
Mixed Integer Nonlinear Programming (MINLP)

Sven Leyffer

MCS Division
Argonne National Lab
leyffer@mcs.anl.gov

Jeff Linderoth

ISE Department
Lehigh University
jtl3@lehigh.edu

1 / 160

Overview

1 Introduction, Applications, and Formulations

2 Classical Solution Methods

3 Modern Developments in MINLP

4 Implementation and Software

2 / 160

Part I

Introduction, Applications, and Formulations

3 / 160

The Problem of the Day

Mixed Integer Nonlinear Program (MINLP)
minimize

x ,y
f (x , y)

subject to c(x , y) ≤ 0
x ∈ X , y ∈ Y integer

f , c smooth (convex) functions

X ,Y polyhedral sets, e.g. Y = {y ∈ [0, 1]p | Ay ≤ b}
y ∈ Y integer ⇒ hard problem

f , c not convex ⇒ very hard problem

4 / 160

The Problem of the Day

Mixed Integer Nonlinear Program (MINLP)
minimize

x ,y
f (x , y)

subject to c(x , y) ≤ 0
x ∈ X , y ∈ Y integer

f , c smooth (convex) functions

X ,Y polyhedral sets, e.g. Y = {y ∈ [0, 1]p | Ay ≤ b}

y ∈ Y integer ⇒ hard problem

f , c not convex ⇒ very hard problem

5 / 160

The Problem of the Day

Mixed Integer Nonlinear Program (MINLP)
minimize

x ,y
f (x , y)

subject to c(x , y) ≤ 0
x ∈ X , y ∈ Y integer

f , c smooth (convex) functions

X ,Y polyhedral sets, e.g. Y = {y ∈ [0, 1]p | Ay ≤ b}
y ∈ Y integer ⇒ hard problem

f , c not convex ⇒ very hard problem

6 / 160

The Problem of the Day

Mixed Integer Nonlinear Program (MINLP)
minimize

x ,y
f (x , y)

subject to c(x , y) ≤ 0
x ∈ X , y ∈ Y integer

f , c smooth (convex) functions

X ,Y polyhedral sets, e.g. Y = {y ∈ [0, 1]p | Ay ≤ b}
y ∈ Y integer ⇒ hard problem

f , c not convex ⇒ very hard problem

7 / 160

Why the MI?

We can use 0-1 (binary) variables for a variety of purposes

Modeling yes/no decisions
Enforcing disjunctions
Enforcing logical conditions
Modeling fixed costs
Modeling piecewise linear functions

If the variable is associated with a physical entity that is indivisible,
then it must be integer

Number of aircraft carriers to to produce. Gomory’s Initial Motivation

8 / 160

Why the MI?

We can use 0-1 (binary) variables for a variety of purposes

Modeling yes/no decisions
Enforcing disjunctions
Enforcing logical conditions
Modeling fixed costs
Modeling piecewise linear functions

If the variable is associated with a physical entity that is indivisible,
then it must be integer

Number of aircraft carriers to to produce. Gomory’s Initial Motivation

9 / 160

A Popular MINLP Method

Dantzig’s Two-Phase Method for MINLP Adapted by Leyffer and Linderoth

1 Convince the user that he or she does not wish to solve a mixed
integer nonlinear programming problem at all!

2 Otherwise, solve the continuous relaxation (NLP) and round off the
minimizer to the nearest integer.

For 0− 1 problems, or those in which the |y | is “small”, the
continuous approximation to the discrete decision is not accurate
enough for practical purposes.

Conclusion: MINLP methods must be studied!

10 / 160

A Popular MINLP Method

Dantzig’s Two-Phase Method for MINLP Adapted by Leyffer and Linderoth

1 Convince the user that he or she does not wish to solve a mixed
integer nonlinear programming problem at all!

2 Otherwise, solve the continuous relaxation (NLP) and round off the
minimizer to the nearest integer.

For 0− 1 problems, or those in which the |y | is “small”, the
continuous approximation to the discrete decision is not accurate
enough for practical purposes.

Conclusion: MINLP methods must be studied!

11 / 160

A Popular MINLP Method

Dantzig’s Two-Phase Method for MINLP Adapted by Leyffer and Linderoth

1 Convince the user that he or she does not wish to solve a mixed
integer nonlinear programming problem at all!

2 Otherwise, solve the continuous relaxation (NLP) and round off the
minimizer to the nearest integer.

For 0− 1 problems, or those in which the |y | is “small”, the
continuous approximation to the discrete decision is not accurate
enough for practical purposes.

Conclusion: MINLP methods must be studied!

12 / 160

A Popular MINLP Method

Dantzig’s Two-Phase Method for MINLP Adapted by Leyffer and Linderoth

1 Convince the user that he or she does not wish to solve a mixed
integer nonlinear programming problem at all!

2 Otherwise, solve the continuous relaxation (NLP) and round off the
minimizer to the nearest integer.

For 0− 1 problems, or those in which the |y | is “small”, the
continuous approximation to the discrete decision is not accurate
enough for practical purposes.

Conclusion: MINLP methods must be studied!

13 / 160

Example: Core Reload Operation (Quist, A.J., 2000)

max. reactor efficiency after reload
subject to diffusion PDE & safety

diffusion PDE ' nonlinear equation
⇒ integer & nonlinear model

avoid reactor becoming sub-critical

14 / 160

Example: Core Reload Operation (Quist, A.J., 2000)

max. reactor efficiency after reload
subject to diffusion PDE & safety

diffusion PDE ' nonlinear equation
⇒ integer & nonlinear model

avoid reactor becoming overheated

15 / 160

Example: Core Reload Operation (Quist, A.J., 2000)

look for cycles for moving bundles:
e.g. 4 → 6 → 8 → 10
i.e. bundle moved from 4 to 6 ...

model with binary xilm ∈ {0, 1}
xilm = 1
⇔ node i has bundle l of cycle m

16 / 160

AMPL Model of Core Reload Operation

Exactly one bundle per node:

L∑
l=1

M∑
m=1

xilm = 1 ∀i ∈ I

AMPL model:
var x {I,L,M} binary ;

Bundle {i in I}: sum{l in L, m in M} x[i,l,m] = 1 ;

Multiple Choice: One of the most common uses of IP

Full AMPL model c-reload.mod at
www.mcs.anl.gov/~leyffer/MacMINLP/

17 / 160

www.mcs.anl.gov/~leyffer/MacMINLP/

Gas Transmission Problem (De Wolf and Smeers, 2000)

Belgium has no gas!

All natural gas is imported
from Norway, Holland, or
Algeria.

Supply gas to all demand
points in a network in a
minimum cost fashion.

Gas is pumped through the
network with a series of
compressors

There are constraints on the
pressure of the gas within
the pipe

18 / 160

Gas Transmission Problem (De Wolf and Smeers, 2000)

Belgium has no gas!

All natural gas is imported
from Norway, Holland, or
Algeria.

Supply gas to all demand
points in a network in a
minimum cost fashion.

Gas is pumped through the
network with a series of
compressors

There are constraints on the
pressure of the gas within
the pipe

19 / 160

Gas Transmission Problem (De Wolf and Smeers, 2000)

Belgium has no gas!

All natural gas is imported
from Norway, Holland, or
Algeria.

Supply gas to all demand
points in a network in a
minimum cost fashion.

Gas is pumped through the
network with a series of
compressors

There are constraints on the
pressure of the gas within
the pipe

20 / 160

Pressure Loss is Nonlinear

Assume horizontal pipes and
steady state flows

Pressure loss p across a pipe is
related to the flow rate f as

p2
in − p2

out =
1

Ψ
sign(f)f 2

Ψ: “Friction Factor”

21 / 160

Gas Transmission: Problem Input

Network (N,A). A = Ap ∪ Aa

Aa: active arcs have compressor. Flow rate can increase on arc
Ap: passive arcs simply conserve flow rate

Ns ⊆ N: set of supply nodes

ci , i ∈ Ns : Purchase cost of gas

s i , s i : Lower and upper bounds on gas “supply” at node i

p
i
, pi : Lower and upper bounds on gas pressure at node i

si , i ∈ N: supply at node i .

si > 0⇒ gas added to the network at node i
si < 0⇒ gas removed from the network at node i to meet demand

fij , (i , j) ∈ A: flow along arc (i , j)

f (i , j) > 0⇒ gas flows i → j
f (i , j) < 0⇒ gas flows j → i

22 / 160

Gas Transmission: Problem Input

Network (N,A). A = Ap ∪ Aa

Aa: active arcs have compressor. Flow rate can increase on arc
Ap: passive arcs simply conserve flow rate

Ns ⊆ N: set of supply nodes

ci , i ∈ Ns : Purchase cost of gas

s i , s i : Lower and upper bounds on gas “supply” at node i

p
i
, pi : Lower and upper bounds on gas pressure at node i

si , i ∈ N: supply at node i .

si > 0⇒ gas added to the network at node i
si < 0⇒ gas removed from the network at node i to meet demand

fij , (i , j) ∈ A: flow along arc (i , j)

f (i , j) > 0⇒ gas flows i → j
f (i , j) < 0⇒ gas flows j → i

23 / 160

Gas Transmission Model

min
∑
j∈Ns

cjsj

subject to ∑
j |(i ,j)∈A

fij = si ∀i ∈ N

sign(fij)f
2
ij −Ψij(p

2
i − p2

j) = 0 ∀(i , j) ∈ Ap

sign(fij)f
2
ij −Ψij(p

2
i − p2

j) ≥ 0 ∀(i , j) ∈ Aa

si ∈ [s i , s i] ∀i ∈ N
pi ∈ [p

i
, pi] ∀i ∈ N

fij ≥ 0 ∀(i , j) ∈ Aa

24 / 160

Your First Modeling Trick

Don’t include nonlinearities or nonconvexities unless necessary!

