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Three broad classes of numerical methods

1 Projection methods, Judd (1992), Christiano and Fisher (2000), etc.
solution domain = prespeci�ed grid of points;
accurate and fast with few state variables but cost grows exponentially
with number of state variables (curse of dimensionality!).

2 Perturbation methods, Judd and Guu (1993), Gaspar and Judd
(1997), Juillard (2003), etc.

solution domain = one point (steady state);
practical in large-scale models but the accuracy can deteriorate
dramatically away from the steady state.

3 Stochastic simulation methods, Marcet (1988), Smith (2001), etc.
solution domain = simulated series;
simple to program but often numerically unstable, and the accuracy is
lower than that of the projection methods.

In the paper, we show how to enhance the performance of stochastic
simulation methods.
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Stochastic simulation methods

A stochastic simulation method is roughly as follows:

Step 1. Guess a policy function.

Step 2. Simulate time series.

Step 3. Use simulation results to recompute the guess.

Iterate on Steps 2� 3 until convergence.

Step 3 requires

to �t a polynomial function to the simulated data (regression);
to evaluate conditional expectations (integration).

We show that both regression and integration have problems:

In regression, polynomial terms are highly correlated (multicollinearity),
and the standard LS technique fails ) numerical instability.
Monte Carlo integration is very inaccurate ) the overall accuracy of
solutions is low.
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Our results

We stabilize the stochastic simulation procedure:

we build the regression step on approximation methods designed for
dealing with multicollinearity

We attain high accuracy of solutions:

we generalize the stochastic simulation algorithm to include accurate
Gauss Hermite quadrature and monomial integration methods

The generalized stochastic simulation algorithm (GSSA) is

numerically stable
comparable in accuracy to most accurate methods in the literature
tractable in problems with high dimensionality (hundreds of state
variables)
very simple to program
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Representative-agent neoclassical growth model

A planner solves

max
fkt+1,ctg∞

t=0

E0
∞

∑
t=0

βtu (ct )

s.t. ct + kt+1 = (1� δ) kt + at f (kt ) ,

ln at+1 = ρ ln at + εt+1, εt+1 � N
�
0, σ2

�
where initial condition (k0, a0) is given;
f (�) = production function;
ct = consumption; kt+1 = capital; at = productivity;
β = discount factor; δ = depreciation rate of capital;
ρ = autocorrelation coe¢ cient of the productivity level;
σ = standard deviation of the productivity shock.
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Key advantage of stochastic simulation methods

Search a solution only in the areas of the state space that are visited
in simulation (ergodic set).
Recall that projection methods compute solutions in a rectangular
domain (and perturbation methods � in one (steady-state) point).
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Reduction in cost in a 2-dimensional case

How much can we save on cost using the ergodic-set domain
comparatively to the hypercube domain?

Suppose the ergodic set is a circle.

In the 2-dimensional case, a circle inscribed within a square occupies
about 79% of the area of the square.

The reduction in cost is proportional to the shaded area in the �gure.

It does not seem to be a large gain.
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Reduction in cost in a p-dimensional case

In a 3-dimensional case, the gain is larger (a volume of a sphere of
diameter 1 is 52% of the volume of a cube of width 1)

In a p-dimensional case, the ratio of a hypersphere�s volume to a
hypercube�s volume

Vp =

8<: (π/2)
p�1
2

1�3�...�p for p = 1, 3, 5...
(π/2)

p
2

2�4�...�p for p = 2, 4, 6...
.

Vp declines very rapidly with dimensionality of state space. When
p = 10 ) Vp = 3 � 10�3 (0.3%). When p = 30 ) Vp = 2 � 10�14.
We face a tiny fraction of cost we would have faced on the hypercube.
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Another advantage of focusing on the ergodic set

Stochastic simulation methods operating on the ergodic set �t a
polynomial on the relevant domain.

Projection methods operating on larger hypercube domains �t a
polynomial both inside and outside the relevant domain. Such
methods face a trade-o¤ between accuracy inside and outside the
ergodic set.

