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Dynamic Programming

Powerful for solving dynamic stochastic optimization problems
» Based on principle of recursion due to Bellman and Isaacs

» Replaces multiperiod optimization problems with a sequence of
two-period problems

Applications
» Economics

> Business investment

» Life-cycle decisions on labor, consumption, education, portfolio
choice

» Economic policy

» Operations Research

» Scheduling, queueing
> Inventory

» Climate change

» Economic response to climate policies
» Optimal policy response to global warming problems



Canonical Example in Economics

General Stochastic Accumulation
» Problem:

V(k,0) = max £ {Z Bt U(Cu@t)}

kt+1 - F(kuzt, 01») - Ct
9t+1 = g(9t,8t)
ko = k, 6 = 0.

» State variables:

» k: productive capital stock, endogenous
» 0: productivity state, exogenous

» The dynamic programming formulation is

V(k,0) = max u(c, ) + BE{V(F(k.£,0) - c,0")|0}, (12.1.21)

where 07 is next period’s 0 realization.



Definitions

Discrete-Time Dynamic Programming
> Objective:

E {Z (e, g, t) + W(xm)} (1)

t=1

v

X: set of states

D: the set of controls

m(x, u, t) payoffs in period t, for x € X at the beginning of period t,
and control u € D is applied in period t.

» D(x,t) C D: controls which are feasible in state x at time t.

> F(A; x,u,t): probability that x.+1 € A C X conditional on time t
control and state

» Value function

V(x,t) = sup E {Z 7(xs, Us, $) + W(xT41)|xe = x} (2)

U(x,t) s—=t

vy

» Bellman equation

V(x,t)= sup m(x, u, t)+ E{V(xey1, t +1)|xt = x, uy = u}
ueD(x,t)
(3)

» Existence: boundedness of 7 is sufficient



Parametric Approach

General Parametric Approach: Approximating T
» For each x;, (TV)(x;) is defined by

= (TV)s) = max w(ux)+ 5 [ Vx5 a)dF(x' ) (4)
ueD(x;
» In practice, we compute the approximation T

vi = (TV)(x) = (TV)(x)

> Integration step: for w; and x; for some numerical quadrature formula

E(V(x"; 3), u)} = / V(x*; a)dF (x* g, u)

_ / V(g (. u,€); a)dF ()
= ng \A/(g(xj-7 u,e¢); a)

> Maximization step: for x; € X, evaluate
vi = (TV)(x)
> Fitting step:

> Data: (v;,x;), i=1,---,n
> Objective: find an a € R™ such that V/(x;a) best fits the data



Shape-preserving Chebyshev Interpolation

Problem: Instability of Value Function Iteration
Solution: LP model for shape-preserving Chebyshev Interpolation:

m—1

min Y (¢ +¢ )—l—Z(J—I—l— (i +¢)

! _[0 j=m

s.t. ch (vi >O>ZCJT” i), i=1,...,

Jj=0

ch (z)=wvi, i=1,...,m,
cj—cj:cjr—cjf, j=0,...,m—1,
Cj:CJJ'_ ¢, j=m,... n,

¢ >0, ¢ >0, j=1,...,n



Optimal Growth Example

» Optimal Growth Problem:

T-1
Vo(ko) = max > Btu(ce, le) + BT Vr(kr),
c,l —0
s.t. kt+1 - F(kt, /t) - Ct7 O S t < T
» DP model of optimal growth problem:

Vt(k) = maIX U(C7 /) +th+1(F(ka /) - C)
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Portfolio Optimization Example

> W,;: wealth at stage t; stocks' random return: R = (Ry,...,Ry);
bond's riskfree return: Rf;

» S; = (St1,--.,Sm) " money in the stocks; B; = W; — e S;: money
in the bond,

> Wt+1 = Rf(Wt — ETSt) + RTSt
» Multi-Stage Portfolio Optimization Problem:

Vo(Wo) = ez E(u(Wr))

» Bellman Equation:

Ve(W) = max  E{Vesa(Re(W — e'S)+RTS)}

W: state variable; S: control variables.