Replace p2
i ← ρi

sign(fij)f
2
ij −Ψij(ρi − ρj) = 0 ∀(i , j) ∈ Ap

f 2
ij −Ψij(ρi − ρj) ≥ 0 ∀(i , j) ∈ Aa

ρi ∈ [
√
p
i
,
√

pi] ∀i ∈ N

This trick only works because
1 p2

i terms appear only in the bound constraints
2 Also fij ≥ 0 ∀(i , j) ∈ Aa

This model is nonconvex: sign(fij)f
2
ij is a nonconvex function

Some solvers do not like sign

25 / 160

Your First Modeling Trick

Don’t include nonlinearities or nonconvexities unless necessary!

Replace p2
i ← ρi

sign(fij)f
2
ij −Ψij(ρi − ρj) = 0 ∀(i , j) ∈ Ap

f 2
ij −Ψij(ρi − ρj) ≥ 0 ∀(i , j) ∈ Aa

ρi ∈ [
√
p
i
,
√
pi] ∀i ∈ N

This trick only works because
1 p2

i terms appear only in the bound constraints
2 Also fij ≥ 0 ∀(i , j) ∈ Aa

This model is nonconvex: sign(fij)f
2
ij is a nonconvex function

Some solvers do not like sign

26 / 160

Your First Modeling Trick

Don’t include nonlinearities or nonconvexities unless necessary!

Replace p2
i ← ρi

sign(fij)f
2
ij −Ψij(ρi − ρj) = 0 ∀(i , j) ∈ Ap

f 2
ij −Ψij(ρi − ρj) ≥ 0 ∀(i , j) ∈ Aa

ρi ∈ [
√
p
i
,
√
pi] ∀i ∈ N

This trick only works because
1 p2

i terms appear only in the bound constraints
2 Also fij ≥ 0 ∀(i , j) ∈ Aa

This model is nonconvex: sign(fij)f
2
ij is a nonconvex function

Some solvers do not like sign

27 / 160

Dealing with sign(·): The NLP Way

Use auxiliary binary variables to indicate direction of flow

Let |fij | ≤ F ∀(i , j) ∈ Ap

zij =

{
1 fij ≥ 0 fij ≥ −F (1− zij)
0 fij ≤ 0 fij ≤ Fzij

Note that
sign(fij) = 2zij − 1

Write constraint as

(2zij − 1)f 2
ij −Ψij(ρi − ρj) = 0.

28 / 160

Special Ordered Sets

Sven thinks this ’NLP trick’ is pretty cool

It is not how it is done in De Wolf and Smeers (2000).

Heuristic for finding a good starting solution, then a local
optimization approach based on a piecewise-linear simplex method

Another (similar) approach involves approximating the nonlinear
function by piecewise linear segments, but searching for the globally
optimal solution: Special Ordered Sets of Type 2

If the “multidimensional” nonlinearity cannot be removed, resort to
Special Ordered Sets of Type 3

29 / 160

Special Ordered Sets

Sven thinks this ’NLP trick’ is pretty cool

It is not how it is done in De Wolf and Smeers (2000).

Heuristic for finding a good starting solution, then a local
optimization approach based on a piecewise-linear simplex method

Another (similar) approach involves approximating the nonlinear
function by piecewise linear segments, but searching for the globally
optimal solution: Special Ordered Sets of Type 2

If the “multidimensional” nonlinearity cannot be removed, resort to
Special Ordered Sets of Type 3

30 / 160

Special Ordered Sets

Sven thinks this ’NLP trick’ is pretty cool

It is not how it is done in De Wolf and Smeers (2000).

Heuristic for finding a good starting solution, then a local
optimization approach based on a piecewise-linear simplex method

Another (similar) approach involves approximating the nonlinear
function by piecewise linear segments, but searching for the globally
optimal solution: Special Ordered Sets of Type 2

If the “multidimensional” nonlinearity cannot be removed, resort to
Special Ordered Sets of Type 3

31 / 160

Portfolio Management

N: Universe of asset to purchase

xi : Amount of asset i to hold

B: Budget

min
x∈R|N|+

{
u(x) |

∑
i∈N

xi = B

}

Markowitz: u(x)
def
= −αT x + λxTQx

α: Expected returns
Q: Variance-covariance matrix of expected returns
λ: Risk aversion parameter

32 / 160

Portfolio Management

N: Universe of asset to purchase

xi : Amount of asset i to hold

B: Budget

min
x∈R|N|+

{
u(x) |

∑
i∈N

xi = B

}

Markowitz: u(x)
def
= −αT x + λxTQx

α: Expected returns
Q: Variance-covariance matrix of expected returns
λ: Risk aversion parameter

33 / 160

More Realistic Models

b ∈ R|N| of “benchmark” holdings

Benchmark Tracking: u(x)
def
= (x − b)TQ(x − b)

Constraint on E[Return]: αT x ≥ r

Limit Names: |i ∈ N : xi > 0| ≤ K

Use binary indicator variables to model the implication
xi > 0⇒ yi = 1
Implication modeled with variable upper bounds:

xi ≤ Byi ∀i ∈ N∑
i∈N yi ≤ K

34 / 160

More Realistic Models

b ∈ R|N| of “benchmark” holdings

Benchmark Tracking: u(x)
def
= (x − b)TQ(x − b)

Constraint on E[Return]: αT x ≥ r

Limit Names: |i ∈ N : xi > 0| ≤ K

Use binary indicator variables to model the implication
xi > 0⇒ yi = 1
Implication modeled with variable upper bounds:

xi ≤ Byi ∀i ∈ N∑
i∈N yi ≤ K

35 / 160

Even More Models

Min Holdings: (xi = 0) ∨ (xi ≥ m)

Model implication: xi > 0⇒ xi ≥ m
xi > 0⇒ yi = 1⇒ xi ≥ m
xi ≤ Byi , xi ≥ myi ∀i ∈ N

Round Lots: xi ∈ {kLi , k = 1, 2, . . .}
xi − ziLi = 0, zi ∈ Z+ ∀i ∈ N

Vector h of initial holdings

Transactions: ti = |xi − hi |
Turnover:

∑
i∈N ti ≤ ∆

Transaction Costs:
∑

i∈N ci ti in objective

Market Impact:
∑

i∈N γi t
2
i in objective

36 / 160

Even More Models

Min Holdings: (xi = 0) ∨ (xi ≥ m)

Model implication: xi > 0⇒ xi ≥ m
xi > 0⇒ yi = 1⇒ xi ≥ m
xi ≤ Byi , xi ≥ myi ∀i ∈ N

Round Lots: xi ∈ {kLi , k = 1, 2, . . .}
xi − ziLi = 0, zi ∈ Z+ ∀i ∈ N

Vector h of initial holdings

Transactions: ti = |xi − hi |
Turnover:

∑
i∈N ti ≤ ∆

Transaction Costs:
∑

i∈N ci ti in objective

Market Impact:
∑

i∈N γi t
2
i in objective

37 / 160

Even More Models

Min Holdings: (xi = 0) ∨ (xi ≥ m)

Model implication: xi > 0⇒ xi ≥ m
xi > 0⇒ yi = 1⇒ xi ≥ m
xi ≤ Byi , xi ≥ myi ∀i ∈ N

Round Lots: xi ∈ {kLi , k = 1, 2, . . .}
xi − ziLi = 0, zi ∈ Z+ ∀i ∈ N

Vector h of initial holdings

Transactions: ti = |xi − hi |
Turnover:

∑
i∈N ti ≤ ∆

Transaction Costs:
∑

i∈N ci ti in objective

Market Impact:
∑

i∈N γi t
2
i in objective

38 / 160

Multiproduct Batch Plants (Kocis and Gross-

mann, 1988)

M: Batch Processing Stages

N: Different Products

H: Horizon Time

Qi : Required quantity of product i

tij : Processing time product i stage j

Sij : “Size Factor” product i stage j

Bi : Batch size of product i ∈ N

Vj : Stage j size: Vj ≥ SijBi ∀i , j
Nj : Number of machines at stage j

Ci : Longest stage time for product i : Ci ≥ tij/Nj ∀i , j

39 / 160

Multiproduct Batch Plants (Kocis and Gross-

mann, 1988)

M: Batch Processing Stages

N: Different Products

H: Horizon Time

Qi : Required quantity of product i

tij : Processing time product i stage j

Sij : “Size Factor” product i stage j

Bi : Batch size of product i ∈ N

Vj : Stage j size: Vj ≥ SijBi ∀i , j
Nj : Number of machines at stage j

Ci : Longest stage time for product i : Ci ≥ tij/Nj ∀i , j
40 / 160

Multiproduct Batch Plants

min
∑
j∈M

αjNjV
βj
j

s.t.

Vj − SijBi ≥ 0 ∀i ∈ N,∀j ∈ M
CiNj ≥ tij ∀i ∈ N,∀j ∈ M∑

i∈N

Qi

Bi
Ci ≤ H

Bound Constraints on Vj ,Ci ,Bi ,Nj

Nj ∈ Z ∀j ∈ M

41 / 160

Modeling Trick #2

Horizon Time and Objective Function Nonconvex. :-(

Sometimes variable transformations work!

vj = ln(Vj), nj = ln(Nj), bi = ln(Bi), ci = lnCi

min
∑
j∈M

αje
Nj+βjVj

s.t. vj − ln(Sij)bi ≥ 0 ∀i ∈ N,∀j ∈ M
ci + nj ≥ ln(τij) ∀i ∈ N,∀j ∈ M∑

i∈N
Qie

Ci−Bi ≤ H

(Transformed) Bound Constraints on Vj ,Ci ,Bi

42 / 160

Modeling Trick #2

Horizon Time and Objective Function Nonconvex. :-(

Sometimes variable transformations work!

vj = ln(Vj), nj = ln(Nj), bi = ln(Bi), ci = lnCi

min
∑
j∈M

αje
Nj+βjVj

s.t. vj − ln(Sij)bi ≥ 0 ∀i ∈ N, ∀j ∈ M
ci + nj ≥ ln(τij) ∀i ∈ N,∀j ∈ M∑

i∈N
Qie

Ci−Bi ≤ H

(Transformed) Bound Constraints on Vj ,Ci ,Bi

43 / 160

Modeling Trick #2

Horizon Time and Objective Function Nonconvex. :-(

Sometimes variable transformations work!

vj = ln(Vj), nj = ln(Nj), bi = ln(Bi), ci = lnCi

min
∑
j∈M

αje
Nj+βjVj

s.t. vj − ln(Sij)bi ≥ 0 ∀i ∈ N, ∀j ∈ M
ci + nj ≥ ln(τij) ∀i ∈ N,∀j ∈ M∑

i∈N
Qie

Ci−Bi ≤ H

(Transformed) Bound Constraints on Vj ,Ci ,Bi

44 / 160

How to Handle the Integrality?

