
Dynamic Programming for Portfolio Problems
            

Yongyang Cai, iCME, Stanford University
    

Dr. Kenneth L. Judd, Hoover Institution
 

 September 4, 2009
This talk is based on the PhD thesis of Yongyang Cai. I have sent this to you since it will form the basis for my talk.

Please excuse the preliminary nature of this draft. 

Any comments will be welcomed.



DYNAMIC PROGRAMMING AND ITS APPLICATION

IN ECONOMICS AND FINANCE

A DISSERTATION

SUBMITTED TO THE INSTITUTE FOR

COMPUTATIONAL AND MATHEMATICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Yongyang Cai

June 2009



c© Copyright by Yongyang Cai 2009

All Rights Reserved

ii



Abstract

Multistage decision problems are numerically challenging. Typically the work to solve such problems

is an exponential function both with respect to the number of stages and the number of decision

parameters. The problems have been researched extensively and a wide variety of methods to solve

them have been proposed. Inevitably all methods are limited in the size of problem they can solve.

The purpose of our work is to develop a new more ecient algorithm and one that is suitable to run on

parallel architectures and in so doing extend signicantly the size of problems that are tractable.

We present a numerical dynamic programming algorithm that has three components: optimization,

approximation and integration. A key feature of the approximation methods we use is to preserve

mathematical features such as convexity and dierentiability, which enables us to use powerful opti-

mization methods. To illustrate the eciency of the new method we present extensive results on optimal

growth models and on dynamic portfolio problems obtained from implementation of the algorithm

designed to run on the Condor Master-Worker system.
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Chapter 1

Optimal Decision-Making Problem

In the real world, we often encounter a lot of optimal decision-making problems, which are also called

optimal control problems. In the following, two simple examples are given, the first one is a finite

horizon dynamic asset allocation problem arising in finance, and the second one is an infinite horizon

deterministic optimal growth model arising in economics.

1.1 Dynamic Portfolio Problem

A dynamic portfolio problem is a multi-stage asset allocation problem, which is very popular in asset

management.

Let Wt be an amount of money planned to be invested at stage t. Assume that available assets

for trading are n stocks and a bond, where stocks have a random return vector R = (R1, . . . , Rn) and

the bond has a riskfree return Rf for each period. If xtWt = (xt1, . . . , xtn)⊤Wt is a vector of money

invested in n risky assets at time t, then money invested in the riskless asset is (1− e⊤xt)Wt where e

is a column vector with 1 everywhere. Thus, wealth at next stage is

Wt+1 = Wt(Rf (1 − e⊤xt) +R⊤xt), (1.1)

for t = 0, 1, . . . , T − 1.

A simple dynamic asset allocation problem is to find an optimal portfolio xt at each stage t such

that we have a maximal expected terminal utility, i.e.,

V0(W0) = max
xt,0≤t<T

E[u(WT )],

where WT is the terminal wealth derived from the recursive formula (1.1) with give W0, and u is the

terminal utility function.

1



2 CHAPTER 1. OPTIMAL DECISION-MAKING PROBLEM

1.2 Deterministic Optimal Growth Model

A simplest infinite-horizon economic problem is a discrete-time deterministic optimal growth model

with one good and one capital stock, which is also called as a wealth accumulation problem. It is to

find an optimal consumption decision such that total utility over an infinite-horizon time is maximized,

i.e.,

V (k0) = max
ct

∞∑

t=0

βtu(ct)

s.t. kt+1 = F (kt) − ct, t ≥ 0,

where kt is the capital stock at time t with k0 given, ct is the consumption, β is the discounter factor,

F (k) = k + f(k) with f(kt) the aggregate net production function, u(·) is the utility function, and

V (·) is called as the value function.



Chapter 2

A Review of Dynamic

Programming Theory

The previous two models are two kinds of sequential decision-making problems, which consist of a

state process initialized at some given initial state, a sequence of decisions in choice sets, a sequence

of transition probabilities of states, and a utility function u (Rust [47]). Dynamic programming (DP),

also known as backward induction, is a recursive method to solve these sequential decision problems.

It can be applied in both discrete time and continuous time settings. When there is no close-formed

solution for a continuous time problem, the most commonly used numerical method is to approximate

the continuous time problem by the discrete time version with small time intervals between successive

decisions, and then to solve the approximate discrete time problem by using discrete time DP methods.

This is practical because the solutions of the discrete time DP problems will converge to the continuous

time solution under some general conditions, as the time intervals tend to zero (Kushner [30]). In this

monograph, we will omit the continuous time problems and focus on discrete time DP problems.

In Bellman [3], the common structure underlying sequential decision problems is shown and DP is

applied to solve a wide class of sequential decision problems. In any DP problems, there are two key

variables: a state variable and an action variable (the action is also called decision variable or control

variable, and the variables can be vectors). The optimal decision is a function dependent on the state

variable and time t. The function is called the policy function in Bellman [3]. The equivalence between

the original sequential decision problems and their corresponding DP problems is called the principle

of optimality, which is described in Bellman [3] as: “An optimal policy has the property that whatever

the initial state and initial decision are, the remaining decisions must constitute an optimal policy

with regard to the state resulting from the first decision”. Thus, the multi-stage or infinite-period

sequential decision problems are reduced to a sequence of one-period optimal control problems.

3



4 CHAPTER 2. A REVIEW OF DYNAMIC PROGRAMMING THEORY

2.1 General Model

The finite horizon optimal decision-making problems can be expressed in the following general model:

Vt(xt) = max
as∈D(xs,s),s≥t

T−1∑

s=t

βs−tE[us(xs, as) | xt] + βT−tE[uT (xT ) | xt],

for t = 0, 1, . . . , T , where T is finite, xt is the state process with initial state x0, and at is the action

variable (xt and at can be vectors), ut(x, a) is a utility function at time t < T and uT (x) is the

terminal utility function, β is the discount factor (0 < β ≤ 1), D(xt, t) is a feasible set of at, E(·) is

the expectation operator.

The DP model for this kind of finite horizon problems is the basic Bellman equation,

Vt(x) = max
a∈D(x,t)

ut(x, a) + βE{Vt+1(x
+) | x, a},

where Vt(x) is called the value function at stage t with VT (x) = uT (x), x+ is the next-stage state at

t+ 1 conditional on the current-stage state x and the action a at t. From this model, we know that

there are three main components in the numerical DP method: numerical optimization, numerical

approximation and numerical integration.

The infinite horizon optimal decision-making problems have the following general form:

V (x0) = max
at∈D(xt)

∞∑

t=0

βtE[u(xt, at)],

where xt is the state process with initial state x0, and 0 ≤ β < 1.