Hence, for the same degree of approximating polynomial, ergodic set
methods are likely to get more accurate solutions in the relevant
domain than methods operating on larger prespeci�ed domains.

The existing conventional stochastic simulation methods did not
bene�t from their potential advantages. We next explain why...
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Starting point: simulation-based PEA of Marcet (1988)

Parameterize the policy function of marginal utility,

u0 (ct ) = Et
�

βu0 (ct+1)
�
1� δ+ at+1f 0 (kt+1)

�	
� Ψ (kt , at ; b) ,

where Ψ (kt , at ; b) = exp (b0 + b1 ln kt + b2 ln at + ...) is an exponentiated
polynomial. Write the budget constraint as

kt+1 = (1� δ) kt + at f (kt )� u0�1 [Ψ (kt , at ; b)] .

Fix b = (b0, ..., bn). Given productivity levels fatgTt=0, simulate
fct , kt+1gTt=0 and construct

yt � βu0 (ct+1)
�
1� δ+ at+1f 0 (kt+1)

�
,

Run a non-linear LS (NLLS) regression yt = Ψ (kt , at ; b) + ε ) get bb.
Compute the next-iteration input b(j+1) using �xed-point iteration

b(j+1) = (1� ξ) b(j) + ξbb,
where ξ 2 (0, 1] = damping parameter.
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Numerical problems of the simulation-based PEA

Works well for 1st-degree polynomials but is often unstable for higher
degree polynomials.

1 When running a NLLS regression, the computer may fail to deliver an
estimator bb at all.

2 The NLLS coe¢ cients may change drastically from one iteration to
another which causes cycling and leads to non-convergence.

3 Even if convergence is achieved, the resulting approximation is often
not accurate.

In practice, numerical problems arise even under 2nd-degree polynomial
approximation. For example, Den Haan and Marcet (1990) removed the
collinear cross term ln kt ln at in the second-degree polynomial,

exp
�
b0 + b1 ln kt + b2 ln at + b3 ln k2t + b3 ln a

2
t

�
.
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What causes numerical problems?

1 Ill-conditioning of the least-squares (LS) problem solved in the
approximation step,

min
b
[y �Ψ (k, a; b)]> [y �Ψ (k, a; b)] .

It arises due to multicollinearity and poor scaling of explanatory
variables.

2 In addition, exponentiated polynomial approximation
Ψ (k, a; b) = exp (b0 + b1 ln kt + b2 ln at + ...), used in Marcet
(1988), should be estimated with NLLS methods which

a) require to supply an initial guess;
b) involve computing costly Jacobian and Hessian matrices;
c) often fail to converge.
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Ill-conditioned LS problem

Under the linear regression model, y = Xb+ ε, we have the OLS
estimator bb = �X>X��1 X>y ,
where X � [1T , x1, ..., xn ] 2 RT�(n+1).
The matrix X>X is often ill-conditioned. The degree of
ill-conditioning of X>X can be measured in terms of a condition
number

K
�
X>X

�
� λ1/λn

λ1 = the largest eigenvalue of X>X ; λn = its smallest eigenvalue.
The eigenvalues of X>X are de�ned by

X>X = VΛV>

Λ = an n� n diagonal matrix with ordered eigenvalues of X>X on
its diagonal; V = an n� n matrix of its eigenvectors.
K " =) the closer is X>X to being singular (not invertible).

Judd, Maliar and Maliar (2011) Stochastic Simulation Approaches July 1, 2011 13 / 47



Multicollinearity problem

High-degree polynomial terms forming X are signi�cantly correlated.

Example

Let X =
�
1+ φ 1
1 1+ φ

�
with φ 6= 0. Then, K

�
X>X

�
=
�
1+ 2

φ

�2
.