Exact optimal bond allocation

bond allocation at times
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Errors of Optimal Stock Allocations (shape-preserving or not)
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Derivative of Value Functions in General Models

» For an optimization problem,
V(x) = mfx f(x,y)
s.t. g(x,y) =0,h(x,y) >0,
add a trivial control variable z and a trivial constraint x — z = 0:
V(x) = max f(z,y)

v,z

s.t. g(z,y) =0,h(z,y) > 0,x —z=0.
» Then by the envelope theorem, we get

V'(x) = A,

where ) is the shadow price for the trivial constraint x — z = 0.

> Idea: use shadow price as new information in approximating value
functions



error of ¢y

error of I§

y n m Lagrange Hermite Lagrange Hermite
0.5 0.1 5 1.1(-1) 1.2(—2) 1.9(-1) 1.8(—2)
10 6.8(—3) 3.1(-5) 9.9(—3) 4.4(-5)

20 2.3(-5) 1.5(—6) 3.2(-5) 2.3(—6)

0.5 1 5 1.4(-1) 1.4(-2) 6.1(—2) 5.6(—3)
10 7.7(-3) 3.7(-5) 3.1(-3) 1.6(—5)

20 2.6(—5) 6.5(—6) 1.1(-5) 3.0(—6)

2 0.1 5 5.5(—2) 6.1(—3) 2.7(-1) 3.6(—2)
10 3.5(—-3) 2.1(-5) 2.0(-2) 1.2(—4)

20 1.6(—5) 1.4(—6) 9. 1( 5) 7.6(—6)

2 1 5 9.4(-2) 1.1(—2) 3(-1) 1.7(—2)
10 5.7(—3) 3.9(-5) 9. 2( 3) 6.1(—5)

20 2.8(—5) 4.7(—6) 4.3(-5) 8.0(—6)

8 0.1 5 2.0(—2) 2.2(-3) 3. 6( 1) 4.9(-2)
10 1.2(-3) 8.5(—6) 7(-2) 1.9(—4)

20 6.1(—6) 1.0(—6) 1. 4( 4) 4.4(—6)

8 1 5 6.6(—2) 7.2(-3) 3.4(—1) 4.5(-2)
10 3.0(—3) 2.6(—5) 2.0(—2) 1.7(—4)

20 2.0(-5) 0.0(—7) 1.3(—4) 2.1(-7)

Note: a(k) means a X 10



Shape-preserving Hermite Spline Interpolation

» Idea: impose shape and use gradient information

> Using Hermite data {(x;, vi, si) :

A

V(x;c) =ci1+ cia(x — x;) +

when x € [x;, x;+1], where
Ci1
Ci2

Ci3
Cia

fori=1,...,m—1

i=1,...,m},

cizCia(x — xi)(x — Xj41)

ciz(x — xi) + cia(x — xj+1)’

Vi,

Viglr — Vi
b

Xit+1 — Xi

Si — Ci2,

Si+1 — Gi2,



Errors of Optimal Bond Allocations (Lagrange vs Hermite vs
Shape-preserving+Hermite)
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Proportional Transaction Cost and CRRA Utility

Separability of wealth W and portfolio fractions x.

If u(W) = W7 /(1 —~), then Ve(We, x:) = W27 - ge(xe).

If u(W) =log(W), then Vi(W;, x:) = log(W;) + e (x¢).
“No-trade” region: Q; = {x: : (d{)* = (6; )* = 0}, where

(6F)* > 0 are fractions of wealth for buying stocks, and (J; )* > 0
are fractions of wealth for selling stocks.

vV v v v



Stock 2 fraction

2 stocks with i.i.d. returns at ¢ = 0 (liquidate at t = 6)
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Stock 2 fraction

2 stocks with i.i.d. returns at ¢ = 3 (liquidate at t = 6)

0.8

0.5

No-trade region at stage t=3

0.5

0.55

0.6

0.65
Stock 1 fraction

0.7

0.75

0.8



Stock 2 fraction

2 stocks with i.i.d. returns at ¢ =5 (liquidate at t = 6)
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2 stocks with correlated returns at ¢ = 0 (liquidate at t = 6)
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2 stocks with correlated returns at ¢t = 3 (liquidate at t = 6)
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2 stocks with correlated returns at ¢ =5 (liquidate at t = 6)

No-trade region at stage t=5
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Stock 2 fraction