The DP model for this kind of infinite horizon problems is

V (x) = max
a∈D(x)

u(x, a) + βE{V (x+) | x, a},

where V (x) is called the value function, x+ is the next-stage state conditional on the current-stage

state x and the action a.

2.2 Examples

For the previous dynamic asset allocation model, its value functions satisfy the Bellman equation,

Vt(Wt) = max
xt

E{Vt+1(Wt(Rf (1 − e⊤xt) +R⊤xt))},

where Wt is the state variable and xt is the control variable vector, for t = 0, 1, . . . , T − 1, and the

terminal value function is VT (W ) = u(W ).

For the previous deterministic optimal growth model, its value function satisfies the Bellman
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equation,

V (k) = max
c

u(c) + βV (F (k) − c),

where k is the state variable, and c is the control variable.

2.3 Theoretical Results of Dynamic Programming

Let Γ denote the Bellman operator,

Γ(f)(x) = max
a∈D(x)

u(x, a) + βE{f(x+) | x, a},

in which we suppose that f is a continuous and bounded function on a state space S, u(x, a) is a

continuous function of (x, a), the state space S is compact, the constraint sets D(x) are compact for

each x ∈ S, β ∈ (0, 1), and E{f(x+) | x, a} is a continuous function of (x, a). It is well known that Γ

satisfies the contraction property, i.e.,

‖Γ(f) − Γ(g)‖∞ ≤ β‖f − g‖∞,

for any continuous and bounded functions f and g on the compact state space S. By the contraction

mapping theorem, we know that there is a unique fixed point of the operator Γ. That is, the Bellman

equation Γ(f) = f has a unique solution V under the above assumptions. See the proof in Blackwell

[5] and Denardo [14].

For infinite horizon problems, by the contraction property of Γ, it is well known that for any

bounded and continuous function V0,

lim
n→∞

Γn(V0) = V ∗,

where V ∗ is the fixed point of Γ, and Γn denotes n successive iterations of the Bellman operator Γ.

Being motivated by the contraction property, value function iteration Vn+1 = ΓVn, is the simplest

numerical procedure for finding V ∗. Vn is called the n-th iterated value function.

Under regularity conditions and some general assumptions, Santos and Vigo-Aguiar [49] gave a

numerical error bound for the converged value function from value function iteration for an infinite

horizon problem,

‖V ∗ − V̂ ∆x
ε ‖ ≤ ‖∇2V ∗‖

2(1 − β)
(‖∆x‖)2 +

ε

1 − β
,

where β is the discount factor, V ∗(·) is the exact value function (the fixed point of Γ), ∆x is the mesh

size in the finite element method of Santos and Vigo-Aguiar [49], V̂ ∆x
ε (·) is the converged estimated

value function with a stopping criterion ε (i.e., ‖LΓ(V̂ ∆x
ε ) − V̂ ∆x

ε ‖ ≤ ε, where L is the finite element

approximation operator).

The above numerical error bound formula is extended to non-expansive approximation operator

L (i.e., ‖Lf − Lg‖ ≤ ‖f − g‖ for any bounded Borel measurable functions f and g on the compact
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space S) by Stachurski [51],

‖V ∗ − Vπ‖ ≤ 2

1 − β

(
β‖V̂N − V̂N−1‖ + ‖LΓ(V̂N) − Γ(V̂N )‖

)
,

or

‖V ∗ − Vπ‖ ≤ 2

(1 − β)2

(
β‖V̂N − V̂N−1‖ + ‖LV ∗ − V ∗‖

)
,

where V̂N is the N -th iterated value function, π is the V̂N -greedy policy function (i.e., π(x) =

arg maxa∈D(x) {u(x, a) + βE[V̂N (x+) | x, a]}), Vπ(x) is the value following the policy π when starting

at initial state x (i.e., Vπ(x) =
∑∞

t=0 β
tE[ut(xt, at)]).

Maldonado [35] showed that if the utility function is strongly concave, then the distance between

the optimal policy function and the solution of the n-th iteration of the Bellman equation for an

infinite horizon problem is lower than a constant times the square root of the distance between the

value function and the n-th iteration of the Bellman operator Γ from any initial function V0. That is,

‖π∗ − π‖ ≤ c‖V ∗ − V̂N‖1/2,

where c > 0 is a constant, V̂N is the N -th iterated value function, π is the V̂N -greedy policy function,

and π∗ is the optimal policy function.



Chapter 3

Numerical Methods for Dynamic

Programming

When state variables and control variables are continuous, in general situations, the expectation

operator and the maximum operator in dynamic programming (DP) models can only be computed

approximately. Moreover, each iterated value function cannot be calculated and represented exactly

by Computers. Therefore, some kinds of approximation must be done. We separate them into three

parts: numerical integration, numerical optimization, and numerical approximation for functions.

3.1 Discretize the State Space

The simplest DP problems have a finite horizon T and a finite set of states, X = {xi : 1 ≤ i ≤ m}.
That is,

Vt(xi) = max
ai∈D(xi)

ut(xi, ai) + βEVt+1(x
+
i ),

where VT (x) = uT (x), ai is the control variable, and x+
i ∈ X is the next-stage state conditional on

the current-stage state xi, for 1 ≤ i ≤ m, 0 ≤ t < T .

For an infinite horizon problem with a finite set of states, X = {xi : 1 ≤ i ≤ m}, the above model

becomes

V (xi) = max
ai∈D(xi)

u(xi, ai) + βEV (x+
i ),

or simply denoted as V = ΓV . We know that value function iteration Vn+1 = ΓVn with an initial

guess V0 can be applied to find the solution V of the Bellman equation. Moreover, we could use

acceleration methods such as policy function iteration, Gaussian iteration method and upwind Gauss-

Seidel method, etc. We will not discuss them in details here, detailed discussion of them can be seen

in Judd [28].

To solve a DP problem with a continuous state x ∈ S approximately, the simplest numerical

procedure is discretization method, which replaces the state space S by a finite set X = {xi : 1 ≤ i ≤

7
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m}, of permissible values. Then we can apply the above value function iteration method for this new

discrete-state DP problem. Discretization method essentially approximates V with a step function,

since it implicitly treats any state between xi and xi+1 as either xi or xi+1.

Discretization method is often inefficient since a large number of discrete states are required to get

a well-approximated solution. In order to get a solution within O(ε) error bound for a problem with n

continuous states, we often need O((1/ε)n) points. So it becomes impractical for larger problems with

a few state variables, because of the “curse of dimensionality”. For problems with continuous state

variables and smooth value functions, there are many alternatives to discretization, such as piecewise

linear approximation, polynomial approximation, spline approximation, and so on. All these methods

need some parameters to represent approximated functions. DP with these methods are referred as

parametric dynamic programming algorithms.