Let y = (0, 0)>. Thus, the OLS solution is
�bb1,bb2� = (0, 0). Suppose y

is perturbed by a small amount, i.e. y = (ε1, ε2)
>. Then, the OLS

solution is

bb1 = 1
φ

�
ε1 (1+ φ)� ε2

2+ φ

�
and bb2 = 1

φ

�
ε2 (1+ φ)� ε1

2+ φ

�
.

Sensitivity of bb1 and bb2 to perturbation in y is proportional to 1/φ
(increases with K

�
X>X

�
).
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Poor scaling problem

Polynomial terms forming X have very di¤erent means and variances (due
to di¤erent scales among either the state variables, kt and at , or the
polynomial terms of di¤erent orders, like kt and k5t ).

Example

Let X =
�
1 0
0 φ

�
with φ 6= 0. Then, K

�
X>X

�
= 1/φ. Let y = (0, 0)>.

Thus, the OLS solution is
�bb1,bb2� = (0, 0). Suppose y is perturbed by a

small amount, i.e. y = (ε1, ε2)
>. The OLS solution is

bb1 = ε1 and bb2 = ε2
φ
.

Sensitivity of bb2 to perturbation in y is proportional to 1/φ (and
K
�
X>X

�
).
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Our �rst goal is to attain numerical stability

1 We replace the exponentiated polynomial Ψ (k, a; b) =
exp (b0 + b1 ln kt + b2 ln at + ...) used in Marcet (1988) with a simple
polynomial Ψ (k, a; b) = b0 + b1 ln kt + b2 ln at + .... This allows us
to replace NLLS methods with linear methods.

2 We use approximation methods that can handling collinear data and
dampen movements in b.

LS using SVD, Tikhonov regularization;
Least absolute deviations (LAD) methods (primal and dual linear
programming problems);
Principal components (truncated SVD) method.

3 Other factors that can a¤ect numerical stability of GSSA:

Data normalization.
The choice of a family of basis functions.
The choice of policy functions to parameterize.
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Normalizing the variables

Center - subtract the sample mean from each observation.

Scale - divide each observation by the sample standard deviation.

By construction, a centered variable has a zero mean, and a scaled
variable has a unit standard deviation.

After a regression model is estimated, the coe¢ cients in the original
(unnormalized) regression model are restored.
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LS approaches to the linear regression model

Two LS approaches that are more numerically stable and more suitable for
dealing with ill-conditioning than the standard OLS approach.

1 LS using SVD (LS-SVD): uses a singular-value decomposition of X .
2 Regularized LS using Tikhonov regularization (RLS-Tikhonov): relies
on a speci�c (Tikhonov) regularization of the ill-conditioned LS
problem that imposes penalties based on the size of the regression
coe¢ cients.

The LS-SVD approach �nds a solution to the original ill-conditioned LS
problem, while the RLS-Tikhonov approach modi�es (regularizes) the
original ill-conditioned LS problem into a less ill-conditioned problem.
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LS-SVD

SVD of the matrix X 2 RT�n

X = USV>

where U 2 RT�n and V 2 Rn�n = orthogonal matrices; S 2 Rn�n

= diagonal matrix with diagonal entries s1 � s2 � ... � sn � 0,
known as singular values of X .

The OLS estimator bb = �X>X ��1 X>y in terms of the SVD:
bb = �VS>SV>��1 VS>U>y = VS�1U>y

If X>X is well-conditioned =) the OLS formula and the LS-SVD
formula give identical estimates of b.
However, if X>X is ill-conditioned and the standard OLS estimator
cannot be computed =) it is still possible that matrices X and S are
su¢ ciently well-conditioned, K (S) =

p
K (X>X ) =) can compute

the LS-SVD estimator.
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RLS-Tikhonov