But what to do about the integrality?

1 ≤ Nj ≤ N j ∀j ∈ M,Nj ∈ Z ∀j ∈ M

nj ∈ {0, ln(2), ln(3),}

Ykj =

{
1 nj takes value ln(k)
0 Otherwise

nj −
K∑

k=1

ln(k)Ykj = 0 ∀j ∈ M

K∑
k=1

Ykj = 1 ∀j ∈ M

This model is available at http://www-unix.mcs.anl.gov/

~leyffer/macminlp/problems/batch.mod

45 / 160

http://www-unix.mcs.anl.gov/~leyffer/macminlp/problems/batch.mod
http://www-unix.mcs.anl.gov/~leyffer/macminlp/problems/batch.mod

A Small Smattering of Other Applications

Chemical Engineering Applications:

process synthesis (Kocis and Grossmann, 1988)
batch plant design (Grossmann and Sargent, 1979)
cyclic scheduling (Jain, V. and Grossmann, I.E., 1998)
design of distillation columns (Viswanathan and Grossmann, 1993)
pump configuration optimization (Westerlund, T., Pettersson, F. and
Grossmann, I.E., 1994)

Forestry/Paper

production (Westerlund, T., Isaksson, J. and Harjunkoski, I., 1995)
trimloss minimization (Harjunkoski, I., Westerlund, T., Pörn, R. and
Skrifvars, H., 1998)

Topology Optimization (Sigmund, 2001)

46 / 160

Part II

Classical Solution Methods

47 / 160

Classical Solution Methods for MINLP

1 Classical Branch-and-Bound

2 Outer Approximation & Benders Decomposition
3 Hybrid Methods

LP/NLP Based Branch-and-Bound
Integrating SQP with Branch-and-Bound

48 / 160

Branch-and-Bound

Solve relaxed NLP (0 ≤ y ≤ 1 continuous relaxation)
. . . solution value provides lower bound

Branch on yi non-integral

Solve NLPs & branch until
1 Node infeasible ... •
2 Node integer feasible ... �
⇒ get upper bound (U)

3 Lower bound ≥ U ...
⊗

y = 1

y = 0
i

i

dominated
by upper bound

infeasible

integer feasible
etc.

etc.

Search until no unexplored nodes on tree

49 / 160

Variable Selection for Branch-and-Bound
Assume yi ∈ {0, 1} for simplicity ...
(x̂ , ŷ) fractional solution to parent node; f̂ = f (x̂ , ŷ)

1 maximal fractional branching: choose ŷi closest to 1
2

max
i
{min(1− ŷi , ŷi)}

2 strong branching: (approx) solve all NLP children:

f
+/−
i ←

minimize

x ,y
f (x , y)

subject to c(x , y) ≤ 0
x ∈ X , y ∈ Y , yi = 1/0

branching variable yi that changes objective the most:

max
i

{
min(f +

i , f
−
i)
}

50 / 160

Variable Selection for Branch-and-Bound
Assume yi ∈ {0, 1} for simplicity ...
(x̂ , ŷ) fractional solution to parent node; f̂ = f (x̂ , ŷ)

1 maximal fractional branching: choose ŷi closest to 1
2

max
i
{min(1− ŷi , ŷi)}

2 strong branching: (approx) solve all NLP children:

f
+/−
i ←

minimize

x ,y
f (x , y)

subject to c(x , y) ≤ 0
x ∈ X , y ∈ Y , yi = 1/0

branching variable yi that changes objective the most:

max
i

{
min(f +

i , f
−
i)
}

51 / 160

Node Selection for Branch-and-Bound

Which node n on tree T should be solved next?
1 depth-first search: select deepest node in tree

minimizes number of NLP nodes stored
exploit warm-starts (MILP/MIQP only)

2 best estimate: choose node with best expected integer soln

min
n∈T

fp(n) +
∑

i :yi fractional

min
{
e+
i (1− yi), e

−
i yi
}

where fp(n) = value of parent node, e
+/−
i = pseudo-costs

summing pseudo-cost estimates for all integers in subtree

52 / 160

Node Selection for Branch-and-Bound

Which node n on tree T should be solved next?
1 depth-first search: select deepest node in tree

minimizes number of NLP nodes stored
exploit warm-starts (MILP/MIQP only)

2 best estimate: choose node with best expected integer soln

min
n∈T

fp(n) +
∑

i :yi fractional

min
{
e+
i (1− yi), e

−
i yi
}

where fp(n) = value of parent node, e
+/−
i = pseudo-costs

summing pseudo-cost estimates for all integers in subtree

53 / 160

Outer Approximation (Duran and Grossmann, 1986)

Motivation: avoid solving huge number of NLPs
• Exploit MILP/NLP solvers: decompose integer/nonlinear part

Key idea: reformulate MINLP as MILP (implicit)
• Solve alternating sequence of MILP & NLP

NLP subproblem yj fixed:

NLP(yj)

minimize

x
f (x , yj)

subject to c(x , yj) ≤ 0
x ∈ X

Main Assumption: f , c are convex

(y)jNLP

MILP

54 / 160

Outer Approximation (Duran and Grossmann, 1986)

• let (xj , yj) solve NLP(yj)
• linearize f , c about (xj , yj) =: zj
• new objective variable η ≥ f (x , y)
• MINLP (P) ≡ MILP (M)

f(x)

η

(M)

minimize
z=(x ,y),η

η

subject to η ≥ fj +∇f Tj (z − zj) ∀yj ∈ Y

0 ≥ cj +∇cTj (z − zj) ∀yj ∈ Y

x ∈ X , y ∈ Y integer

SNAG: need all yj ∈ Y linearizations

55 / 160

Outer Approximation (Duran and Grossmann, 1986)

(Mk): lower bound (underestimate convex f , c)
NLP(yj): upper bound U (fixed yj)

NLP() subproblemy
linearization
NLP gives

MILP finds
new y

MILP infeasible?

Yes

STOP

No

MILP master program

⇒ stop, if lower bound ≥ upper bound

56 / 160

Outer Approximation & Benders Decomposition

Take OA cuts for zj := (xj , yj) ... wlog X = Rn

η ≥ fj +∇f Tj (z − zj) & 0 ≥ cj +∇cTj (z − zj)

sum with (1, λj) ... λj multipliers of NLP(yj)

η ≥ fj + λTj cj + (∇fj +∇cjλj)T (z − zj)

KKT conditions of NLP(yj) ⇒ ∇x fj +∇xcjλj = 0
... eliminate x components from valid inequality in y

⇒ η ≥ fj + (∇y fj +∇ycjλj)
T (y − yj)

NB: µj = ∇y fj +∇ycjλj multiplier of y = yj in NLP(yj)
References: (Geoffrion, 1972)

57 / 160

LP/NLP Based Branch-and-Bound

AIM: avoid re-solving MILP master (M)

Consider MILP branch-and-bound

interrupt MILP, when yj found
⇒ solve NLP(yj) get xj

linearize f , c about (xj , yj)
⇒ add linearization to tree

continue MILP tree-search

... until lower bound ≥ upper bound

58 / 160

LP/NLP Based Branch-and-Bound

AIM: avoid re-solving MILP master (M)

Consider MILP branch-and-bound

interrupt MILP, when yj found
⇒ solve NLP(yj) get xj

linearize f , c about (xj , yj)
⇒ add linearization to tree

continue MILP tree-search

integer
feasible

... until lower bound ≥ upper bound

59 / 160

LP/NLP Based Branch-and-Bound

AIM: avoid re-solving MILP master (M)

Consider MILP branch-and-bound

interrupt MILP, when yj found
⇒ solve NLP(yj) get xj

linearize f , c about (xj , yj)
⇒ add linearization to tree

continue MILP tree-search

... until lower bound ≥ upper bound

60 / 160

LP/NLP Based Branch-and-Bound

AIM: avoid re-solving MILP master (M)

Consider MILP branch-and-bound

interrupt MILP, when yj found
⇒ solve NLP(yj) get xj

linearize f , c about (xj , yj)
⇒ add linearization to tree

continue MILP tree-search

... until lower bound ≥ upper bound

61 / 160

LP/NLP Based Branch-and-Bound

need access to MILP solver ... call back
◦ exploit good MILP (branch-cut-price) solver
◦ (Akrotirianakis et al., 2001) use Gomory cuts in tree-search

preliminary results: order of magnitude faster than OA
◦ same number of NLPs, but only one MILP

similar ideas for Benders & Extended Cutting Plane methods

recent implementation by CMU/IBM group

References: (Quesada and Grossmann, 1992)

62 / 160

Integrating SQP & Branch-and-Bound

AIM: Avoid solving NLP node to convergence.

Sequential Quadratic Programming (SQP)
→ solve sequence (QPk) at every node

(QPk)

minimize

d
fk +∇f Tk d + 1

2d
THkd

subject to ck +∇cTk d ≤ 0
xk + dx ∈ X

yk + dy ∈ Ŷ .