3.2 Parametric Dynamic Programming

In DP problems, if state variables and control variables are continuous such that value functions are

also continuous, then we have to use some approximation for the value functions, since computers

cannot model the entire space of continuous functions. We focus on using a finitely parameterizable

collection of functions to approximate value functions, V (x) ≈ V̂ (x; b), where b are parameters. The

functional form V̂ may be a linear combination of polynomials, or it may represent a rational function

or neural network representation, or it may be some other parameterization specially designed for

the problem. After the functional form is fixed, we focus on finding parameters b such that V̂ (x; b)

approximately satisfies the Bellman equation. The algorithm of the numerical DP with value function

iteration can solve the Bellman equation approximately. See Judd [28].

Algorithm 3.1. Numerical Dynamic Programming with Value Function Iteration for Finite Horizon

Problems

Initialization. Choose the approximation nodes, Xt = {xit : 1 ≤ i ≤ mt}, and choose functional

form for V̂ (x; bt) for every t < T . Let t = T − 1 and V̂ (x; bT ) = VT (x) = uT (x).

Step 1. Maximization step. Compute

vi = max
ai∈D(xi,t)

ut(xi, ai) + βE{V̂ (x+
i ; bt+1) | xi, ai},

for each xi ∈ Xt, 1 ≤ i ≤ mt.

Step 2. Fitting step. Using an appropriate approximation method, compute the bt such that V̂ (x; bt)

approximates (xi, vi) data.

Step 3. If t = 0 STOP; else t→ t− 1 and go to step 1.
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Operations of expectation (numerical integration), numerical optimization and numerical fitting

in the above algorithm have three numerical (absolute) errors, ε1, ε2, ε3, in each iteration (ε2 may be

large if numerical optimization solver returns a local optimizer which is not the global one). Then

−ǫ+ βE{V̂ (x+
∗ ; bt) − Vt+1(x

+
∗ ) | x, a∗} ≤ V̂ (x; bt) − Vt(x)

≤ ǫ+ βE{V̂ (x+
∗ ; bt) − Vt+1(x

+
∗ ) | x, a∗},

where ǫ = ε1 + ε2 + ε3, a
∗ is the optimal action and x+

∗ is the next-stage state conditional on the

current-stage state x and action a∗. So for a finite horizon problem, its numerical error bound for

each t < T is

‖V̂ (x; bt) − Vt(x)‖ ≤






ǫ(1−βT−t)
1−β , when β < 1,

(T − t)ǫ, when β = 1.

Remark 3.1. For finite horizon problems, if you want to get a value function within ε accuracy, then

we should have ǫ < (1 − β)ε when β < 1, and ǫ < ε/T when β = 1.

The following is the algorithm of parametric DP with value function iteration for infinite horizon

problems:

Algorithm 3.2. Numerical Dynamic Programming with Value Function Iteration for Infinite Horizon

Problems

Initialization. Choose the approximation grid, X = {xi : 1 ≤ i ≤ m}, and choose functional form

for V̂ (x; b). Make initial guess V̂ (x; b0) and choose stopping criterion ε > 0. Let t = 0.

Step 1. Maximization step. Compute

vi = max
ai∈D(xi)

u(xi, ai) + βE{V̂ (x+
i ; bt) | xi, ai},

for each xi ∈ X , 1 ≤ i ≤ m.

Step 2. Fitting step. Using the appropriate approximation method, compute the bt+1 such that

V̂ (x; bt+1) approximates (xi, vi) data.

Step 3. If ‖V̂ (x; bt+1) − V̂ (x; bt)‖ < ε, STOP; else t→ t+ 1 and go to step 1.

Remark 3.2. For infinite horizon problems, when β is close to 1, if you want to get a value function

within ε accuracy, then the stopping criterion should be ‖V̂ (x; bt+1) − V̂ (x; bt)‖ < (1 − β)ε and ǫ <

(1 − β)2ε (see Stachurski [51]).
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3.3 Algorithm Architecture

In the maximization step of the DP algorithm architecture, the utility function u(x, a), law of motion

from x to x+, the constraints, and numerical integration of the next-stage value function are defined

as basic subroutines so that it is easy to change from one DP problem into another DP problem by

changing these basic subroutines.

Since V̂ (x; b) are the approximation function with given values at finite nodes, the approximation is

only good at a finite range. That is, the state variable must be in a finite range [xt
min, x

t
max] which may

be dependent on time t. Thus, in the constraints, we should have the restriction x+
i ∈ [xt+1

min, x
t+1
max].

For infinite horizon problem, the range should be invariant [xmin, xmax], and for all x ∈ [xmin, xmax],

we should have x+ ∈ [xmin, xmax ]̇. Thus, if the steady state xss exists then xss should be inside of

[xmin, xmax].

Another issue is that all the functions should be defined everywhere, as the optimizer may touch

the outside of the feasible domain. Otherwise, some optimizers may fail to continue the optimization

process. For example, if a function f(x) is defined for positive x, then we could extend it to non-

positive region as a linear extrapolation

f̂(x) =





f(x), if x ≥ ǫ,

f(ǫ) + f ′(ǫ)(x− ǫ), if x < ǫ,

or a quadratic extrapolation

f̂(x) =





f(x), if x ≥ ǫ,

f(ǫ) + f ′(ǫ)(x − ǫ) + 1
2f

′′(ǫ)(x − ǫ)2, if x < ǫ.

If f is a smooth function, the quadratic extrapolation formula makes f̂ ∈ C2 such that it would

be great for optimizers to use non-zero second derivatives (the value of second derivative of f is a

denominator in the iteration step of Newton method), while the linear extrapolation formula makes

f ′′(x) = 0 for x < ǫ and f ′′(ǫ) even fails to exist. But the linear extrapolation formula has its

advantage when |f ′′(x)| → ∞ as x ↓ 0, such as f(x) = log(x) or f(x) = xα with α < 2. In such a

situation, the quadratic extrapolation may overflow if ǫ is chosen to be very small.

In the maximization step, we need care about the choice of the optimization solver. Since usu-

ally each maximization step is an optimization problem with small size (just several unknowns and

constraints), the best choice may be NPSOL. If the objective function is non-differentiable, then

Nelder-Mead method may be a good choice while there is no constraint. But if there are some

constraints, Nelder-Mead method is often not a good alternative. Instead, we could use convex opti-

mization techniques discussed in Grand et al. [23] and Mattingley and Boyd [36], if the optimization

problem is a convex one.

The stopping criterion for the optimization solver is another issue. If it is too loose, then the con-

verged solution might not approximate the true one enough such that the concavity and monotonicity
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properties of the value function may be lost even if we are using a shape-preserving approximation

method in the fitting step; but if it is too strict, then it will take too many times and may be unnec-

essary because the small errors may be recovered in the following value iterations for infinite horizon

problems.