Regularization - process of re-formulating an ill-conditioned problem
by imposing additional restrictions on the solution.
Tikhonov regularization - the most commonly used regularization
method in approximation theory.
Impose an L2 penalty on the size of the regression coe¢ cients:

min
b
ky � Xbk22 + η kbk22 = min

b
(y � Xb)> (y � Xb) + ηb>b

where η � 0 = regularization parameter.
Find the FOC with respect to b

bb (η) = �X>X + ηIn
��1

X>y

where In = an identity matrix of order n.
Note: add a positive constant to X>X prior to inverting this matrix.
=) Even if X>X is singular, the matrix X>X + ηIn is non-singular.
=) Can compute its inverse.
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LAD approaches to the linear regression model

Replace the ill-conditioned LS problem with a least-absolute
deviations (LAD) problem

min
b
ky � Xbk1 = min

b
1>T jy � Xbj

where k�k1 denotes L1 vector norm.
The LAD problem does not require computing

�
X>X

��1
.

No explicit solution. However, we can re-formulate the LAD problem
to consist of a linear objective function and linear constraints =)
Solve with standard linear programming techniques.
Substitute jy � X βj with a vector w 2 RT to obtain

min
b, w

1>Tw

s.t. � w � y � X β � w
This problem has n+ T unknowns. We argue that it is not the most
suitable for a numerical analysis.
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LAD: primal problem (LAD-PP)

Charnes et al. (1955): express the deviation for each observation as a
di¤erence between two non-negative variables υ+t and υ�t ,

yt �
n

∑
i=0
bixti = υ+t � υ�t , (1)

υ+t and υ�t can be interpreted as non-negative vertical deviations
above and below the �tted line, byt = Xtbb, respectively; υ+t + υ�t =
absolute deviation between the �t byt and the observation yt .
Primal problem: minimize the total sum of absolute deviations
subject to (1),

min
υ+,υ�,b

1>T υ+ + 1>T υ�

s.t. υ+ � υ� + Xb = y ,

υ+ � 0, υ� � 0,
where υ+t , υ�t 2 RT .
This formulation is more simple to solve than the direct formulation.
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LAD: dual problem (LAD-DP)

Every primal problem can be converted into a dual problem.

Dual problem corresponding to the primal problem:

max
q
y>q

s.t. X>q = 0

�1T � q � 1T

where q 2 RT is a vector of unknowns.

If the number of observations, T , is sizable (i.e. T � n), the dual
problem is less computationally cumbersome than the primal problem.
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Regularized LAD (RLAD)

Modify the original LAD problem to incorporate an L1 penalty on b.

The RLAD problem:

min
b
ky � Xbk1 + η kbk1 = min

b
1>T jy � Xbj+ η1>n jbj ,

where η � 0 = regularization parameter.
We develop a linear programming formulation of the RLAD problem
parallel to the LAD-PP: replace jbi j with two variables.
Wang, Gordon and Zhu (2006): represent jbi j as sign (bi ) bi .
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RLAD: primal problem (RLAD-PP)

To cast the RLAD problem into a linear programming form, we
represent b as bi = ϕ+i � ϕ�i , with ϕ+i � 0, ϕ�i � 0 for i = 1, ..., n.
We then impose a linear penalty on each ϕ+i and ϕ�i .

The resulting regularized version of the primal problem:

min
υ+,υ�,ϕ+,ϕ�

1>T υ+ + 1>T υ� + η1>n ϕ+ + η1>n ϕ�

s.t. υ+ � υ� + X ϕ+ � X ϕ� = y ,

υ+ � 0, υ� � 0,
ϕ+ � 0, ϕ� � 0,

where ϕ+, ϕ� 2 Rn are vectors that de�ne b (η).

This problem has 2T + 2n unknowns, as well as T equality
restrictions and 2T + 2n lower bounds.
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RLAD: dual problem (RLAD-DP)

The dual problem corresponding to the RLAD-PP:

max
q
y>q

s.t. X>q 6 η � 1n,
�X>q 6 η � 1n,
�1T � q � 1T ,

where q 2 RT = vector of unknowns.