Early branching:
After QP step choose non-integral yk+1

i , branch & continue SQP
References: (Borchers and Mitchell, 1994; Leyffer, 2001)

63 / 160

Integrating SQP & Branch-and-Bound

SNAG: (QPk) not lower bound
⇒ no fathoming from upper bound

minimize
d

fk +∇f Tk d + 1
2d

THkd

subject to ck +∇cTk d ≤ 0
xk + dx ∈ X

yk + dy ∈ Ŷ .

Remedy: Exploit OA underestimating property (Leyffer, 2001):

add objective cut fk +∇f Tk d ≤ U − ε to (QPk)

fathom node, if (QPk) inconsistent

NB: (QPk) inconsistent and trust-region active ⇒ do not fathom

64 / 160

Integrating SQP & Branch-and-Bound

SNAG: (QPk) not lower bound
⇒ no fathoming from upper bound

minimize
d

fk +∇f Tk d + 1
2d

THkd

subject to ck +∇cTk d ≤ 0
xk + dx ∈ X

yk + dy ∈ Ŷ .

Remedy: Exploit OA underestimating property (Leyffer, 2001):

add objective cut fk +∇f Tk d ≤ U − ε to (QPk)

fathom node, if (QPk) inconsistent

NB: (QPk) inconsistent and trust-region active ⇒ do not fathom

65 / 160

Comparison of Classical MINLP Techniques

Summary of numerical experience

1 Quadratic OA master: usually fewer iteration
MIQP harder to solve

2 NLP branch-and-bound faster than OA
... depends on MIP solver

3 LP/NLP-based-BB order of magnitude faster than OA
. . . also faster than B&B

4 Integrated SQP-B&B up to 3× faster than B&B
' number of QPs per node

5 ECP works well, if function/gradient evals expensive

66 / 160

Part III

Modern Developments in MINLP

67 / 160

Modern Methods for MINLP

1 Formulations

Relaxations
Good formulations: big M ′s and disaggregation

2 Cutting Planes

Cuts from relaxations and special structures
Cuts from integrality

3 Handling Nonconvexity

Envelopes
Methods

68 / 160

Relaxations

z(S)
def
= minx∈S f (x)

z(T)
def
= minx∈T f (x)

S

T

Independent of f , S ,T :
z(T) ≤ z(S)

If x∗T = arg minx∈T f (x)

And x∗T ∈ S , then

x∗T = arg minx∈S f (x)

69 / 160

Relaxations

z(S)
def
= minx∈S f (x)

z(T)
def
= minx∈T f (x)

S

T

Independent of f , S ,T :
z(T) ≤ z(S)

If x∗T = arg minx∈T f (x)

And x∗T ∈ S , then

x∗T = arg minx∈S f (x)

70 / 160

Relaxations

z(S)
def
= minx∈S f (x)

z(T)
def
= minx∈T f (x)

S

T

Independent of f , S ,T :
z(T) ≤ z(S)

If x∗T = arg minx∈T f (x)

And x∗T ∈ S , then

x∗T = arg minx∈S f (x)

71 / 160

UFL: Uncapacitated Facility Location
Facilities: J

Customers: I
min

∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

fijyij

∑
j∈J

yij = 1 ∀i ∈ I∑
i∈I

yij ≤ |I |xj ∀j ∈ J (1)

OR yij ≤ xj ∀i ∈ I , j ∈ J (2)

Which formulation is to be preferred?

I = J = 40. Costs random.

Formulation 1. 53,121 seconds, optimal solution.
Formulation 2. 2 seconds, optimal solution.

72 / 160

UFL: Uncapacitated Facility Location
Facilities: J

Customers: I
min

∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

fijyij

∑
j∈J

yij = 1 ∀i ∈ I∑
i∈I

yij ≤ |I |xj ∀j ∈ J (1)

OR yij ≤ xj ∀i ∈ I , j ∈ J (2)

Which formulation is to be preferred?

I = J = 40. Costs random.

Formulation 1. 53,121 seconds, optimal solution.
Formulation 2. 2 seconds, optimal solution.

73 / 160

UFL: Uncapacitated Facility Location
Facilities: J

Customers: I
min

∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

fijyij

∑
j∈J

yij = 1 ∀i ∈ I∑
i∈I

yij ≤ |I |xj ∀j ∈ J (1)

OR yij ≤ xj ∀i ∈ I , j ∈ J (2)

Which formulation is to be preferred?

I = J = 40. Costs random.

Formulation 1. 53,121 seconds, optimal solution.
Formulation 2. 2 seconds, optimal solution.

74 / 160

UFL: Uncapacitated Facility Location
Facilities: J

Customers: I
min

∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

fijyij

∑
j∈J

yij = 1 ∀i ∈ I∑
i∈I

yij ≤ |I |xj ∀j ∈ J (1)

OR yij ≤ xj ∀i ∈ I , j ∈ J (2)

Which formulation is to be preferred?

I = J = 40. Costs random.

Formulation 1. 53,121 seconds, optimal solution.
Formulation 2. 2 seconds, optimal solution.

75 / 160

Valid Inequalities

Sometimes we can get a better formulation by dynamically
improving it.

An inequality πT x ≤ π0 is a valid inequality for S if
πT x ≤ π0 ∀x ∈ S

Alternatively: maxx∈S{πT x} ≤ π0

Thm: (Hahn-Banach). Let S ⊂ Rn be
a closed, convex set, and let x̂ 6∈ S .
Then there exists π ∈ Rn such that

πT x̂ > max
x∈S
{πT x} S

x̂πTx = π0

76 / 160

Valid Inequalities

Sometimes we can get a better formulation by dynamically
improving it.

An inequality πT x ≤ π0 is a valid inequality for S if
πT x ≤ π0 ∀x ∈ S

Alternatively: maxx∈S{πT x} ≤ π0

Thm: (Hahn-Banach). Let S ⊂ Rn be
a closed, convex set, and let x̂ 6∈ S .
Then there exists π ∈ Rn such that

πT x̂ > max
x∈S
{πT x} S

x̂πTx = π0

77 / 160

Nonlinear Branch-and-Cut

Consider MINLP
minimize

x ,y
f Tx x + f Ty y

subject to c(x , y) ≤ 0
y ∈ {0, 1}p, 0 ≤ x ≤ U

Note the Linear objective

This is WLOG:

min f (x , y) ⇔ min η s.t. η ≥ f (x , y)

78 / 160

It’s Actually Important!

We want to approximate the convex hull of integer solutions, but
without a linear objective function, the solution to the relaxation
might occur in the interior.

No Separating Hyperplane! :-(

min(y1 − 1/2)2 + (y2 − 1/2)2

s.t. y1 ∈ {0, 1}, y2 ∈ {0, 1}

η ≥ (y1 − 1/2)2 + (y2 − 1/2)2

y1

y2

(ŷ1, ŷ2)

79 / 160

It’s Actually Important!

We want to approximate the convex hull of integer solutions, but
without a linear objective function, the solution to the relaxation
might occur in the interior.

No Separating Hyperplane! :-(

min(y1 − 1/2)2 + (y2 − 1/2)2

s.t. y1 ∈ {0, 1}, y2 ∈ {0, 1}

η ≥ (y1 − 1/2)2 + (y2 − 1/2)2

y1

y2

(ŷ1, ŷ2)

η

80 / 160

Valid Inequalities From Relaxations

Idea: Inequalities valid for a relaxation are valid for original

Generating valid inequalities for a relaxation is often easier.

T

S
x̂

π
T
x

=
π

0

Separation Problem over T:
Given x̂ ,T find (π, π0) such
that πT x̂ > π0,
πT x ≤ π0∀x ∈ T

81 / 160

Simple Relaxations

Idea: Consider one row relaxations

If P = {x ∈ {0, 1}n | Ax ≤ b}, then for any row i ,
Pi = {x ∈ {0, 1}n | aTi x ≤ bi} is a relaxation of P.

If the intersection of the relaxations is a good approximation to the
true problem, then the inequalities will be quite useful.

Crowder et al. (1983) is the seminal paper that shows this to be true
for IP.

MINLP: Single (linear) row relaxations are also valid ⇒ same
inequalities can also be used

82 / 160

Simple Relaxations

Idea: Consider one row relaxations

If P = {x ∈ {0, 1}n | Ax ≤ b}, then for any row i ,
Pi = {x ∈ {0, 1}n | aTi x ≤ bi} is a relaxation of P.

If the intersection of the relaxations is a good approximation to the
true problem, then the inequalities will be quite useful.

Crowder et al. (1983) is the seminal paper that shows this to be true
for IP.

MINLP: Single (linear) row relaxations are also valid ⇒ same
inequalities can also be used

83 / 160

Simple Relaxations

Idea: Consider one row relaxations

If P = {x ∈ {0, 1}n | Ax ≤ b}, then for any row i ,
Pi = {x ∈ {0, 1}n | aTi x ≤ bi} is a relaxation of P.

If the intersection of the relaxations is a good approximation to the
true problem, then the inequalities will be quite useful.

Crowder et al. (1983) is the seminal paper that shows this to be true
for IP.

MINLP: Single (linear) row relaxations are also valid ⇒ same
inequalities can also be used

84 / 160

Simple Relaxations

Idea: Consider one row relaxations

If P = {x ∈ {0, 1}n | Ax ≤ b}, then for any row i ,
Pi = {x ∈ {0, 1}n | aTi x ≤ bi} is a relaxation of P.

If the intersection of the relaxations is a good approximation to the
true problem, then the inequalities will be quite useful.

Crowder et al. (1983) is the seminal paper that shows this to be true
for IP.

MINLP: Single (linear) row relaxations are also valid ⇒ same
inequalities can also be used

85 / 160

Simple Relaxations

Idea: Consider one row relaxations

If P = {x ∈ {0, 1}n | Ax ≤ b}, then for any row i ,
Pi = {x ∈ {0, 1}n | aTi x ≤ bi} is a relaxation of P.

