Approximation Methods

Dr. Kenneth L. Judd

September 5, 2011

Approximation Methods

e General Objective: Given data about f(x) construct simpler g(z) approximating f(z).
e (Questions:
— What data should be produced and used?

— What family of “simpler” functions should be used?

— What notion of approximation do we use?
e Comparisons with statistical regression

— Both approximate an unknown function and use a finite amount of data
— Statistical data is noisy but we assume data errors are small

— Nature produces data for statistical analysis but we produce the data in function approximation

Interpolation Methods

e Interpolation: find g (z) from an n-dimensional family of functions to exactly fit n data points

e Lagrange polynomial interpolation

— Data: (x;,y;),i=1,..,n.
— Objective: Find a polynomial of degree n — 1, p,(z), which agrees with the data, i.e.,

Yi = f(ZUZ), 1= 17"7”

— Result: If the x; are distinct, there is a unique interpolating polynomial

e Does p,(z) converge to f (z) as we use more points?

— No! Consider

zi=—5,—4,....3,4.5

Figure 1:

— Why does this fail? because there are zero degrees of freedom? bad choice of points? bad
function?

e Hermite polynomial interpolation

— Data: (x;,y;,v),i=1,..,n.
— Objective: Find a polynomial of degree 2n — 1, p(x), which agrees with the data, i.e.,

yi=p(z;), i=1,..n
yi=p'(x;), i=1,..,n

— Result: If the x; are distinct, there is a unique interpolating polynomial
e Least squares approximation

— Data: A function, f(z).

— Objective: Find a function g(x) from a class G that best approximates f(z), i.e.,

g = argmin || f — g’
geG

Orthogonal polynomials
e General orthogonal polynomials
— Space: polynomials over domain D
— Weighting function: w(x) > 0
— Inner product: (f,g) = [, f(x)g(x)w(x)dx
— Definition: {¢,} is a family of orthogonal polynomials w.r.t w (z) iff
(b1 0;) =0, i #]
— We can compute orthogonal polynomials using recurrence formulas
po(z) =1

¢1(z) =12
Gpor1 () = (ahy12 + bi) @1 () + Chpr10p_y ()

e Chebyshev polynomials

—[a,b] = [-1,1] and w(z) = (1 —a2) "

1

— T, (x) = cos(ncos™)

— Recursive definition

To(LU) =1
Ti(z)=x
Thii(z) =22T,(x) — T),_1(x),
— Graphs
T] T
“ 2 Vol « 1y ;

e General intervals

— Few problems have the specific intervals and weights used in definitions
— One must adapt the polynomials to fit the domain through linear COV:

* Define the linear change of variables that maps the compact interval |a, b] to [—1, 1]

T —a

b—a

+ The polynomials ¢} (z) = ¢; (—1 + 22=2) are orthogonal over = € [a, b] with respect to the
weight w* (z) = (—1 + 24=2) iff the ¢; (y) are orthogonal over y € [—1, 1] w.r.t. w (y)

y=—1+2

Regression

e Data: (z;,v;),1=1,..,n.

e Objective: Find a function f(z;8) with 5 € R™, m <n, with y; = f(z;),i = 1,..,n.
e Least Squares regression:

min (yi — f (x; 5))2

BeER™

Algorithm 6.4: Chebyshev Approximation Algorithm in R!

e Objective: Given f(z) defined on [a, b], find its Chebyshev polynomial approximation p(x)

e Step 1: Compute the m > n + 1 Chebyshev interpolation nodes on [—1, 1]:

2k — 1
zk——cos(W),k—l,---,m.