2 stocks with stochastic ¢ at t = 0 (liquidate at t = 6)
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Stock 2 fraction

2 stocks with stochastic 1 at t = 3 (liquidate at t = 6)
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Stock 2 fraction

2 stocks with stochastic 1 at t =5 (liquidate at t = 6)
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3 correlated stocks at t = 0 (liquidate at t = 6)




3 correlated stocks at t = 3 (liquidate at t = 6)




(liquidate at t = 6)

3 correlated stocks at t =5




Application of Portfolio Analysis

Options

» The pricing theory of options assumes that options have no social
value

» Finance people claim that they economize on transaction costs, but
provide no analysis

» Cai has shown that there is some value to one option; future work
will examine social value of free entry



1 stock and 1 at-the-money put option at t = 0 (liquidate at t =6
months)

No-Trade Region, Option Price=0.0462351K
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» Put option: strike K, expiration time T, payoff max(K — St,0)
» stock price S, utility u(W) = —W=2/2



Value functions with/without options at t = 0 (liquidate at t = 6)
Value Functions VO(W,S,x,y) at W=1, S=1 and y=0
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> (x,y): fractions of money in stock and option
» 73 = 0.01 and 7»: transaction cost ratios of stock and option



Introduction

> All IAMs (Integrated Assessment Models) are deterministic
» Most are myopic, not forward-looking

» This combination makes it impossible for IAMs to consider decisions
in a dynamic, evolving and uncertain world

» We formulate dynamic stochastic general equilibrium extensions of
DICE (Nordhaus)

» Conventional wisdom: "Integration of DSGE models with long run
intertemporal models like IGEM is beyond the scientific frontier at
the moment" (Peer Review of ADAGE and IGEM, June 2010)

» Fact: We use multidimensional dynamic programming methods,

developed over the past 20 years in Economics, to study dynamically
optimal policy responses



DSICE

Cai-Judd-Lontzek DSICE Model:
Dynamic Stochastic Integrated Model of Climate and Economy

DSICE = DICE2007
constraint on savings rate ,j.e. : s = .22
— ad hoc finite difference method
stochastic production function

stochastic damage function

+ o+ o+

1-year period length

stochastic means: intrinsic random events within the specific model, not
uncertain parameters



» DSICE: solve stochastic optimization problem

L EN E{Zﬁtu(ct,/t)}
t=0

s.t. keyi = (1—=0)ke + Qe(1 =AYy —
Meyy = MM+ (E.,0,0)",
Ten = OTT+(&4F,0)7,
Ct+1 = gC(Ct7w§)7
Ji1 = gJ(Jt,WtJ)

» output: Yi = f(ke, I, Gty t) = CtAtk?/tlia
» damages: Q; = 1+7T1TtAT:I;TF2(T¢AT)2

» (;: productivity shock, Ji: damage function shock




v

emission control effort: A; = %170291,1:#?2

Mass of carbon concentration: M, = (MAT MO MUP)T

Temperature: T, = (TAT, TLO)T

Total carbon emission: E; = Ejng + + Ejand,r, Where
Eing,t = 0¢(1 — pe)(fu(ke, Ie, O, t))

Total radiative forcing (watts per square meter from 1900):

Fe = nlogy(M{T /Mg'T) + FEX



» DP model for DSICE :

Vt(k7<7-j7 M? T)

s.t.

k+
M+
T+
<+
J+

m/aX U(C, /) + BE[Vt+1(k+7<+aJ+v M+7 T+)]
L

(1— )k +Qu(1 = A)F(k, 1, 1) —c,
MM + (E.,0,0)7,

&7 T +(&4F:,0)7,

g4 (¢ wo),

g’(J,u”)



Parallel DP Algorithm

» Parallelization in Maximization step in NDP: Compute

vi= max ux;,a) + BE{V(x" b x;, ai),
a,-ED(x,-,t)
foreach x; € X;, 1 < i < my.

» Condor Master-Worker system: distributed parallelization, two
entities: Master processor, a cluster of Worker processors.



