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DYNAMIC PROGRAMMING:
DEFINITIONS AND EXAMPLES



Discrete-Time Dynamic Programming

e Objective:
T
E {Z m(ze, ug, t) + W($T+1)} :
t=1
— X: set of states
— D: the set of controls

— 7(x, u, t) payoffs in period t, for x € X at the beginning of period ¢, and control v € D is
applied in period ¢.

— D(x,t) C D: controls which are feasible in state x at time t.

— F(A; z,u,t) : probability that x;,1 € A C X conditional on time ¢ control and state

e Value function

U(z,t)

s=t

T
Viz,t) = sup E {Z 7, s, )+ Wwrsa) o = } .

e Bellman equation

V(z,t)= sup 7(x, u, t)+ E{V (x4, t+ 1|2 = x,up = u}
ueD(z,t)

e Existence: boundedness of 7 is sufficient

e Notational convenience: drop u € D(z,t) constraints and encode them in payoff function.



Autonomous, Infinite-Horizon Problem:
e Objective:
max F {Z Bl (ay, ut)}
" t—1
— X: set of states
— D: the set of controls

— D(x) C D: controls which are feasible in state x.

— 7(x, u) payoff in period ¢ if € X at the beginning of period ¢, and control u € D is applied
in period .

— F(A;z,u) : probability that 2 € A C X conditional on current control u and current state
x.

e Value function definition: if U(x) is set of all feasible strategies starting at x.

LUO_LU},

V(r)=sup F {Z Bi(y, uy)

U(x) =0




e Bellman equation for V' (x)
V(z)=sup m(z,u)+ [ FE {V(fr)]a:, u} = (TV)(z),
e Optimal policy function, U(z), if it exists, is defined by
U(z) € arg max 7(x, u) + B E{V(z")|z,u}
e Standard existence theorem:

Theorem 1 If X s compact, B < 1, and 7 1s bounded above and below, then the map
TV =sup 7(z,u) + BE{V(z") | z,u}

15 monotone in 'V, is a contraction mapping with modulus 3 in the space of bounded functions, and has
a unique fixed point.



Applications
e Fconomics

— Life-cycle decisions on labor, consumption, education
— Business investment
— Portfolio problems

— Economic policy
e Operations Research

— Scheduling, queueing

— Inventory management
e Climate change

— Business response to climate policies

— Optimal policy response to climate change



Simple Deterministic Growth Example

e Problem:
Vi(ko) = maxy, y = Blulc),
ki1 = F(]ft) — G

ko given

e Bellman equation
V(k) = max u(c) + BV (F(k) — c).

e [irst-order condition

0=1'(c) = BV'(F(k) — c)

e Solution is a policy function C'(k) and a value function V (k) satisfying

— Eqn.(2) defines value function for any policy function

— Eqn (1) defines policy function in terms of the value function.



General Stochastic Accumulation

e Multidimensional Problem:

ct bt

V(k,0) = max E {Z 8" uler, by, 0;) }

kv = (kt, ly, 9t) — Gt

Orp1 = 9<9t,€t)
ko=Fk, 0p=20.

e State variables:

— k: productive capital stocks, endogenous (could include lags, human capital, etc.)

— 0: productivity and taste states, exogenous
e Intratemporal Choices

— Consumption and leisure here

— Could be allocation of time to education, and other activities

e The dynamic programming formulation is

V(k,0)= max u(c,l) + BE{V(F(k,(,0) — c,07)|6}, (12.1.21)

where 67 is next period’s 6 realization



Dynamic Asset Allocation Problem

e Initial wealth Wj; wealth at beginning of time ¢ is a random variable W;; all assets at time ¢t = T,
Wr, liquidated and valued at u (Wr).

e B, is bond investment at end of time ¢ with safe return (1 + r)
e 5, is investment in stock ¢ with random return R;;, for 1 <¢ <n

e Budget constraint at time ¢

Wi =B + Zsit

i=1
e Wealth at time ¢t + 1 i
Wiri = (L+7)B+ Y RSy
i=1

e Objective:

max F {u(Wr)}



DYNAMIC PROGRAMMING:
STANDARD METHODS



Discrete State Space Problems
e Discretize the state

— Approximates continuous states

— Use value function iteration
e Performance;

— Algorithm always works for finite-horizon problems but ....... slowly
— Algorithm only works for infinite-horizon problems if you are very patient

— Discretize states is impractical for multidimensional problems

e Bellman equation: time ¢ value function is
n
V;t — max [ﬂ-(aji;u?t) —I_ﬁz qf](U) V}'H_l]) L= 17 IR L
u
j=1

e Bellman equation can be directly implemented.