Here, 2n linear inequality restrictions and 2T lower and upper bounds
on T unknown components of q.
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Principal component method (Truncated SVD, LS-TSVD)

Z � XV , where X 2 RT�n, Z 2 RT�n and V 2 Rn�n.

z1, ..., zn are called principal components of X and are orthogonal,
z>i zi = s

2
i and z

>
j zi = 0 for any j 6= i , where si = ith singular value

of X .

Idea: reduce ill-conditioning of X to a "desired" level by excluding
low-variance principal components corresponding to small singular
values.

Let κ = largest condition number of X that we are willing to accept.

Compute s1
s2
, ..., s1sn , where s1 = largest singular value.

K (X ) = K (S) = s1
sn
= actual condition number of the matrix X .
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Principal component method (Truncated SVD, LS-TSVD)

Let Z r � (z1, ..., zr ) 2 RT�r be the �rst r principal components for
which s1

si
� κ.

Remove the last n� r principal components for which s1
si
> κ.

By construction, K (Z r ) � κ.

Re-write the linear regression model in terms of Z r ,

y = Z rϑr + ε,

where ϑr 2 Rr = vector of coe¢ cients.

Estimate ϑr using any of the LS and LAD methods described.

Find bb = V rbϑr 2 Rn, where V r = (v1, ..., vr ) 2 Rn�r contains the
�rst r right singular vectors of X .
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Choosing policy functions to parameterize

Marcet (1988): parameterize marginal-utility policy function

u0 (ct ) = Et
�

βu0 (ct+1)
�
1� δ+ at+1f 0 (kt+1)

�	
� Ψ (kt , at ; b)

Our benchmark case: parameterize capital policy function
kt+1 = K (kt , at ),

kt+1 = Et

�
β
u0 (ct+1)
u0 (ct )

�
1� δ+ at+1f 0 (kt+1)

�
kt+1

�
� Ψ (kt , at ; b)

Judd, Maliar and Maliar (2011) Stochastic Simulation Approaches July 1, 2011 29 / 47



Choosing a family of basis functions

Polynomial families of basis functions.
Ordinary polynomial family - standard.
A better alternative is orthogonal polynomial families.
Ordinary polynomials Om (x) versus Hermite polynomials Hm (x) up
to degree 5:

O0 (x) = 1 H0 (x) = 1
O1 (x) = x H1 (x) = x
O2 (x) = x2 H2 (x) = x2 � 1
O3 (x) = x3 H3 (x) = x3 � 3x
O4 (x) = x4 H4 (x) = x4 � 6x2 + 3
O5 (x) = x5 H5 (x) = x5 � 10x3 + 15x .

Om (x), m = 1, ..., 5 appear very similar =) the explanatory variables
for the regression are likely to be correlated.
Hm (x), m = 1, ..., 5 are di¤erent in the shapes =) the
multicollinearity problem manifests to a much lesser degree, if at all.
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Choosing a family of basis functions
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Methodology and parameterization

Production function: f (kt ) = kα
t with α = 0.36.

Utility function: u (ct ) =
c1�γ
t �1
1�γ with γ 2 f0.1, 1, 10g.

Process for shocks: ρ = 0.95 and σ = 0.01.

Discount factor: β = 0.99.

Depreciation rate: δ = 1 and δ = 0.02.

Under γ = 1 and δ = 1 =) closed-form solution.

Accuracy is measured by an Euler-equation error,

E (kt , at ) � Et

"
β
c�γ
t+1

c�γ
t

�
1� δ+ αat+1kα�1

t+1

�#
� 1,

expressed in log10 units.
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Results for the model with the closed-form solution

Full depreciation of capital, δ = 1.
Emean CPU Emean CPU Emean CPU

Polyn. OLS, Ordinary OLS, Ordinary OLS, Hermite
degree Unnormalized Normalized Unnormalized

1st -3.52 0.8 sec -3.52 1 sec -3.52 1 sec
2nd -5.46 3.1 sec -5.46 3 sec -5.46 4 sec
3rd - - -6.84 5 sec -6.84 6 sec
4th - - - - -7.94 8 sec
5th - - - - -9.09 10 sec