Parallelization in Optimal Growth Problems

» Problem size: 4D continuous state k, 4D discrete state 6 with
6* = 1296 values

» Performance:

Wall clock time for all 3 VFls 65 hours
Total time workers were up (alive) 1487 hours
Total cpu time used by all workers 1358 hours
Minimum task cpu time 557 seconds
Maximum task cpu time 4,196 seconds
Number of (different) workers 25

Overall Parallel Performance 03.56%



Parallelization in Optimal Growth Problems

Parallel efficiency for various number of worker processors

# Worker Parallel Average task Total wall clock
processors | efficiency | CPU time (minute) time (hour)
25 93.56% 21 65
54 93.46% 25 33
100 86.73% 25 19




Parallelization in Dynamic Portfolio Problems

IProblem size: 6 stocks plus 1 bond, transaction cost, number of

task = 3125.

» Performance:

Wall clock time for all 6 VFIs
Total time workers were up (alive)
Total cpu time used by all workers
Minimum task cpu time
Maximum task cpu time

Number of (different) workers
Overall Parallel Performance

1.56 hours
295 hours
248 hours

2 seconds
395 seconds
200
87.2%



DSICE - DP in an Integrated Model of Climate and
Economy

» All IAMs (Integrated Assessment Models) are deterministic
» Most are myopic, not forward-looking

» This combination makes it impossible for IAMs to consider decisions
in a dynamic, evolving and uncertain world

» We formulate dynamic stochastic general equilibrium extensions of
DICE (Nordhaus)

» Conventional wisdom: "Integration of DSGE models with long run
intertemporal models like IGEM is beyond the scientific frontier at
the moment" (Peer Review of ADAGE and IGEM, June 2010)

» Fact: We use multidimensional dynamic programming methods,

developed over the past 20 years in Economics, to study dynamically
optimal policy responses



DSICE

Cai-Judd-Lontzek DSICE Model:
Dynamic Stochastic Integrated Model of Climate and Economy

DSICE = DICE2007
time travel for CO2

+ stochastic production function
+ stochastic damage function
+ 1l-year period length

stochastic means: intrinsic random events within the specific model, not
uncertain parameters



» DSICE: solve stochastic optimization problem

L EN E{Zﬁtu(ct,/t)}
t=0

s.t. keyi = (1—=0)ke + Qe(1 =AYy —
Meyy = MM+ (E.,0,0)",
Ten = OTT+(&4F,0)7,
Ct+1 = gC(Ct7w§)7
Ji1 = gJ(Jt,WtJ)

» output: Yi = f(ke, I, Gty t) = CtAtk?/tlia
» damages: Q; = 1+7T1TtAT:I;TF2(T¢AT)2

» (;: productivity shock, Ji: damage function shock




v

emission control effort: A; = %170291,1:#?2

Mass of carbon concentration: M, = (MAT MO MUP)T

Temperature: T, = (TAT, TLO)T

Total carbon emission: E; = Ejng + + Ejand,r, Where
Eing,t = 0¢(1 — pe)(fu(ke, Ie, O, t))

Total radiative forcing (watts per square meter from 1900):

Fe = nlogy(M{T /Mg'T) + FEX



» DP model for DSICE :

Vt(k7<7-j7 M? T)

s.t.

k+
M+
T+
<+
J+

m/aX U(C, /) + BE[Vt+1(k+7<+aJ+v M+7 T+)]
L

(1— )k +Qu(1 = A)F(k, 1, 1) —c,
MM + (E.,0,0)7,

&7 T +(&4F:,0)7,

g4 (¢ wo),

g’(J,u”)



Application: Carbon Tax vs. Cap-and-Trade

Policy Alternatives
» Carbon tax
» Cap-and-Trade

DSICE was used to compute optimal comovement of carbon tax and
permissible emissions

» Explicitly takes into account unpredictability in economic activity

» Optimal policy is a permit supply curve with elasticity between one
and two; a strong version of a price cap



Future Directions for Dynamic Programming

New tools:

» There is no curse of dimensionality in either quadrature or
approximation for smooth functions - Griebel and Wozniakowski

» Massive parallelization is current supercomputer architecture; DP
fits it well

Economics and OR
» The traditional ties died in late 1970's

» Economics is now hostile to introduction of OR and applied math
tools; actively suppresses research that does not make economists
look good

> “Soon economists will be so far behind that they will not be able to
catch up”

» Hopefully concerted efforts by economists and OR researchers will
prevent this
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