A good initial guess of optimal control for each optimization problem in the maximization step is

also an important issue. The intuitive choice is to use the optimal values of choice variables in the

last iteration of the DP procedure. But in the first iterations, the optimal values of choice variables in

the last node may be a better choice, this could be done via “Warm Start” option in the optimization

solver.

In the fitting step of the algorithm, various approximation methods are given as separate mod-

ules, so the user can switch from one approximation method to another approximation method. In

the current version, the following approximation methods are provided: piecewise linear interpo-

lation method, (tensor/complete) Chebyshev polynomial approximation method, Schumaker shape-

preserving spline interpolation method, Cubic spline method, and B-spline method. These methods

will be described in details in section 4.2.

In the step 3, for an infinite horizon problem, we will calculate the values of V̂ (x; bt+1) and V̂ (x; bt)

at some other state grid nodes X̃ = {x̃i : 1 ≤ i ≤ m̃}, then get the approximation of ‖V̂ (x; bt+1) −
V̂ (x; bt)‖. Since V̂ (x; bt) may be close to 0 or quite large at some nodes, we use max{|V̂ (x̃i; b

t+1) −
V̂ (x̃i; b

t)|/(1 + |V̂ (x̃i; b
t)|)} as the adjusted norm ‖V̂ (x; bt+1) − V̂ (x; bt)‖.

The version of DP method with value function iteration for these multidimensional problems with

both continuous and discrete states is given in Algorithm 3.3. In the algorithm, we denote d as the

dimension for the continuous states x and k as the dimension for discrete states θ, i.e., x ∈ R
d and

θ ∈ Θ = {θj = (θj1, . . . , θjk) : 1 ≤ j ≤ N}. The transition probabilities from θi to θj for 1 ≤ i, j ≤ N

are given. For convenience, we also give the form of model,

V0(x, θ) = max
at∈D(xt,θt,t)

T∑

t=0

βtE{ut(xt, θt, at)},

where (xt, θt is the state process with initial state (x0, θ0) = (x, θ). Its corresponding DP model is

Vt(x, θ) = max
a∈D(x,θ,t)

ut(x, θ, a) + βE{Vt+1(x
+, θ+) | x, θ, a},

where (x+, θ+) is the next-stage state conditional on the current-stage state (x, θ).

Algorithm 3.3. Parametric Dynamic Programming with Value Function Iteration for Problems with

Multidimensional Continuous and Discrete States

Initialization. Given a finite set of θ ∈ Θ = {θj = (θj1, . . . , θjk) : 1 ≤ j ≤ N} and the transition

probabilities from θi to θj for 1 ≤ i, j ≤ N . Choose functional form for V̂ (x, θ; b) with x ∈ R
d

for all θ ∈ Θ, and choose the approximation grid, Xt = {xt
i = (xt

i1, . . . , x
t
id) : 1 ≤ i ≤ mt}. Make

initial guess V̂ (x, θ; b0) and choose stopping criterion ε > 0 for an infinite horizon problem, or

let V̂ (x, θ; b0) = VT (x, θ) := uT (x, θ) for a finite horizon problem.
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Step 1. Maximization step. Compute

vij = max
aij∈D(xi,θj,t)

ut(xi, θj , aij) + βE{V̂ (x+
i , θ

+
j ; bt) | xi, θj, aij},

for each xi ∈ Xt and θj ∈ Θ, 1 ≤ i ≤ mt, 1 ≤ j ≤ N .

Step 2. Fitting step. Using the appropriate approximation method, compute the bt+1
j , such that

V̂ (x, θj ; b
t+1
j ) approximates {(xij , vij): 1 ≤ i ≤ mt} data for each 1 ≤ j ≤ N .

Step 3. If t = T − 1 for a finite horizon problem, or if max{ej} < ε for an infinite horizon problem,

where ej = ‖V̂ (x, θj ; b
t+1
j ) − V̂ (x, θj ; b

t
j)‖ for 1 ≤ j ≤ N , STOP; else go to step 1.

Remark 3.3. The conditional expectation operator for the discrete state θ may have the sparsity

property. Foe example, some conditional probabilities from θj to θk may be 0, i.e., Pr(θ+j = θk) = 0.

If so, then there is no need to calculate V̂ (x, θk; bt) when computing E{V̂ (x+
i , θ

+
j ; bt) | xi, θj , aij}.



Chapter 4

Tools from Numerical Analysis

The previous chapter outlined the basic numerical challenges. In this chapter, we review the tools

from numerical analysis that we use to produce stable and efficient algorithms. There are three main

components in numerical dynamic programming (DP): optimization, approximation and numerical

integration.

4.1 Optimization

For each value function iteration, the most time-consuming part is the optimization step. Moreover,

there are m optimization tasks if the number of approximation nodes is m, all these m optimization

tasks are required to give their global optimizers. If the number of value function iterations is N , then

the total number of optimization tasks is N ×m. Thus, an efficient and stable optimization step is

very important in numerical DP. Luckily, all these optimization tasks are usually small-size problems

with a small number of control variables. Moreover, they are easily parallelized in each value function

iteration. More detailed discussion and application about parallelization will be shown in chapter 8.

If value function is only piecewise linear, then the objective function of the optimization problem

in the maximization step is not smooth, such that we can only use Nelder-Mead-like methods to solve

the optimization problem unless it can be transformed into a linear programming (LP) problem. But

a Nelder-Mead-like method is usually very slow, which makes it inefficient in solving optimization

problems.

If value function is smooth, we can use Newton’s method and related methods for constrained

nonlinear optimization problems. Newton-type methods are very credited by the property of a locally

quadratic convergence rate to local optimizer. A detailed discussion of these methods can be seen in

Gill, Murray and Wright [21, 22], and Murray and Prieto [40]. There are a lot of optimization software

packages available to solve these constrained nonlinear optimization problems, such as SNOPT (see

Gill, Murray and Saunders [18, 19]), KNITRO (see Byrd et al. [7]), and so on. These solvers can be

also available for usage in NEOS server website: http://neos.mcs.anl.gov, after coding in AMPL

or GAMS.

13
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In our Fortran codes designed for various DP problems, we use NPSOL Fortran package (see Gill,

Murray, Saunders and Wright [20]), which is also similar to NPOPT, a part of SNOPT package for

small dense problems. NPSOL is a set of Fortran subroutines for minimizing a smooth function subject

to linear and nonlinear constraints. NPSOL uses the popular sequential quadratic programming (SQP)

algorithm in which each search direction is the solution of a quadratic programming (QP) subproblem.