If the intersection of the relaxations is a good approximation to the
true problem, then the inequalities will be quite useful.

Crowder et al. (1983) is the seminal paper that shows this to be true
for IP.

MINLP: Single (linear) row relaxations are also valid ⇒ same
inequalities can also be used

86 / 160

Knapsack Covers

K = {x ∈ {0, 1}n | aT x ≤ b}

A set C ⊆ N is a cover if
∑

j∈C aj > b

A cover C is a minimal cover if C \ j is not a cover ∀j ∈ C

If C ⊆ N is a cover, then the cover inequality∑
j∈C

xj ≤ |C | − 1

is a valid inequality for S

Sometimes (minimal) cover inequalities are facets of conv(K)

87 / 160

Knapsack Covers

K = {x ∈ {0, 1}n | aT x ≤ b}

A set C ⊆ N is a cover if
∑

j∈C aj > b

A cover C is a minimal cover if C \ j is not a cover ∀j ∈ C

If C ⊆ N is a cover, then the cover inequality∑
j∈C

xj ≤ |C | − 1

is a valid inequality for S

Sometimes (minimal) cover inequalities are facets of conv(K)

88 / 160

Other Substructures

Single node flow: (Padberg et al., 1985)

S =

x ∈ R|N|+ , y ∈ {0, 1}|N| |
∑
j∈N

xj ≤ b, xj ≤ ujyj ∀ j ∈ N

Knapsack with single continuous variable: (Marchand and Wolsey,

1999)

S =

x ∈ R+, y ∈ {0, 1}|N| |
∑
j∈N

ajyj ≤ b + x

Set Packing: (Borndörfer and Weismantel, 2000)

S =
{
y ∈ {0, 1}|N| | Ay ≤ e

}
A ∈ {0, 1}|M|×|N|, e = (1, 1, . . . , 1)T

89 / 160

The Chvátal-Gomory Procedure

A general procedure for generating valid inequalities for integer
programs

Let the columns of A ∈ Rm×n be denoted by {a1, a2, . . . an}
S = {y ∈ Zn

+ | Ay ≤ b}.
1 Choose nonnegative multipliers u ∈ Rm

+
2 uTAy ≤ uTb is a valid inequality (

∑
j∈N uTajyj ≤ uTb).

3
∑

j∈NbuTajcyj ≤ uTb (Since y ≥ 0).
4
∑

j∈NbuTajcyj ≤ buTbc is valid for S since buTajcyj is an integer

Simply Amazing: This simple procedure suffices to generate every
valid inequality for an integer program

90 / 160

The Chvátal-Gomory Procedure

A general procedure for generating valid inequalities for integer
programs

Let the columns of A ∈ Rm×n be denoted by {a1, a2, . . . an}
S = {y ∈ Zn

+ | Ay ≤ b}.
1 Choose nonnegative multipliers u ∈ Rm

+
2 uTAy ≤ uTb is a valid inequality (

∑
j∈N uTajyj ≤ uTb).

3
∑

j∈NbuTajcyj ≤ uTb (Since y ≥ 0).
4
∑

j∈NbuTajcyj ≤ buTbc is valid for S since buTajcyj is an integer

Simply Amazing: This simple procedure suffices to generate every
valid inequality for an integer program

91 / 160

The Chvátal-Gomory Procedure

A general procedure for generating valid inequalities for integer
programs

Let the columns of A ∈ Rm×n be denoted by {a1, a2, . . . an}
S = {y ∈ Zn

+ | Ay ≤ b}.
1 Choose nonnegative multipliers u ∈ Rm

+
2 uTAy ≤ uTb is a valid inequality (

∑
j∈N uTajyj ≤ uTb).

3
∑

j∈NbuTajcyj ≤ uTb (Since y ≥ 0).
4
∑

j∈NbuTajcyj ≤ buTbc is valid for S since buTajcyj is an integer

Simply Amazing: This simple procedure suffices to generate every
valid inequality for an integer program

92 / 160

Extension to MINLP (Çezik and Iyengar, 2005)

This simple idea also extends to mixed 0-1 conic programming
minimize
z
def
= (x ,y)

f T z

subject to Az �K b
y ∈ {0, 1}p, 0 ≤ x ≤ U

K: Homogeneous, self-dual, proper, convex cone

x �K y ⇔ (x − y) ∈ K

93 / 160

Gomory On Cones (Çezik and Iyengar, 2005)

LP: Kl = Rn
+

SOCP: Kq = {(x0, x̄) | x0 ≥ ‖x̄‖}
SDP: Ks = {x = vec(X) | X = XT ,X p.s.d}

Dual Cone: K∗ def
= {u | uT z ≥ 0 ∀z ∈ K}

Extension is clear from the following equivalence:

Az �K b ⇔ uTAz ≥ uTb ∀u �K∗ 0

Many classes of nonlinear inequalities can be represented as

Ax �Kq b or Ax �Ks b

94 / 160

Gomory On Cones (Çezik and Iyengar, 2005)

LP: Kl = Rn
+

SOCP: Kq = {(x0, x̄) | x0 ≥ ‖x̄‖}
SDP: Ks = {x = vec(X) | X = XT ,X p.s.d}

Dual Cone: K∗ def
= {u | uT z ≥ 0 ∀z ∈ K}

Extension is clear from the following equivalence:

Az �K b ⇔ uTAz ≥ uTb ∀u �K∗ 0

Many classes of nonlinear inequalities can be represented as

Ax �Kq b or Ax �Ks b

95 / 160

Gomory On Cones (Çezik and Iyengar, 2005)

LP: Kl = Rn
+

SOCP: Kq = {(x0, x̄) | x0 ≥ ‖x̄‖}
SDP: Ks = {x = vec(X) | X = XT ,X p.s.d}

Dual Cone: K∗ def
= {u | uT z ≥ 0 ∀z ∈ K}

Extension is clear from the following equivalence:

Az �K b ⇔ uTAz ≥ uTb ∀u �K∗ 0

Many classes of nonlinear inequalities can be represented as

Ax �Kq b or Ax �Ks b

96 / 160

Using Gomory Cuts in MINLP (Akrotirianakis et al., 2001)

LP/NLP Based Branch-and-Bound solves MILP instances:
minimize
z
def
= (x ,y),η

η

subject to η ≥ fj +∇f Tj (z − zj) ∀yj ∈ Y k

0 ≥ cj +∇cTj (z − zj) ∀yj ∈ Y k

x ∈ X , y ∈ Y integer

Create Gomory mixed integer cuts from

η ≥ fj +∇f Tj (z − zj)

0 ≥ cj +∇cTj (z − zj)

Akrotirianakis et al. (2001) shows modest improvements

Research Question: Other cut classes?

Research Question: Exploit “outer approximation” property?

97 / 160

Using Gomory Cuts in MINLP (Akrotirianakis et al., 2001)

LP/NLP Based Branch-and-Bound solves MILP instances:
minimize
z
def
= (x ,y),η

η

subject to η ≥ fj +∇f Tj (z − zj) ∀yj ∈ Y k

0 ≥ cj +∇cTj (z − zj) ∀yj ∈ Y k

x ∈ X , y ∈ Y integer

Create Gomory mixed integer cuts from

η ≥ fj +∇f Tj (z − zj)

0 ≥ cj +∇cTj (z − zj)

Akrotirianakis et al. (2001) shows modest improvements

Research Question: Other cut classes?

Research Question: Exploit “outer approximation” property?

98 / 160

Using Gomory Cuts in MINLP (Akrotirianakis et al., 2001)

LP/NLP Based Branch-and-Bound solves MILP instances:
minimize
z
def
= (x ,y),η

η

subject to η ≥ fj +∇f Tj (z − zj) ∀yj ∈ Y k

0 ≥ cj +∇cTj (z − zj) ∀yj ∈ Y k

x ∈ X , y ∈ Y integer

Create Gomory mixed integer cuts from

η ≥ fj +∇f Tj (z − zj)

0 ≥ cj +∇cTj (z − zj)

Akrotirianakis et al. (2001) shows modest improvements

Research Question: Other cut classes?

Research Question: Exploit “outer approximation” property?

99 / 160

Disjunctive Cuts for MINLP (Stubbs and Mehrotra, 1999)

Extension of Disjunctive Cuts for MILP: (Balas, 1979; Balas et al., 1993)

Continuous relaxation (z
def
= (x , y))

C
def
= {z |c(z) ≤ 0, 0 ≤ y ≤ 1, 0 ≤ x ≤ U}

C def
= conv({x ∈ C | y ∈ {0, 1}p})

C
0/1
j

def
= {z ∈ C |yj = 0/1}

letMj(C)
def
=

z = λ0u0 + λ1u1

λ0 + λ1 = 1, λ0, λ1 ≥ 0
u0 ∈ C 0

j , u1 ∈ C 1
j

⇒ Pj(C) := projection of Mj(C) onto z

y

x

continuous
relaxation

⇒ Pj(C) = conv (C ∩ yj ∈ {0, 1}) and P1...p(C) = C

100 / 160

Disjunctive Cuts for MINLP (Stubbs and Mehrotra, 1999)

Extension of Disjunctive Cuts for MILP: (Balas, 1979; Balas et al., 1993)

Continuous relaxation (z
def
= (x , y))

C
def
= {z |c(z) ≤ 0, 0 ≤ y ≤ 1, 0 ≤ x ≤ U}

C def
= conv({x ∈ C | y ∈ {0, 1}p})

C
0/1
j

def
= {z ∈ C |yj = 0/1}

letMj(C)
def
=

z = λ0u0 + λ1u1

λ0 + λ1 = 1, λ0, λ1 ≥ 0
u0 ∈ C 0

j , u1 ∈ C 1
j

⇒ Pj(C) := projection of Mj(C) onto z

y

x

convex
hull

⇒ Pj(C) = conv (C ∩ yj ∈ {0, 1}) and P1...p(C) = C

101 / 160

Disjunctive Cuts for MINLP (Stubbs and Mehrotra, 1999)