2m

e Step 2: Adjust nodes to [a, b] interval:

xp = (21 + 1) (Ta> +a,k=1,..,m.

e Step 3: Evaluate f at approximation nodes:

’wk::f(xk)a kzl)"'am'

e Step 4: Compute Chebyshev coefficients, a;,i =0,--- ,n :

_ 221:1 wi'Ti(zy,)
22121 Ti(z1)?

to arrive at approximation of f(z,y) on [a, b]:

pla) = En:aT (2“;::2’ ~ 1)

1=0

a;

Minmax Approximation

e Data: (z;,v;),1=1,..,n.
e Objective: L™ fit

Brg%% mz,aX lyi — f (xi; B)|]

e Problem: Difficult to compute

e Chebyshev minmax property

Theorem 1 Suppose [: [—1,1] — R is C* for some k > 1, and let I, be the degree n polynomial
interpolation of f based at the zeroes of Ty,11(x). Then

H J— 1, Hooé (; 10g(n+ 1) + 1)

n —k)! k/b—a\"
) (55 1

e Chebyshev interpolation:

— converges in L>; essentially achieves minmax approximation
— works even for C? and C® functions
— easy to compute

— does not necessarily approximate f’ well

Splines
Definition 2 A function s(x) on |a,b] is a spline of order n iff
1. 5 is C"% on [a,b], and

2. there is a grid of points (called nodes) a = o < x1 < -+ < T, = b such that s(x) is a polynomial
of degree n — 1 on each subinterval [x;, x;y1],7=0,...,m — 1.

Note: an order 2 spline is the piecewise linear interpolant.

e Cubic Splines

— Lagrange data set: {(z;, y;) | i =0, ---, n}.
— Nodes: The z; are the nodes of the spline
— Functional form: s(z) = a; + b; x + ¢; 2° + d; 2% on [z;_1, ;]

— Unknowns: 4n unknown coefficients, a;, b;, ¢;,d;, i =1,---n.

e Conditions:
— 2n interpolation and continuity conditions:

y; =a; + bx; + CZ-SUZ2 -+ di:c?,

1=1,.,n
R biiids + Ccoqae 4 o
Yi =Ai4+1 + i+1T5 + Ciy1; + i+1T;
1=0,.,n—1

— 2n — 2 conditions from C? at the interior: fori =1,---n — 1,

bz’ + 262’33@’ + BdZLUZQ :bi—i—l + 2CZ'+1 T; + SdH_lLUZZ
20@ + 6d1$2 :202’_1_1 + 6d2’+1$2’

— Equations (1-4) are 4n — 2 linear equations in 4n unknown parameters, a, b, ¢, and d.

— construct 2 side conditions:

" s"(x)? dz, among

x natural spline: s"(xyg) = 0 = §"(x,); it minimizes total curvature, f
solutions to (1-4).

x Hermite spline: s'(xg) =y, and §'(z,,) = v/, (assumes extra data)

x Secant Hermite spline: s'(xy) = (s(x1)—s(xg))/(x1—x0) and s'(x,) = (s(x,)—s(zp_1))/(xp—
Tp_1).

* not-a-knot: choose j = i1, 12, such that i1 +1 < ¢y, and set d; = dj11, J = 11, 02

— Solve system by special (sparse) methods; see spline fit packages

Shape Issues
e Approximation methods and shape

— Concave (monotone) data may lead to nonconcave (nonmonotone) approximations.

— Example

— Shape problems destabilize value function iteration

e Shape-preserving orthogonal polynomial approximation

— Let Least squares Chebyshev approximation preserving increasing concave shape with Lagrange
data (331', Uz’)

un 3 (S0, oo
J i=1 \ j=0
s.t Z ¢jd’; (zi) > 0,
j=1
chgb;-'(xi) <0, i=1,...,m.
j=1

— Least squares Chebyshev approximation preserving increasing concave shape with Hermite data

(xia Ui, ,U;)

m n

mincj Z Z qubj (zi)) —vi | +A Z Z Cﬂb (i) — Uz,'
1=1 7=0 1=
s.t. chgb; (z;) >0, i=1,...,m,
j=1
chgb;'(a:i) <0, i=1,...,m.
j=1

where A is some parameter.

e .1 Shape-preserving approximation

— L1 increasing concave approximation

n

min } 1D cd (@) — v

i=1 | j=1

s.t. chcb;- (z1) >0, k=1,....K
=1

n

chgb;-/(zk)g(), k=1,...,K

J=1

— NOTE: We impose shape on a set of points, z;, possibly different, and generally larger, from
the approximation points, z;.