Since NPSOL requires relatively few evaluations of the objective or constraint functions, it is especially

effective if the problem functions are expensive to evaluate. Hence, NPSOL is the most appropriate

optimization solver for our DP application in economics and finance, since the optimization tasks

in numerical DP are small-size smooth problems with relatively expensive objective or constraints

evaluation due to the “curse of dimensionality” for value function approximation and its numerical

integration.

4.2 Approximation Methods

In an approximation scheme, it consists of two aspects: basis functions and approximation nodes.

Approximation nodes can be chosen as uniformly spaced nodes, Chebyshev nodes, or some other

specified nodes. From the viewpoint of basis functions, approximation methods can be classified as

either spectral methods or finite element methods. A spectral method uses globally nonzero basis

functions φj(x) such that V̂ (x) =
∑m−1

j=0 cjφj(x). In this section, we present the examples of spec-

tral methods such as ordinary polynomial approximation method, and (tensor/complete) Chebyshev

polynomial approximation method. In contrast, a finite element method uses locally nonzero basis

functions φj(x) which are nonzero over sub-domains of the the approximation domain. The examples

of finite element methods include piecewise linear interpolation method, Schumaker shape-preserving

spline method interpolation method, Cubic spline method, B-spline method.

4.2.1 Piecewise Linear Interpolation

The simplest continuous state value function approximation is the piecewise linear interpolation

method. That is, in the fitting step of parametric DP algorithms with value function iteration,

we approximate V (x) by

V̂ (x;λ) = vi +
vi+1 − vi

xi+1 − xi
(x− xi) = λi0 + λi1x, if xi ≤ x ≤ xi+1,

where λi0 = (xi+1vi − xivi+1)/(xi+1 − xi) and λi1 = (vi+1 − vi)/(xi+1 − xi), for i = 1, . . . ,m. This

interpolation obviously preserves monotonicity and concavity. But it is not differentiable. So the

problem with linear interpolation is that it makes the maximization step less efficient. The kinks in

a linear interpolant will generally produce kinks in the objective of the maximization step, forcing us

to use slower optimization algorithms.
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4.2.2 Ordinary Polynomial Approximation

The most naive global approximation method is ordinary polynomial interpolation method. That

is, given a Lagrange data points set {(xi, vi) : i = 1, . . . , n}, we find a polynomial V̂ (x) such that

V̂ (xi) = vi for i = 1, . . . , n.

For univariate problems, this function V̂ (x) is a degree-(n − 1) polynomial. That is, we find

the polynomial coefficients ci such that V̂ (x) =
∑n−1

i=0 cix
i. These coefficients can be theoretically

computed by a linear system Ac = v, where c = (c0, c1, . . . , cn−1)
⊤, v = (v1, . . . , vn)⊤, and

A =





1 x1 · · · xn−1
1

1 x2 · · · xn−1
2

...
...

. . .
...

1 xn · · · xn−1
n




,

which is called the Vandermonde matrix. From the matrix computation theorem, we know there is a

unique solution to the linear system Ac = v, if the points x1, . . . , xn are distinct.

However, to solve the linear system Ac = v, it will have a time cost O(m3) in general. Moreover,

the conditional number of A is generally large. In practice, there is a simple way to find the coefficients

c by using the Lagrange interpolation polynomial

p(x) =
n∑

i=1

vi

∏

j 6=i

x− xj

xi − xj
,

which interpolates the Lagrange data, i.e., p(xi) = vi for i = 1, . . . , n. Therefore, ci is equal to the

combination of the coefficients of xi in p(x).

If this is a multivariate problem or we want to use a smaller degree polynomial to approximate

the function, we want to find a polynomial approximation V̂ (x) =
∑m−1

j=0 cjφj(x) with m ≤ n, where

φj(x) are the basis monomials here (φ0(x) = 1 and in univariate case φj(x) = xj), such that c is the

minimizer of the problem

min
n∑

i=1



vi −
m−1∑

j=0

cjφj(x)




2

.

Let

Φ =





1 φ1(x1) · · · φm−1(x1)

1 φ1(x2) · · · φm−1(x2)
...

...
. . .

...

1 φ1(xn) · · · φm−1(xn)




.

Then the minimizer is

c = (Φ⊤Φ)−1Φ⊤v,

which is equivalent to the interpolation when m = n and Φ is nonsingular.

In some cases, we may wish to find a polynomial that fits both function values vi and its first
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derivatives si at specified points xi. That is, we want to find a polynomial V̂ (x) =
∑m−1

j=0 cjφj(x)

such that

m−1∑

j=0

cjφj(xi) = vi, i = 1, . . . , n,

m−1∑

j=0

cj∇φj(xi) = si, i = 1, . . . , n.

Since there are (d+1)n conditions (d is the dimension of xi), we should let m = (d+1)n to satisfy

the conditions. This is called as the Hermite interpolation.

4.2.3 Orthogonal Polynomials

In the above Lagrange polynomial approximation method, we need to solve the linear system c =

(Φ⊤Φ)−1Φ⊤v, which will have a time cost O(m3) and a large conditional number of Φ⊤Φ in general.

Thus the polynomial approximation method is not practical.

Moreover, the above Lagrange polynomial interpolation does not always work even on smooth and

good-shaped functions. In Judd [28], there is an example f(x) = (1 + x2)−1 over the interval [-5,5] to

show the nonconvergence of interpolation, i.e., the degree n − 1 interpolation at n uniformly spaced

points will be worse as n is larger.

Therefore, if we choose basis functions and approximation nodes such that Φ is an orthogonal

matrix, then Φ⊤Φ is a diagonal matrix, and it makes the computation of c = (Φ⊤Φ)−1Φ⊤v trivial.

This leads to the orthogonal polynomial ideas.

From another point of view, if we think the space of smooth functions is spanned by the monomials

xj , then the polynomial approximation method is to use the monomials as basis functions to construct

the approximation of functions. Thus from the basic vector space theory, orthogonal base will be

better, i.e., we need to construct the orthogonal polynomials.

At first, in the space of smooth functions, we define the weighted inner product as

< f, g >=

∫ b

a

f(x)g(x)w(x)dx,

where w(x) is a weighting function on [a, b] that is positive almost everywhere and has a finite integral

on [a, b]. Thus, we say that two functions f and g are orthogonal with respect to the weighting function

w(x) if < f, g >= 0. Moreover, the family of polynomials {φj(x)} is called mutually orthogonal

polynomials with respect to the weighting function w(x) if < φi, φj >= 0 for any i 6= j.