Ordinary, LS-SVD Ordinary, LAD-PP Ordinary, RLS-Tikh.
Normalized Normalized η = 10�7

1st -3.52 1 sec -3.52 16 sec -3.52 1 sec
2nd -5.46 3 sec -5.55 1.5 min -5.46 3 sec
3rd -6.84 5 sec -6.97 4.1 min -5.85 4 sec
4th -7.94 6 sec -8.16 6.4 min -6.12 7 sec
5th -9.12 10 sec -9.10 9.3 min -6.22 11 sec
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Results for the model without a closed-form solution

Partial depreciation of capital, δ = 0.02.

Emean CPU

Polyn. MC(1)
degree T = 10, 000

1st -4.26 1 sec
2nd -4.42 11 sec
3rd -4.32 25 sec
4th -4.31 47 sec
5th -4.23 80 sec

We attain stability but now high-degree polynomials do not lead to more
accurate solution. Why?
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Conventional one-node Monte Carlo integration

Integral � the next-period�s realization of the integrand

βEt
�
u0 (ct+1)

�
1� δ+ at+1f 0 (kt+1)

��
� βu0 (ct+1)

�
1� δ+ at+1f 0 (kt+1)

�
� yt .

This integration method is used in Marcet�s (1988) PEA.

An integration error is εIt � yt � Et [yt ].
The OLS estimator is bb = b+ h(X )> X i�1 (X )> εI .

Assuming that εIt � N
�
0, σ2ε

�
, we have the central limit theorem: the

asymptotic distribution of the OLS estimator isp
Tbb � N �

b,
�
X>X

��1
σ2ε

�
, i.e., the convergence rate is

p
T .

In RBC models, variables like yt �uctuate by several percents.

Assume error
��� yt�Et [�]Et [�]

��� is on average 10�2 (i.e. 1%). Then a
regression with T = 10, 000 has errors of order 10�2/

p
T = 10�4.

To reduce errors to order 10�5, we need T = 1, 000, 000.

) High accuracy is theoretically possible but impractical.
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Deterministic integration methods

Our GSSA relies on accurate Gauss Hermite quadrature integration

Z
RN
g (ε)w (ε) dε �

J

∑
j=1

ωjg (εj ) ,

where fεjgJj=1 = integration nodes, fωjgJj=1 = integration weights.

Example

a) A two-node Gauss-Hermite quadrature method, Q (2), uses nodes
ε1 = �σ, ε2 = σ and weights ω1 = ω2 =

1
2 .

b) A three-node Gauss-Hermite quadrature method, Q (3), uses nodes

ε1 = 0, ε2 = σ
q

3
2 , ε3 = �σ

q
3
2 and weights ω1 =

2
p

π
3 ,

ω2 = ω3 =
p

π
6 .

c) A one-node Gauss-Hermite quadrature method, Q (1), uses a zero
node, ε1 = 0, and a unit weight, ω1 = 1.
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Quadrature integration in the studied model

For t = 0, ...,T � 1, we approximation the conditional expectation as

yt =
J

∑
j=1

�
ωj �

�
βu0 (ct+1,j )

�
1� δ+ at+1,j f 0 (kt+1)

��	
,

where ct+1,j , the value of ct+1 if the innovation in productivity is εj , is
de�ned for j = 1, ..., J by

at+1,j � aρ
t exp (εj ) ,

ct+1,j � Ψ
�
kt+1, a

ρ
t exp (εj ) ; b

(p)
�
.

where fεjgj=1,...,J and fωjgj=1,...,J are J integration nodes and weights,
respectively.
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Results for the model with partial depreciation of capital