Extension of Disjunctive Cuts for MILP: (Balas, 1979; Balas et al., 1993)

Continuous relaxation (z
def
= (x , y))

C
def
= {z |c(z) ≤ 0, 0 ≤ y ≤ 1, 0 ≤ x ≤ U}

C def
= conv({x ∈ C | y ∈ {0, 1}p})

C
0/1
j

def
= {z ∈ C |yj = 0/1}

letMj(C)
def
=

z = λ0u0 + λ1u1

λ0 + λ1 = 1, λ0, λ1 ≥ 0
u0 ∈ C 0

j , u1 ∈ C 1
j

⇒ Pj(C) := projection of Mj(C) onto z

y

x

integer
feasible

set

⇒ Pj(C) = conv (C ∩ yj ∈ {0, 1}) and P1...p(C) = C

102 / 160

Disjunctive Cuts: Example

minimize
x ,y

{
x | (x − 1/2)2 + (y − 3/4)2 ≤ 1,−2 ≤ x ≤ 2, y ∈ {0, 1}

}

C 0
j C 1

j

ẑ = (x̂ , ŷ)

y

x
Given ẑ with ŷj 6∈ {0, 1} find separating
hyperplane

⇒

{
minimize

z
‖z − ẑ‖

subject to z ∈ Pj(C)

103 / 160

Disjunctive Cuts Example
C 0
j C 1

j

ẑ = (x̂ , ŷ)

z∗

z∗
def
= arg min ‖z − ẑ‖

s.t. λ0u0 + λ1u1 = z
λ0 + λ1 = 1(

−0.16
0

)
≤ u0 ≤

(
0.66

1

)
(
−0.47

0

)
≤ u1 ≤

(
1.47

1

)
λ0, λ1 ≥ 0

NONCONVEX

104 / 160

Disjunctive Cuts Example
C 0
j C 1

j

ẑ = (x̂ , ŷ)

z∗

z∗
def
= arg min ‖z − ẑ‖2

2

s.t. λ0u0 + λ1u1 = z
λ0 + λ1 = 1(

−0.16
0

)
≤ u0 ≤

(
0.66

1

)
(
−0.47

0

)
≤ u1 ≤

(
1.47

1

)
λ0, λ1 ≥ 0

NONCONVEX

105 / 160

Disjunctive Cuts Example
C 0
j C 1

j

ẑ = (x̂ , ŷ)

z∗

z∗
def
= arg min ‖z − ẑ‖∞

s.t. λ0u0 + λ1u1 = z
λ0 + λ1 = 1(

−0.16
0

)
≤ u0 ≤

(
0.66

1

)
(
−0.47

0

)
≤ u1 ≤

(
1.47

1

)
λ0, λ1 ≥ 0

NONCONVEX

106 / 160

Disjunctive Cuts Example
C 0
j C 1

j

ẑ = (x̂ , ŷ)

z∗

z∗
def
= arg min ‖z − ẑ‖

s.t. λ0u0 + λ1u1 = z
λ0 + λ1 = 1(

−0.16
0

)
≤ u0 ≤

(
0.66

1

)
(
−0.47

0

)
≤ u1 ≤

(
1.47

1

)
λ0, λ1 ≥ 0

NONCONVEX

107 / 160

What to do? (Stubbs and Mehrotra, 1999)

Look at the perspective of c(z)

P(c(z̃), µ) = µc(z̃/µ)

Think of z̃ = µz

Perspective gives a convex reformulation of Mj(C): Mj(C̃), where

C̃ :=

(z , µ)

∣∣∣∣∣∣
µci (z/µ) ≤ 0
0 ≤ µ ≤ 1
0 ≤ x ≤ µU, 0 ≤ y ≤ µ

c(0/0) = 0 ⇒ convex representation

108 / 160

What to do? (Stubbs and Mehrotra, 1999)

Look at the perspective of c(z)

P(c(z̃), µ) = µc(z̃/µ)

Think of z̃ = µz

Perspective gives a convex reformulation of Mj(C): Mj(C̃), where

C̃ :=

(z , µ)

∣∣∣∣∣∣
µci (z/µ) ≤ 0
0 ≤ µ ≤ 1
0 ≤ x ≤ µU, 0 ≤ y ≤ µ

c(0/0) = 0 ⇒ convex representation

109 / 160

Disjunctive Cuts Example

C̃ =

 x

y
µ

∣∣∣∣∣∣∣∣
µ
[
(x/µ− 1/2)2 + (y/µ− 3/4)2 − 1

]
≤ 0

−2µ ≤ x ≤ 2µ
0 ≤ y ≤ µ
0 ≤ µ ≤ 1

C 0
j C 1

j y

x

µ

C 0
j

C 1
jy

x

µ

C 0
j

C 1
j

y

x

µ

110 / 160

Example, cont.

C̃ 0
j = {(z , µ) | yj = 0} C̃ 1

j = {(z , µ) | yj = µ}

Take v0 ← µ0u0 v1 ← µ1u1

min ‖z − ẑ‖

s.t. v0 + v1 = z
µ0 + µ1 = 1
(v0, µ0) ∈ C̃ 0

j

(v1, µ1) ∈ C̃ 1
j

µ0, µ1 ≥ 0

Solution to example:(
x∗

y∗

)
=

(
−0.401
0.780

)

separating hyperplane: ψT (z − ẑ), where ψ ∈ ∂‖z − ẑ‖

111 / 160

Example, cont.

C̃ 0
j = {(z , µ) | yj = 0} C̃ 1

j = {(z , µ) | yj = µ}

Take v0 ← µ0u0 v1 ← µ1u1

min ‖z − ẑ‖

s.t. v0 + v1 = z
µ0 + µ1 = 1
(v0, µ0) ∈ C̃ 0

j

(v1, µ1) ∈ C̃ 1
j

µ0, µ1 ≥ 0

Solution to example:(
x∗

y∗

)
=

(
−0.401
0.780

)

separating hyperplane: ψT (z − ẑ), where ψ ∈ ∂‖z − ẑ‖

112 / 160

Example, Cont.C 0
j C 1

j

ẑ = (x̂ , ŷ)

z∗

0.198x + 0.061y = −0.032

ψ =

(
2x∗ + 0.5

2y∗ − 0.75

)
0.198x + 0.061y ≥ −0.032

113 / 160

Nonlinear Branch-and-Cut (Stubbs and Mehrotra, 1999)

Can do this at all nodes of the branch-and-bound tree

Generalize disjunctive approach from MILP

solve one convex NLP per cut

Generalizes Sherali and Adams (1990) and Lovász and Schrijver
(1991)

tighten cuts by adding semi-definite constraint

Stubbs and Mehrohtra (2002) also show how to generate convex
quadratic inequalities, but computational results are not that
promising

114 / 160

Generalized Disjunctive Programming (Raman and Grossmann,

1994; Lee and Grossmann, 2000)

Consider disjunctive NLP

minimize
x ,Y

∑
fi + f (x)

subject to

 Yi

ci (x) ≤ 0
fi = γi

∨ ¬Yi

Bix = 0
fi = 0

∀i ∈ I

0 ≤ x ≤ U, Ω(Y) = true, Y ∈ {true, false}p

Application: process synthesis
• Yi represents presence/absence of units
• Bix = 0 eliminates variables if unit absent
Exploit disjunctive structure
• special branching ... OA/GBD algorithms

115 / 160

Generalized Disjunctive Programming (Raman and Grossmann,

1994; Lee and Grossmann, 2000)

Consider disjunctive NLP

minimize
x ,Y

∑
fi + f (x)

subject to

 Yi

ci (x) ≤ 0
fi = γi

∨ ¬Yi

Bix = 0
fi = 0

∀i ∈ I

0 ≤ x ≤ U, Ω(Y) = true, Y ∈ {true, false}p

Big-M formulation (notoriously bad), M > 0:

ci (x) ≤ M(1− yi)
−Myi ≤ Bix ≤ Myi
fi = yiγi Ω(Y) converted to linear inequalities

116 / 160

Generalized Disjunctive Programming (Raman and Grossmann,

1994; Lee and Grossmann, 2000)

Consider disjunctive NLP

minimize
x ,Y

∑
fi + f (x)

subject to

 Yi

ci (x) ≤ 0
fi = γi

∨ ¬Yi

Bix = 0
fi = 0

∀i ∈ I

0 ≤ x ≤ U, Ω(Y) = true, Y ∈ {true, false}p

convex hull representation ...

x = vi1 + vi0, λi1 + λi0 = 1
λi1ci (vi1/λi1) ≤ 0, Bivi0 = 0
0 ≤ vij ≤ λijU, 0 ≤ λij ≤ 1, fi = λi1γi

117 / 160

Dealing with Nonconvexities

Functional nonconvexity causes
serious problems.

Branch and bound must have
true lower bound (global
solution)

Underestimate nonconvex
functions. Solve relaxation.
Provides lower bound.

If relaxation is not exact, then
branch

118 / 160

Dealing with Nonconvexities

Functional nonconvexity causes
serious problems.

Branch and bound must have
true lower bound (global
solution)

Underestimate nonconvex
functions. Solve relaxation.
Provides lower bound.

If relaxation is not exact, then
branch

119 / 160

Dealing with Nonconvexities

Functional nonconvexity causes
serious problems.

Branch and bound must have
true lower bound (global
solution)

Underestimate nonconvex
functions. Solve relaxation.
Provides lower bound.

If relaxation is not exact, then
branch

120 / 160

Dealing with Nonconvex Constraints

If nonconvexity in constraints,
may need to overestimate and
underestimate the function to
get a convex region

121 / 160

Envelopes

f : Ω→ R

Convex Envelope (vexΩ(f)):
Pointwise supremum of convex
underestimators of f over Ω.

Concave Envelope (cavΩ(f)):
Pointwise infimum of concave
overestimators of f over Ω.