Given a weighting function and a family of basis functions, we can use the Gram-Schmidt procedure

to generate the orthogonal base. By choosing monomials as the family of basis functions and different

weighting function w(x), there are several famous families of orthogonal polynomials such as Legendre

polynomials on [−1, 1] with w(x) = 1, Chebyshev polynomials on [−1, 1] with w(x) =
(
1 − x2

)−1/2
,

Laguerre polynomials on [0,∞) with w(x) = e−x, Hermite polynomials on (−∞,∞) with w(x) = e−x2

,

and so on. For more detailed discussion, see Kenneth Judd [28].
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4.2.4 Chebyshev Polynomial Approximation

In section 4.2.2, we approximate functions in the L2 form to minimize
∑n

i=1(vi − V̂ (xi))
2 or minimize

‖V − V̂ ‖2 where V̂ (x) =
∑m−1

j=0 cjφj(x). But the convergence in L2 can not guarantee that the

approximation is close to the function everywhere, i.e., the approximation could be far away from the

function at some individual points while the L2 error is small.

L∞ Approximation

We want to find a sequence of polynomials, {V̂n(x)}, such that

lim
n→∞

‖V − V̂n‖∞ = 0,

where ‖V − V̂n‖∞ is the L∞ norm, i.e., ‖V − V̂n‖∞ = supx∈[a,b] |V (x)− V̂n(x)|. V̂n is called as the L∞

approximation or uniform approximation of V . The Weierstrass Theorem provides strong motivation

to approximate continuous functions by using a sequence of polynomials.

Theorem 4.1. (Weierstrass Theorem) If the function f ∈ Ck[a, b], then there exists a sequence of

polynomials, pn, where the degree of pn is n, such that

lim
n→∞

‖f (l) − p(l)
n ‖∞ = 0,

for any 0 ≤ l ≤ k, where f (l) and p
(l)
n means the l-th derivative of f and pn.

One example of such a sequence of polynomials is the Bernstein polynomials on [0, 1],

pn(x) =

n∑

i=0

(
n

i

)
f

(
i

n

)
xi(1 − x)n−i.

But the Weierstrass Theorem does not tell us how to find a good polynomial approximation with

the lowest degree to achieve a required level of accuracy. The following theorem tells us that among

all degree-n polynomials there is a polynomial to best approximate the function uniformly.

Theorem 4.2. (Equioscillation Theorem) If f ∈ C[a, b], then there is a unique polynomial of degree

n, q∗n(x), such that

‖f − q∗n‖∞ = inf
deg(q)≤n

‖f − q‖∞.

Moreover, for this q∗n, there are at least n+ 2 points a ≤ x0 < x1 < · · · < xn+1 ≤ b such that

f(xj) − q∗n(xj) = m(−1)j inf
deg(q)≤n

‖f − q‖∞,

for j = 0, . . . , n+ 1, where m = 1 or m = −1.

The equioscillation theorem tells us the existence of q∗n(x), but not how to find it. In practice, it

can be hard to find it. In the next subsection, we present the Chebyshev least square approximation

method that also does very well in the uniform approximation.
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Chebyshev Polynomial

Chebyshev polynomials on [−1, 1] are defined as Tj(x) = cos(j cos−1(x)), while general Chebyshev

polynomials on [a, b] are defined as Tj((2x − a − b)/(b − a)) for j = 0, 1, 2, . . .. These polynomials

are orthogonal under the weighted inner product: < f, g >=
∫ b

a f(x)g(x)w(x)dx with the weight-

ing function w(x) =

(
1 −

(
2x−a−b

b−a

)2
)−1/2

. The polynomials Tj(x) on [−1, 1] can be recursively

evaluated:

T0(x) = 1,

T1(x) = x,

Tj+1(x) = 2xTj(x) − Tj−1(x), j = 1, 2, . . . .

Chebyshev Least Square Approximation

Using the above orthogonal polynomials, we have the least square polynomial approximation of V

with respect to the weighting function

w(x) =

(
1 −

(
2x− a− b

b− a

)2
)−1/2

,

i.e., a degree-n polynomial V̂n(x), such that V̂n(x) solves

min
deg(V̂ )≤n

∫ b

a

(V (x) − V̂n(x))2w(x)dx.

Thus, we know that the least square degree-n polynomial approximation V̂n(x) on [−1, 1] has the

form

V̂n(x) =
1

2
c0 +

n∑

j=1

cjTj(x),

where

cj =
2

π

∫ 1

−1

V (x)Tj(x)√
1 − x2

dx, j = 0, 1, . . . , n,

are the Chebyshev least square coefficients. It is difficult to compute the coefficients because the above

integral generally does not have an analytic solutions, even if we know the explicit form of V .

But if we know the values of V at some specific nodes, then we can approximate V by interpolation

method. That is, we find a function V̂ such that V̂ (xi) = V (xi) at the given nodes xi, i = 1, . . . ,m.

One simple scheme is ordinary polynomial interpolation. But this does not always work even on well-

behaved, simple functions. Practically, Chebyshev interpolation V̂ (x) = c0/2 +
∑m−1

j=1 cjTj(x) will

work well for smooth functions on [−1, 1]. And by the minimax property of Chebyshev polynomials,
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we could choose the Chebyshev interpolation nodes on [−1, 1]: xi = − cos
(

(2i−1)π
2m

)
, i = 1, . . . ,m, so

that the interpolation error bound is minimized.

By the above coefficient formula of the least square degree-n polynomial approximation, we have

cj =
2

π

∫ 1

−1

V (x)Tj(x)√
1 − x2

dx

=
2

π

∫ π

0

V (cos(θ))Tj(cos(θ))dθ

≈ 2

π

π

m

m∑

i=1

V

(
cos

(
(2i− 1)π

2m

))
Tj

(
cos

(
(2i− 1)π

2m

))

=
2

m

m∑

i=1

V (zi)Tj(zi)

=
2

m

m∑

i=1

viTj(zi),

for j = 0, 1, . . . , n.

Chebyshev Regression Algorithm

Numerically, by adapting Chebyshev least squares approximation and Chebyshev interpolation ideas,

we can have a general Chebyshev regression algorithm. That is, we compute the degree n truncation

of the degree m − 1 interpolation formula by dropping the high-degree terms (degree n + 1 through

m− 1 terms).

Algorithm 4.1. Chebyshev Regression Algorithm

Objective: Given V (x) on [a, b], choose m nodes to construct a degree n < m Chebyshev polynomial

approximation V̂n(x) for V (x).

Step 1. Choose the m Chebyshev nodes on [−1, 1]:

zi = − cos

(
(2i− 1)π

2m

)
, i = 1, . . . ,m.

Step 2. Adjust the nodes to [a, b]:

xi = (zi + 1)(b − a)/2 + a, i = 1, . . . ,m.

Step 3. Evaluate vi = V (xi) for i = 1, . . . ,m.

