPT underestimators & branching
CPLEX, MINOS, SNOPT, OSL

Online Tools: MINLP World, MacMINLP & NEOS MINLP World
www.gamsworld.org/minlp/

NEOS server www-neos.mcs.anl.gov/
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COIN-OR

http://www.coin-or.org

COmputational INfrastructure for Operations Research

A library of (interoperable) software tools for optimization

A development platform for open source projects in the OR
community

Possibly Relevant Modules:

OSI: Open Solver Interface
CGL: Cut Generation Library
CLP: Coin Linear Programming Toolkit
CBC: Coin Branch and Cut
IPOPT: Interior Point OPTimizer for NLP
NLPAPI: NonLinear Programming API
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MINLP with COIN-OR

New implementation of LP/NLP based BB

MIP branch-and-cut: CBC & CGL

NLPs: IPOPT interior point ... OK for NLP(yi )

New hybrid method:

solve more NLPs at non-integer yi
⇒ better outer approximation
allow complete MIP at some nodes
⇒ generate new integer assignment

... faster than DICOPT++, SBB

simplifies to OA and BB at extremes ... less efficient

... see Bonami et al. (2005) ... coming in 2006.
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Conclusions

MINLP rich modeling paradigm
◦ most popular solver on NEOS

Algorithms for MINLP:
◦ Branch-and-bound (branch-and-cut)
◦ Outer approximation et al.

“MINLP solvers lag 15 years behind MIP solvers”

⇒ many research opportunities!!!
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