122 / 160

Envelopes

f : Ω→ R

Convex Envelope (vexΩ(f)):
Pointwise supremum of convex
underestimators of f over Ω.

Concave Envelope (cavΩ(f)):
Pointwise infimum of concave
overestimators of f over Ω.

123 / 160

Branch-and-Bound Global Optimization Methods

Under/Overestimate “simple” parts of (Factorable) Functions
individually

Bilinear Terms
Trilinear Terms
Fractional Terms
Univariate convex/concave terms

General nonconvex functions f (x) can be underestimated over a
region [l , u] “overpowering” the function with a quadratic function
that is ≤ 0 on the region of interest

L(x) = f (x) +
n∑

i=1

αi (li − xi)(ui − xi)

Refs: (McCormick, 1976; Adjiman et al., 1998; Tawarmalani and
Sahinidis, 2002)

124 / 160

Branch-and-Bound Global Optimization Methods

Under/Overestimate “simple” parts of (Factorable) Functions
individually

Bilinear Terms
Trilinear Terms
Fractional Terms
Univariate convex/concave terms

General nonconvex functions f (x) can be underestimated over a
region [l , u] “overpowering” the function with a quadratic function
that is ≤ 0 on the region of interest

L(x) = f (x) +
n∑

i=1

αi (li − xi)(ui − xi)

Refs: (McCormick, 1976; Adjiman et al., 1998; Tawarmalani and
Sahinidis, 2002)

125 / 160

Bilinear Terms

The convex and concave envelopes of the bilinear function xy over a
rectangular region

R
def
= {(x , y) ∈ R2 | lx ≤ x ≤ ux , ly ≤ y ≤ uy}

are given by the expressions

vexxyR(x , y) = max{lyx + lxy − lx ly , uyx + uxy − uxuy}
cavxyR(x , y) = min{uyx + lxy − lxuy , lyx + uxy − ux ly}

126 / 160

Worth 1000 Words?
xy

127 / 160

Worth 1000 Words?
vexR(xy)

128 / 160

Worth 1000 Words?
cavR(xy)

129 / 160

Summary

MINLP: Good relaxations are important

Relaxations can be improved

Statically: Better formulation/preprocessing
Dynamically: Cutting planes

Nonconvex MINLP:

Methods exist, again based on relaxations

Tight relaxations is an active area of research

Lots of empirical questions remain

130 / 160

Part IV

Implementation and Software

131 / 160

Implementation and Software for MINLP

1 Special Ordered Sets

2 Implementation & Software Issues

132 / 160

Special Ordered Sets of Type 1

SOS1:
∑
λi = 1 & at most one λi is nonzero

Example 1: d ∈ {d1, . . . , dp} discrete diameters

⇔ d =
∑
λidi and {λ1, . . . , λp} is SOS1

⇔ d =
∑
λidi and

∑
λi = 1 and λi ∈ {0, 1}

. . . d is convex combination with coefficients λi

Example 2: nonlinear function c(y) of single integer

⇔ y =
∑

iλi and c =
∑

c(i)λi and {λ1, . . . , λp} is SOS1

References: (Beale, 1979; Nemhauser, G.L. and Wolsey, L.A., 1988;
Williams, 1993) . . .

133 / 160

Special Ordered Sets of Type 1

SOS1:
∑
λi = 1 & at most one λi is nonzero

Branching on SOS1

1 reference row a1 < . . . < ap
e.g. diameters

2 fractionality: a :=
∑

aiλi

3 find t : at < a ≤ at+1

4 branch: {λt+1, . . . , λp} = 0
or {λ1, . . . , λt} = 0

a < a
t

a > a
t+1

134 / 160

Special Ordered Sets of Type 1

SOS1:
∑
λi = 1 & at most one λi is nonzero

Branching on SOS1

1 reference row a1 < . . . < ap
e.g. diameters

2 fractionality: a :=
∑

aiλi
3 find t : at < a ≤ at+1

4 branch: {λt+1, . . . , λp} = 0
or {λ1, . . . , λt} = 0 a < a

t
a > a

t+1

135 / 160

Special Ordered Sets of Type 2

SOS2:
∑
λi = 1 & at most two adjacent λi nonzero

Example: Approximation of nonlinear function z = z(x)

z(x)

x

breakpoints x1 < . . . < xp

function values zi = z(xi)

piece-wise linear

x =
∑
λixi

z =
∑
λizi

{λ1, . . . , λp} is SOS2

. . . convex combination of two breakpoints . . .

136 / 160

Special Ordered Sets of Type 2

SOS2:
∑
λi = 1 & at most two adjacent λi nonzero

Example: Approximation of nonlinear function z = z(x)

z(x)

x

breakpoints x1 < . . . < xp

function values zi = z(xi)

piece-wise linear

x =
∑
λixi

z =
∑
λizi

{λ1, . . . , λp} is SOS2

. . . convex combination of two breakpoints . . .

137 / 160

Special Ordered Sets of Type 2

SOS2:
∑
λi = 1 & at most two adjacent λi nonzero

Branching on SOS2

1 reference row a1 < . . . < ap
e.g. ai = xi

2 fractionality: a :=
∑

aiλi

3 find t : at < a ≤ at+1

4 branch: {λt+1, . . . , λp} = 0
or {λ1, . . . , λt−1}

t
x > ax < a

t

138 / 160

Special Ordered Sets of Type 2

SOS2:
∑
λi = 1 & at most two adjacent λi nonzero

Branching on SOS2

1 reference row a1 < . . . < ap
e.g. ai = xi

2 fractionality: a :=
∑

aiλi
3 find t : at < a ≤ at+1

4 branch: {λt+1, . . . , λp} = 0
or {λ1, . . . , λt−1} t

x > ax < a
t

139 / 160

Special Ordered Sets of Type 3

Example: Approximation of 2D function u = g(v ,w)

Triangularization of [vL, vU]× [wL,wU] domain

1 vL = v1 < . . . < vk = vU
2 wL = w1 < . . . < wl = wU

3 function uij := g(vi ,wj)

4 λij weight of vertex (i , j)

v =
∑
λijvi

w =
∑
λijwj

u =
∑
λijuij

1 =
∑
λij is SOS3 . . .

140 / 160

Special Ordered Sets of Type 3

Example: Approximation of 2D function u = g(v ,w)

Triangularization of [vL, vU]× [wL,wU] domain

1 vL = v1 < . . . < vk = vU
2 wL = w1 < . . . < wl = wU

3 function uij := g(vi ,wj)

4 λij weight of vertex (i , j)

v =
∑
λijvi

w =
∑
λijwj

u =
∑
λijuij

v

w

1 =
∑
λij is SOS3 . . .

141 / 160

Special Ordered Sets of Type 3

Example: Approximation of 2D function u = g(v ,w)

Triangularization of [vL, vU]× [wL,wU] domain

1 vL = v1 < . . . < vk = vU
2 wL = w1 < . . . < wl = wU

3 function uij := g(vi ,wj)

4 λij weight of vertex (i , j)

v =
∑
λijvi

w =
∑
λijwj

u =
∑
λijuij

v

w

1 =
∑
λij is SOS3 . . .

142 / 160

Special Ordered Sets of Type 3

SOS3:
∑
λij = 1 & set condition holds

1 v =
∑
λijvi ... convex combinations

2 w =
∑
λijwj

3 u =
∑
λijuij

{λ11, . . . , λkl} satisfies set condition

⇔ ∃ trangle ∆ : {(i , j) : λij > 0} ⊂ ∆ v

w

violates set condn

i.e. nonzeros in single triangle ∆

143 / 160

Branching on SOS3

λ violates set condition

compute centers:
v̂ =

∑
λijvi &

ŵ =
∑
λijwi

find s, t such that
vs ≤ v̂ < vs+1 &
ws ≤ ŵ < ws+1

branch on v or w

v

w

violates set condn

144 / 160

Branching on SOS3

λ violates set condition

compute centers:
v̂ =

∑
λijvi &

ŵ =
∑
λijwi

find s, t such that
vs ≤ v̂ < vs+1 &
ws ≤ ŵ < ws+1

branch on v or w

vertical branching:
∑
L

λij = 1
∑
R

λij = 1

145 / 160

Branching on SOS3

λ violates set condition

compute centers:
v̂ =

∑
λijvi &

ŵ =
∑
λijwi

find s, t such that
vs ≤ v̂ < vs+1 &
ws ≤ ŵ < ws+1

branch on v or w

horizontal branching:
∑
T

λij = 1
∑
B

λij = 1

146 / 160

Extension to SOS-k

Example: electricity transmission network:

c(x) = 4x1 − x2
2 − 0.2 · x2x4 sin(x3)

(Martin et al., 2005) extend SOS3 to SOSk models for any k
⇒ function with p variables on N grid needs Np λ’s

Alternative (Gatzke, 2005):

exploit computational graph
' automatic differentiation

only need SOS2 & SOS3 ...
replace nonconvex parts

piece-wise polyhedral approx.

147 / 160

Extension to SOS-k

Example: electricity transmission network:

c(x) = 4x1 − x2
2 − 0.2 · x2x4 sin(x3)

(Martin et al., 2005) extend SOS3 to SOSk models for any k
⇒ function with p variables on N grid needs Np λ’s

Alternative (Gatzke, 2005):

exploit computational graph
' automatic differentiation

only need SOS2 & SOS3 ...
replace nonconvex parts

piece-wise polyhedral approx.

148 / 160

Extension to SOS-k

Example: electricity transmission network:

c(x) = 4x1 − x2
2 − 0.2 · x2x4 sin(x3)

(Martin et al., 2005) extend SOS3 to SOSk models for any k
⇒ function with p variables on N grid needs Np λ’s

Alternative (Gatzke, 2005):

exploit computational graph
' automatic differentiation

only need SOS2 & SOS3 ...
replace nonconvex parts

piece-wise polyhedral approx.