Step 4. Compute Chebyshev coefficients:

cj =
2

m

m∑

i=1

viTj(zi), j = 0, . . . , n.
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Then the Chebyshev approximation for V (x), x ∈ [a, b] is

V̂n(x) =
1

2
c0 +

n∑

j=1

cjTj

(
2x− a− b

b− a

)
.

We can verify that if n = m− 1, then

V̂n(xi) =
1

2
c0 +

n∑

j=1

cjTj (zi) = vi.

The reader can refer to Judd [28] for detailed discussion.

In fact, by choosing the Chebyshev polynomials as basis functions and the Chebyshev nodes as

approximation nodes, we have the property

m∑

i=1

Tj(zi)Tk(zi) =






0, if i 6= j,

m, if i = j = 0,

m/2, if 0 < i = j ≤ n.

This property makes the matrix Φ orthogonal in the Lagrange approximation method, such that we

can have the simple formula in the above step 4 to compute the Chebyshev coefficients.

Expanded Chebyshev Polynomials

For Chebyshev polynomial approximation method, it has poor approximation on the neighbor of end

points, so that the Maximization step might not get a good solution. To solve this problem, we use

the expanded Chebyshev polynomials. That is, we use the Chebyshev polynomial approximation over

[a− δ1, b+ δ2] instead of [a, b], such that xi = (zi +1)((b+ δ2)− (a− δ1))/2+ (a− δ1) are the adjusted

m Chebyshev nodes on [a − δ1, b + δ2] with x1 = a and xm = b, where zi = − cos
(

(2i−1)π
2m

)
are the

Chebyshev nodes on [−1, 1]. Solving the linear system, we have δ1 = δ2 = z1+1
−2z1

(b− a). In fact, when

a = −1 and b = 1, xi = − cos
(

(2i−1)π
2m

)
sec( π

2m ), which are called the expanded Chebyshev array (see

Rivlin [45]).

Another benefit of expanded Chebyshev approximation method is that we do not need to worry that

the approximation function may be infeasible. The infeasibility may happen in the ordinary Chebyshev

approximation method: if we use Tj(x) = cos(j cos−1(x)) directly in the numerical computation

instead of the recursion formula (this happens in AMPL codes), then numerically x might be chosen

in [−1 − ǫ,−1) or (1, 1 + ǫ] within the tolerance ǫ even if there is a constraint x ∈ [−1, 1], but this

make cos−1(x) infeasible.

The following is the expanded Chebyshev polynomial approximation method:

Algorithm 4.2. Expanded Chebyshev Regression Algorithm

Objective: Given V (x) on [a, b], choose m nodes to construct a degree n < m expanded Chebyshev

polynomial approximation V̂n(x) for V (x).
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Step 1. Choose the m Chebyshev nodes on [−1, 1]:

zi = − cos

(
(2i− 1)π

2m

)
, i = 1, . . . ,m.

Step 2. Adjust the nodes to [a, b]:

xi = (zi + 1)(b − a+ 2δ)/2 + a− δ, i = 1, . . . ,m.

where δ = z1+1
−2z1

(b − a).

Step 3. Evaluate vi = V (xi) for i = 1, . . . ,m.

Step 4. Compute Chebyshev coefficients:

cj =
2

m

m∑

i=1

viTj(zi), j = 0, . . . , n.

Then the Chebyshev approximation for V (x), x ∈ [a, b] is

V̂n(x) =
1

2
c0 +

n∑

j=1

cjTj

(
2x− a− b

b− a+ 2δ

)
.

We can verify that if n = m− 1, then

V̂n(xi) =
1

2
c0 +

n∑

j=1

cjTj (zi) = vi.

Multidimensional Tensor Chebyshev Approximation

In a d-dimensional approximation problem, let a = (a1, . . . , ad) and b = (b1, . . . , bd) with bi > ai for

i = 1, . . . , d. Let x = (x1, . . . , xd) with xi ∈ [ai, bi] for i = 1, . . . , d. For simplicity, we denote this

as x ∈ [a, b]. Let α = (α1, . . . , αd) be a vector of nonnegative integers. Let Tα(z) denote the tensor

product Tα1
(z1) · · ·Tαd

(zd) for z = (z1, . . . , zd) ∈ [−1, 1]d. Let (2x− a− b)./(b− a) denote the vector

(2x1−a1−b1
b1−a1

, . . . , 2xd−ad−bd

bd−ad
). Then the degree n tensor Chebyshev approximation for V (x) is

V̂n(x) =
∑

0≤αi≤n,1≤i≤d

cαTα ((2x− a− b)./(b− a)) .

Let us denote the d-dimensional Chebyshev interpolation nodes as z(k) = (z
(k1)
1 , . . . , z

(kd)
d ) ∈

[−1, 1]d where z
(ki)
i = − cos

(
(2ki−1)π

2m

)
for ki = 1, . . . ,m, and i = 1, . . . , d. Let x(k) = (x

(k1)
1 , . . . , x

(kd)
d ) =

(z(k) + 1). ∗ (b − a)/2 + a, i.e., x
(ki)
i = (z

(ki)
i + 1)(bi − ai)/2 + ai, i = 1, . . . , d. Let v(k) = V (x(k)) be
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given. Then the coefficients of the degree n tensor Chebyshev approximation are evaluated as

cα =
2d̃

md

∑

1≤ki≤m,1≤i≤d

v(k)Tα(z(k)),

where d̃ =
∑d

i=1 1αi>0 with 1αi>0 as the indicator

1αi>0 =





1, if αi > 0,

0, if αi = 0,

for all nonnegative integer vectors α with 0 ≤ αi ≤ n.

Multidimensional Complete Chebyshev Approximation

Using the previous notations, the degree n complete Chebyshev approximation for V (x) is

V̂n(x) =
∑

0≤|α|≤n,1≤i≤d

cαTα ((2x− a− b)./(b− a)) ,

where |α| denotes
∑d

i=1 αi for the nonnegative integer vector α = (α1, . . . , αd). The coefficients of

the degree n complete Chebyshev approximation are the same with the coefficients of the degree n

tensor Chebyshev approximation for the terms |α| ≤ n. We know the number of terms with 0 ≤
|α| =

∑d
i=1 αi ≤ n is

(
n+d

d

)
. So the complexity of computation of a degree n complete Chebyshev

polynomial is about
(
n+d

d

)
/(n+1)d ≈ 1/d! of complexity of computation of a degree n tensor Chebyshev

polynomial, while the precision of approximation is almost the same for n ≥ 6 usually in practice.

4.2.5 Cubic Splines

Since cubic splines are C2, many people prefer to apply cubic splines for approximation of smooth

functions. In Judd [28], there is a detailed discussion for it.