Emean CPU Emean CPU Emean CPU

Polyn. MC(1) MC(2000) MC(1)
degree T = 10, 000 T = 10, 000 T = 100, 000

1st -4.26 1 sec -4.40 20.6 min -4.39 4 sec
2nd -4.42 11 sec -6.04 28.5 min -4.87 1.3 min
3rd -4.32 25 sec -6.15 36.6 min -4.86 3.1 min
4th -4.31 47 sec -6.08 55.6 min -4.72 5.7 min
5th -4.23 80 sec -6.07 1.27 h -4.71 10.4 min

Q(1) Q(2) Q(10)
T = 100 T = 10, 000 T = 10, 000

1st -4.36 3 sec -4.36 16 sec -4.36 20 sec
2nd -6.05 4 sec -6.13 27 sec -6.13 34 sec
3rd -6.32 5 sec -7.48 35 sec -7.48 44 sec
4th -6.24 6 sec -8.72 44 sec -8.72 54 sec
5th -6.04 7 sec -8.91 51 sec -8.91 63 sec

RLS-TSVD with κ = 107
Judd, Maliar and Maliar (2011) Stochastic Simulation Approaches July 1, 2011 38 / 47



Model with rare disasters

We now study the performance of the GSSA under large shocks.

In addition to standard normally distributed shocks, the productivity
level is subject to large negative low-probability shocks (rare
disasters).

We modify the process for productivity as:
ln at+1 = ρ ln at + (εt+1 + ζt+1), where εt+1 � N

�
0, σ2

�
, ζt+1

takes values �ζσ and 0 with probabilities p and 1� p, respectively,
and ζ > 0.

We assume that ζ = 10 and p = 0.02, i.e. a 10% drop in the
productivity level occurs with the probability of 2% (these values are
in line with the estimates in Barro, 2009).
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Results for the model with rare disasters

Emean CPU Emean CPU Emean CPU

Polyn. RLS-Tikhonov RLS-TSVD RLAD-DP
degree η = 10�6 κ = 108 η = 10�6

1st -3.97 50 sec -3.97 40 sec -3.98 1.4 min
2nd -5.47 1.3 min -5.47 1.1 min -5.61 2.5 min
3rd -6.63 1.8 min -6.64 1.6 min -6.81 4.3 min
4th -7.67 2.2 min -7.67 2 min -7.88 10.7 min
5th -8.16 2.6 min -8.66 2.4 min -8.86 19.9 min

Ordinary polynomials, T = 10, 000, Q(10).
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Gauss Hermite product rules

In multi-dimensional problem, we can use Gauss Hermite product rules.

Example

Let εht+1 � N
�
0, σ2

�
, h = 1, 2, 3 be uncorrelated random variables. A

two-node Gauss-Hermite product rule, Q (2), (obtained from the two-node
Gauss-Hermite rule) has 23 nodes, which are as follows:

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8
ε1t+1,j σ σ σ σ �σ �σ �σ �σ

ε2t+1,j σ σ �σ �σ σ σ �σ �σ

ε3t+1,j σ �σ σ �σ σ �σ σ �σ

where weights of all nodes are equal, ωt ,j = 1/8 for all j .

The cost of product rules increases exponentially, 2N , with the number of
exogenous state variables, N. Such rules are not practical when the
dimensionality is high.
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Monomial non-product integration formulas

Monomial formulas are a cheap alternative for multi-dimensional problem
(there is a variety of such formulas di¤ering in accuracy and cost).

Example

Let εht+1 � N
�
0, σ2

�
, h = 1, 2, 3 be uncorrelated random variables.

Consider the following monomial (non-product) integration rule with 2 � 3
nodes:

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
ε1t+1,j σ

p
3 �σ

p
3 0 0 0 0

ε2t+1,j 0 0 σ
p
3 �σ

p
3 0 0

ε3t+1,j 0 0 0 0 σ
p
3 �σ

p
3

where weights of all nodes are equal, ωt ,j = 1/6 for all j .