— This looks like a nondifferentiable problem, but it is not when we rewrite it as

min A
Ci N
7 =1

n

j=1
ZCJ¢;/ (Zk) < 07 k= 17 7K
=1

e Use possibly different points for shape constraints; generally you want more shape checking points
than data points.

e Mathematical justification: semi-infinite programming

e Many other procedures exist for one-dimensional problems, but few procedures exist for two-
dimensional problems

Multidimensional approximation methods

e Lagrange Interpolation

— Data: D = {(z;,2)}Y, C R"™, where r; € R" and z; € R™
— Objective: find f: R" — R™ such that z; = f(z;).
— Need to choose nodes carefully.

— Task: Find combinations of interpolation nodes and spanning functions to produce a nonsin-
gular (well-conditioned) interpolation matrix.

Tensor products

e General Approach:

— If A and B are sets of functions over x € R", y € R, their tensor product is

A® B ={p@)Y(y) | ¢ € A, ¢ € B}.

— Given a basis for functions of x;, ' = {©! ()}, the n-fold tensor product basis for functions
of (xy,9,...,x,) is

=1

e Orthogonal polynomials and Least-square approximation

— Suppose ®* are orthogonal with respect to w;(z;) over [a;, b;]
— Least squares approximation of f(xy, -, x,) in ® is
(o, f)
2 (0,0)
ped ’

where the product weighting function
Wz, xa, -+ ,x,) = H w;(x;)
defines (-, -) over D = [];|a;, b;] in -
() gle)) = [falglaWie)ds

Algorithm 6.4: Chebyshev Approximation Algorithm in R?
e Objective: Given f(z,y) defined on [a,b] X [c,d], find its Chebyshev polynomial approximation
p(z,y)

e Step 1: Compute the m > n + 1 Chebyshev interpolation nodes on [—1, 1]:

2k — 1
2L = —CO8S T , k=1 ,m.

2m

e Step 2: Adjust nodes to |a, b] and [c, d] intervals:

b—
$k—(2k+1)(2a> +a,k=1,..,m.

d—
?Jk:—(zk+1)< 5 C) +c,k=1,...,m.

e Step 3: Evaluate f at approximation nodes:

wre = floe,y), k=1, m., £=1,--
e Step 4: Compute Chebyshev coefficients, a;;,4,j =0,--- ,n:
o e i W Tiz) Ty(20)
T (L T (S T ()

to arrive at approximation of f(z,y) on [a, b] X [c, d]:

p(z,y) :En:iaijTi (2:2:2—1)7} <2y_c—1)

d—c
i=0 j=0

Complete polynomials

e Taylor’s theorem for R" produces the approximation

flo) = (") + 3L g5 (2 —af)

82
T35 le 1 222 1 81’218{5% (.CU())(.QZ’“ T xgl)(xlk - m?}) + ..

— For k = 1, Taylor’s theorem for n dimensions used the linear functions Py = {1, z1, 2, -+ , 2.}

— For k = 2, Taylor’s theorem uses Py = Pl U {x?, -+ , 22, 2129, T173,* * * , Tp_1Tn }-

e In general, the kth degree expansion uses the complete set of polynomials of total degree k in n
variables.

n
sz{lelxﬁffz i <k, 0<idp, - yinf
=1

e Complete orthogonal basis includes only terms with total degree k£ or less.

e Sizes of alternative bases

degree k Py Tensor Prod.
2 l+n+n(n+1)/2 3"
(n+1) n(n—1)(n—2) n
3 l+n+ +n? 4+ B 4

— Complete polynomial bases contains fewer elements than tensor products.
— Asymptotically, complete polynomial bases are as good as tensor products.

— For smooth n-dimensional functions, complete polynomials are more efficient approximations

e Construction

— Compute tensor product approximation, as in Algorithm 6.4

— Drop terms not in complete polynomial basis (or, just compute coefficients for polynomials in
complete basis).

— Complete polynomial version is faster to compute since it involves fewer terms

— Almost as accurate as tensor product; in general, degree k£ + 1 complete is better then degree
k tensor product but uses far fewer terms.

Shape Issues

e Much harder in higher dimensions
e No general method

e The L2 and L1 methods generalize to higher dimensions.

— The constraints will be restrictions on directional derivatives in many directions
— There will be many constraints
— But, these will be linear constraints

— L1 reduces to linear programming; we can now solve huge LP problems, so don’t worry.