— Called value function iteration

— It is only choice for finite-horizon problems because each period has a different value function.



Policy Iteration (a.k.a. Howard improvement)
e Value function iteration is a slow process

— The only possible method for finite-horizon problems

— Slow for infinite-horizon problems since error is

1
< Vk—i—l . Vk
<l H
— Linear convergence at rate [3; convergence very slow if 3 is close to 1.

e Policy iteration is faster



DYNAMIC PROGRAMMING:
COMPUTATIONAL ISSUES AND SOLUTIONS



Mathematical Formulation of DP

e Problem: Given current situation x (the state), what actions a do I take today to maximize payoft?

— Portfolio problems: stocks versus bonds
— Life-cycle problems

— Inventory management

e Canonical mathematical problem: find function V : R* x N™ — R expressing expected discounted
payoff and solves the fixed-point problem in a Banach space of functions V'

V(m):maxwuaﬁ + (z,u, 2))dp (z) = (TV)(x)

ueD

— x: state of system; typically = in a bounded subset of R* x N™

—u € D(z): feasible choices when state is .

— z: random disturbances

— f: tomorrow’s state given today’s state, today’s choice, and random shock.

— [ < 1: discount factor

e |/ encodes all information about the solution



General Parametric Approach: Approximating 7T’

e For each x;, (TV)(x;) is defined by

A

b = (TV)(z;) = max 7(u,z, +5/ o )dF (x|, ) (12.75)

u€D(z;)

e In practice, we compute the approximation T

A

vj = (TV)(z;) = (TV)(z))

— Integration step: for w; and x; for some numerical quadrature formula

BV allas )} = [ Vi aldFiafas, 0

— Maximization step: for x; € X, evaluate

— Fitting step:
« Data: (v;,x;), i=1,---.,n
+« Objective: find an a € R™ such that V (x;a) best fits the data
+ Methods: determined by V(z;a)



General Parametric Approach: Value Function Iteration

guess a — V(z; a)
- <Uiaxi)7 1= 17 y T
— NEW Q

e Convergence

— Useful theory fact: T'is a contraction mapping
— Computational challenge: constructing T so that it is monotonic and /or a contraction mapping

*x Not easy

x Is it necessary?



e Computational Problem I: Approximating V' (z)

— Choose a finite-dimensional parameterization:

A

V(z)=V(z;a), a € R™ (3)
— Choose a finite number of states:
X = {331,332,"' 73371}7 (4)

— Objective: find coefficients a € R such that V(:U, a) “approximately” satisfies the Bellman
equation for r € X.

— Standard methods
x discrete states, step functions,

* piecewise linear functions

x ordinary polynomials and splines

— Can we find better? YES!



e Computational Problem II: Integration step

— Use some quadrature rule () to approximate

/ V(f (2w, 2)dp (2) = Q (V(F (2, 2)), 1 (2))

— Standard methods

x product rules
«x Monte Carlo

— Can we do better? YES!



e Computational Problem III: Maximization step

e For each x; on some grid, numerically solve

vi = max m(u, ;) + BQ(V(f (wi,u,2)), u(2))

— Standard methods
* bisection, Nelder-Mead

* fmincon

% use a single processor

— Can we do better? YES!



e Computational Problem IV: Fitting step

— Construct data to find an a € R™ such that V(z; a) fits the data
— Standard methods

* Piecewise linear interpolation
« Multilinear interpolation

x Polynomials and splines: often unstable!

— Can we do better? YES!



e How do we find better methods?

— Learn and use methods from approximation, quadrature, optimization, and computer science
literatures

— Construct our own methods!