Monomial rules are practical for problems with very high dimensionality,
for example, with N = 100, this rule has only 2N = 200 nodes.
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The multi-country model

The planner maximizes a weighted sum of N countries�lifetime utilities

maxn
fcht ,kht+1gNh=1

o∞

t=0

E0
N

∑
h=1

λh

 
∞

∑
t=0

βtuh
�
cht
�!

subject to

N

∑
h=1

cht +
N

∑
h=1

kht+1 =
N

∑
h=1

kht (1� δ) +
N

∑
h=1

aht f
h
�
kht
�
,

where λh is country h�s welfare weight.
Productivity of country h follows the process

ln aht+1 = ρ ln aht + εht+1,

where εht+1 � ςt+1 + ςht+1 with ςt+1 � N
�
0, σ2

�
is identical for all

countries and ςht+1 � N
�
0, σ2

�
is country-speci�c.
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Results for the multi-country model

Numb. Numb. Emean CPU Emean CPU
of Polyn. of RLS-Tikh.,η = 10�5 RLS-TSVD, κ = 107

countr. degree coe¤. MC(1), T = 10, 000 M2, T = 1000

1st 5 -4.70 4.2 min -4.65 37 sec
2nd 15 -4.82 19.3 min -6.01 6.8 min

N=2 3rd 35 -4.59 57 min -7.09 10.4 min
4th 70 -4.57 2.6 hours -7.99 16.3 min
5th 126 -4.53 6.8 hours -8.00 34.8 min

RLS-Tikh.,η = 10�5 RLS-Tikh., η = 10�5

MC(1), T = 10, 000 Q(1), T = 1000

N=20 1st 41 -4.55 6.5 min -4.75 56 sec
2nd 861 -3.88 2.1 hours -5.40 18 min

N=200 1st 401 -3.97 37.2 min -4.59 16.8 min

When N=200, for RLS-Tikh.,Q(1), we use T = 2000
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Conclusion

Ergodic set methods operate on relevant domain and have potential
advantages both in terms of accuracy and cost compared to methods
operating on prespeci�ed domains.
The performance of the existing stochastic simulation algorithms was
handicapped by two problems:

numerical instability (because of multicollinearity);
large integration errors (because of low accuracy of Monte Carlo
integration).

GSSA, we �xed both of these problems:
approximation methods that can handle ill-conditioned problems;
a generalized notion of integration that accurate deterministic methods.

GSSA demonstrated a great performance in the studied examples:
Numerically stable;
Very accurate;
Very simple to program;
Tractable for problems with high dimensionality.
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LS and LAD approaches to the non-linear regression model

Extensions to the case of the non-linear regression model,

y = Ψ (k, a; b) + ε

NLLS computes a Taylor�s expansion of Ψ (k, a; b) around a initial
guess, b and makes a step ∆b toward a solution, bb,bb ' b+ ∆b

The step ∆b is a solution to the system of normal equations,

J>J∆b = J>∆y

where J �

0B@
∂Ψ(k1,a1;b)

∂b0
... ∂Ψ(k1,a1;b)

∂bn
... ... ...

∂Ψ(kT ,aT ;b)
∂b0

... ∂Ψ(kT ,aT ;b)
∂bn

1CA is Jacobian and

∆y �

0@ y1 �Ψ (k1, a1; b)
...

yT �Ψ (kT , aT ; b)

1A
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LS and LAD approaches to the non-linear regression model

Gauss-Newton method,

∆b =
�
J>J

��1
J>∆y looks like OLS b =

�
X>X

��1
X>y

J>J is ill-conditioned =) Employ the described approaches
developed for the linear regression model.

1 Compute an inverse of the ill-conditioned matrix J>J by using LS
methods based on SVD or QR factorization of J.

2 Tikhonov type of regularization leading to the Levenberg-Marquardt
method,

∆b =
�
J>J + ηIn+1

��1
J>∆y

3 Replace the ill-conditioned NLLS problem with a non-linear LAD
(NLLAD) problem,

min
b
1>T jy �Ψ (k, a; b)j ' min

∆b
1>T j∆y � J∆bj

Formulate NLLAD problem as a linear programming problem.
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