149 / 160

Extension to SOS-k

Example: electricity transmission network:

c(x) = 4x1 − x2
2 − 0.2 · x2x4 sin(x3)

(Martin et al., 2005) extend SOS3 to SOSk models for any k
⇒ function with p variables on N grid needs Np λ’s

Alternative (Gatzke, 2005):

exploit computational graph
' automatic differentiation

only need SOS2 & SOS3 ...
replace nonconvex parts

piece-wise polyhedral approx.

150 / 160

Software for MINLP

Outer Approximation: DICOPT++ (& AIMMS)
NLP solvers: CONOPT, MINOS, SNOPT
MILP solvers: CPLEX, OSL2

Branch-and-Bound Solvers: SBB & MINLP
NLP solvers: CONOPT, MINOS, SNOPT & FilterSQP
variable & node selection; SOS1 & SOS2 support

Global MINLP: BARON & MINOPT underestimators & branching
CPLEX, MINOS, SNOPT, OSL

Online Tools: MINLP World, MacMINLP & NEOS MINLP World
www.gamsworld.org/minlp/

NEOS server www-neos.mcs.anl.gov/

151 / 160

www.gamsworld.org/minlp/
www-neos.mcs.anl.gov/

COIN-OR

http://www.coin-or.org

COmputational INfrastructure for Operations Research

A library of (interoperable) software tools for optimization

A development platform for open source projects in the OR
community

Possibly Relevant Modules:

OSI: Open Solver Interface
CGL: Cut Generation Library
CLP: Coin Linear Programming Toolkit
CBC: Coin Branch and Cut
IPOPT: Interior Point OPTimizer for NLP
NLPAPI: NonLinear Programming API

152 / 160

http://www.coin-or.org

MINLP with COIN-OR

New implementation of LP/NLP based BB

MIP branch-and-cut: CBC & CGL

NLPs: IPOPT interior point ... OK for NLP(yi)

New hybrid method:

solve more NLPs at non-integer yi
⇒ better outer approximation
allow complete MIP at some nodes
⇒ generate new integer assignment

... faster than DICOPT++, SBB

simplifies to OA and BB at extremes ... less efficient

... see Bonami et al. (2005) ... coming in 2006.

153 / 160

Conclusions

MINLP rich modeling paradigm
◦ most popular solver on NEOS

Algorithms for MINLP:
◦ Branch-and-bound (branch-and-cut)
◦ Outer approximation et al.

“MINLP solvers lag 15 years behind MIP solvers”

⇒ many research opportunities!!!

154 / 160

Conclusions

MINLP rich modeling paradigm
◦ most popular solver on NEOS

Algorithms for MINLP:
◦ Branch-and-bound (branch-and-cut)
◦ Outer approximation et al.

“MINLP solvers lag 15 years behind MIP solvers”

⇒ many research opportunities!!!

155 / 160

Part V

References

156 / 160

C. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A global optimization method, aBB,
for general twice-differentiable constrained NLPs - I. Theoretical advances. Computers and
Chemical Engineering, 22:1137–1158, 1998.

I. Akrotirianakis, I. Maros, and B. Rustem. An outer approximation based branch-and-cut
algorithm for convex 0-1 MINLP problems. Optimization Methods and Software, 16:
21–47, 2001.

E. Balas. Disjunctive programming. In Annals of Discrete Mathematics 5: Discrete
Optimization, pages 3–51. North Holland, 1979.

E. Balas, S. Ceria, and G. Corneujols. A lift-and-project cutting plane algorithm for mixed 0-1
programs. Mathematical Programming, 58:295–324, 1993.

E. M. L. Beale. Branch-and-bound methods for mathematical programming systems. Annals
of Discrete Mathematics, 5:201–219, 1979.

P. Bonami, L. Biegler, A. Conn, G. Cornuéjols, I. Grossmann, C. Laird, J. Lee, A. Lodi,
F. Margot, N. Saaya, and A. Wächter. An algorithmic framework for convex mixed integer
nonlinear programs. Technical report, IBM Research Division, Thomas J. Watson Research
Center, 2005.

B. Borchers and J. E. Mitchell. An improved branch and bound algorithm for Mixed Integer
Nonlinear Programming. Computers and Operations Research, 21(4):359–367, 1994.

R. Borndörfer and R. Weismantel. Set packing relaxations of some integer programs.
Mathematical Programming, 88:425 – 450, 2000.

M. T. Çezik and G. Iyengar. Cuts for mixed 0-1 conic programming. Mathematical
Programming, 2005. to appear.

H. Crowder, E. L. Johnson, and M. W. Padberg. Solving large scale zero-one linear
programming problems. Operations Research, 31:803–834, 1983.

157 / 160

D. De Wolf and Y. Smeers. The gas transmission problem solved by an extension of the
simplex algorithm. Management Science, 46:1454–1465, 2000.

M. Duran and I. E. Grossmann. An outer-approximation algorithm for a class of mixed–integer
nonlinear programs. Mathematical Programming, 36:307–339, 1986.

A. M. Geoffrion. Generalized Benders decomposition. Journal of Optimization Theory and
Applications, 10:237–260, 1972.

I. E. Grossmann and R. W. H. Sargent. Optimal design of multipurpose batch plants.
Ind. Engng. Chem. Process Des. Dev., 18:343–348, 1979.

Harjunkoski, I., Westerlund, T., Pörn, R. and Skrifvars, H. Different transformations for
solving non-convex trim-loss problems by MINLP. European Journal of Opertational
Research, 105:594–603, 1998.

Jain, V. and Grossmann, I.E. Cyclic scheduling of continuous parallel-process units with
decaying performance. AIChE Journal, 44:1623–1636, 1998.

G. R. Kocis and I. E. Grossmann. Global optimization of nonconvex mixed–integer nonlinear
programming (MINLP) problems in process synthesis. Industrial Engineering Chemistry
Research, 27:1407–1421, 1988.

S. Lee and I. Grossmann. New algorithms for nonlinear disjunctive programming. Computers
and Chemical Engineering, 24:2125–2141, 2000.

S. Leyffer. Integrating SQP and branch-and-bound for mixed integer nonlinear programming.
Computational Optimization & Applications, 18:295–309, 2001.

L. Lovász and A. Schrijver. Cones of matrices and setfunctions, and 0-1 optimization. SIAM
Journal on Optimization, 1, 1991.

H. Marchand and L. Wolsey. The 0-1 knapsack problem with a single continuous variable.
Mathematical Programming, 85:15–33, 1999.

158 / 160

A. Martin, M. Möller, and S. Moritz. Mixed integer models for the stationary case of gas
network optimization. Technical report, Darmstadt University of Technology, 2005.

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part
I—Convex underestimating problems. Mathematical Programming, 10:147–175, 1976.

Nemhauser, G.L. and Wolsey, L.A. Integer and Combinatorial Optimization. John Wiley,
New York, 1988.

M. Padberg, T. J. Van Roy, and L. Wolsey. Valid linear inequalities for fixed charge problems.
Operations Research, 33:842–861, 1985.

I. Quesada and I. E. Grossmann. An LP/NLP based branch–and–bound algorithm for convex
MINLP optimization problems. Computers and Chemical Engineering, 16:937–947, 1992.

Quist, A.J. Application of Mathematical Optimization Techniques to Nuclear Reactor
Reload Pattern Design. PhD thesis, Technische Universiteit Delft, Thomas Stieltjes
Institute for Mathematics, The Netherlands, 2000.

R. Raman and I. E. Grossmann. Modeling and computational techniques for logic based
integer programming. Computers and Chemical Engineering, 18:563–578, 1994.

H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on Discrete
Mathematics, 3:411–430, 1990.

O. Sigmund. A 99 line topology optimization code written in matlab. Structural
Multidisciplinary Optimization, 21:120–127, 2001.

R. Stubbs and S. Mehrohtra. Generating convex polynomial inequalities for mixed 0-1
programs. Journal of Global Optimization, 24:311–332, 2002.

R. A. Stubbs and S. Mehrotra. A branch–and–cut method for 0–1 mixed convex
programming. Mathematical Programming, 86:515–532, 1999.

159 / 160

M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization in Continuous
and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and
Applications. Kluwer Academic Publishers, Boston MA, 2002.

J. Viswanathan and I. E. Grossmann. Optimal feed location and number of trays for
distillation columns with multiple feeds. I&EC Research, 32:2942–2949, 1993.

Westerlund, T., Isaksson, J. and Harjunkoski, I. Solving a production optimization problem in
the paper industry. Report 95–146–A, Department of Chemical Engineering, Abo Akademi,
Abo, Finland, 1995.

Westerlund, T., Pettersson, F. and Grossmann, I.E. Optimization of pump configurations as
MINLP problem. Computers & Chemical Engineering, 18(9):845–858, 1994.

H. P. Williams. Model Solving in Mathematical Programming. John Wiley & Sons Ltd.,
Chichester, 1993.

160 / 160

	Introduction, Applications, and Formulations
	Motivation
	What
	How
	Why?

	Examples
	Gas Transmission
	Portfolio Management
	Batch Processing

	Tricks
	Variable Transformation

	Classical Solution Methods
	Branch-and-Bound
	Definition

	Outer Approximation
	Definition
	Benders Decomposition

	Hybrid Methods
	LP/NLP Based Branch-and-Bound
	Integrating SQP and Branch-and-Bound

	Modern Developments in MINLP
	Formulations
	Importance of Relaxations
	Aggregation

	Inequalities
	Preliminaries
	MILP Inequalities Applied to MINLP
	Disjunctive Inequalities

	Dealing with Nonconvexity
	Difficulties
	Envelopes
	Bilinear Terms

	Implementation and Software
	Special Ordered Sets
	Special Ordered Sets of Type 1
	Special Ordered Sets of Type 2
	Special Ordered Sets of Type 3

	Implementation & Software Issues
	MINLP Software

	References
	Bibliography