Suppose that the Lagrange data set is (xi, vi), we want to construct a spline, s(x), such that s(xi) =

vi, i = 0, . . . , n. On each interval [xi, xi+1], s(x) will be a cubic polynomial: ai + bix + cix
2 + dix

3.

The interpolating conditions plus C2 continuity at the interior nodes implies 4n− 2 conditions:

vi = ai + bixi + cix
2
i + dix

3
i , i = 1, . . . , n,

vi = ai+1 + bi+1xi + ci+1x
2
i + di+1x

3
i , i = 0, . . . , n− 1,

bi + 2cixi + 3dix
2
i = bi+1 + 2ci+1xi + 3di+1x

2
i , i = 1, . . . , n− 1,

2ci + 6dixi = 2ci+1 + 6di+1xi, i = 1, . . . , n− 1,

while there are 4n unknowns. This leaves us two conditions short of fixing the unknown coefficients.

Various cubic splines are differentiated by the two additional conditions imposed. For example, the

natural spline imposes s′′(x0) = 0 = s′′(xn); the Hermite spline imposes s′(x0) = s0 and s′(xn) = sn
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for some given s0 and sn as the estimated slopes at the end points; the secant Hermite spline imposes

s′(x0) = (v1 − v0)/(x1 − x0) and s′(xn) = (vn − vn−1)/(xn − xn−1); the not-a-knot spline imposes

that d0 = d1 and dn−1 = dn, i.e., the third derivative of the spline is continuous at the second and

next-to-last breakpoint. These two additional conditions have much more effects in the maximization

step than the approximation step.

4.2.6 B-Splines

Suppose that we want to construct order k splines (Ck−2 function) on [a, b], and we have a grid of

knots at x−k < · · · < x−1 < x0 < · · · < xn+k, where x0 = a and xn = b. The B-splines form a basis

for splines. The Bk-spline can be defined by the recursive relation:

B0
i (x) =





1, if xi ≤ x < xi+1,

0, if x < xi or x ≥ xi+1,
i = −k, . . . , n+ k − 1,

B1
i (x) =






x−xi

xi+1−xi
, if xi ≤ x < xi+1,

xi+2−x
xi+2−xi+1

, if xi+1 ≤ x < xi+2,

0, if x < xi or x ≥ xi+2,

i = −k, . . . , n+ k − 2,

Bk
i (x) =

(
x− xi

xi+k − xi

)
Bk−1

i (x) +

(
xi+k+1 − x

xi+k+1 − xi+1

)
Bk−1

i+1 (x), i = −k, . . . , n− 1.

Using these B-splines basis, we can approximate a function V (x) by an order k splines V̂k(x):

V̂k(x) =

k∑

j=1

cijB
j
i (x), for xi ≤ x < xi+1, i = 0, . . . , n− 1,

such that V̂k(xi) = V (xi) for i = 0, . . . , n− 1, and V̂k(x) ∈ Ck−2[a, b].

Multidimensional B-Splines

In a d-dimensional approximation problem, let m = (m1, . . . ,md) and α = (α1, . . . , αd) be vec-

tors of nonnegative integers. Let B
(α)
m (x) denote the tensor product B

(α1)
m1 (x1) · · ·B(αd)

md (xd) for

x = (x1, . . . , xd) in [a, b] ⊂ R
d.

Denote the d-dimensional interpolation nodes as x(m) = (x
(m1)
1 , . . . , x

(md)
d ) ∈ [a, b] for mj =

0, . . . , n and j = 1, . . . , d. Denote m + 1 as (m1 + 1, . . . ,md + 1). Then the order k tensor B-spline

approximation for V (x) is

V̂k(x) =
∑

1≤αj≤k,1≤j≤d

cm,αB
α
m(x), if x(m) ≤ x < x(m+1),

for mj = 0, . . . , n− 1, j = 1, . . . , d, such that V̂k(x(m)) = V (x(m)) for all m, and V̂k(x) ∈ Ck−2[a, b].
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4.3 Numerical Integration

In the objective function of the Bellman equation, we often need to compute the conditional expecta-

tion of V (x+ | x, a). When the random variable is continuous, we have to use numerical integration

method to compute the expectation.

One naive way is to apply Monte Carlo or pseudo Monte Carlo methods to compute the expectation.

By the center limit theorem in statistics, the numerical error of the integration computed by (pseudo)

Monte Carlo methods has a distribution which is close to normal distribution. So there is no bound

for the numerical error occurred by (pseudo) Monte Carlo methods. Moreover in the optimization

problem, it often needs hundreds or thousands of evaluations of the objective functions. These imply

that once one evaluation of the objective function has a big numerical error, the previous iterations to

solve the optimization problem may make no sense. Therefore, the iterations may never converge to

the optimal solution. So it is not practical to apply (pseudo) Monte Carlo methods in the optimization

problem generally, unless the stopping criterion of the optimization problem is set very loosely.

Therefore, it will be good to have a numerical integration method with a bounded numerical error.

Here we present several common numerical integration methods.

4.3.1 Gauss-Hermite Quadrature

In the expectation operator of the objective function of the Bellman equation, if the random variable

has a normal distribution, then it will be good to apply the Gauss-Hermite quadrature formula to

compute the numerical integration. That is, if we want to compute E(f(Y )) where Y has a distribution

N(µ, σ2), then

E(f(Y )) = (2πσ2)−1/2

∫ ∞

−∞
f(y)e−(y−µ)2/(2σ2)dy

= (2πσ2)−1/2

∫ ∞

−∞
f(
√

2σ x+ µ)e−x2√
2σdx

.
= π− 1

2

n∑

i=1

ωif(
√

2σxi + µ),

where the ωi and xi are the Gauss-Hermite quadrature weights and nodes over (−∞,∞). We list

some of ωi and xi in Table 4.1.

If Y is log normal, i.e., log(Y ) has a distribution N(µ, σ2), then we can assume that Y = eX where

X ∼ N(µ, σ2), thus

E(f(Y )) = E(f(eX))
.
= π− 1

2

n∑

i=1

ωif
(
e
√

2σxi+µ
)
.

In portfolio problems, asset random returns are often assumed to be log-normal, such that the

Gauss-Hermite quadrature rule can be applied to compute expectations. For example, suppose that

an investor plans to invest 1 dollar, and there are two assets available for investment: one bond with a
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Table 4.1: Gauss-Hermite quadrature
N xi ωi

2 0.7071067811 0.8862269254

3 0.1224744871(1) 0.2954089751

0.0000000000 0.1181635900(1)

4 0.1650680123(1) 0.8131283544(-1)

0.5246476232 0.8049140900

5 0.2020182870(1) 0.1995324205(-1)

0.9585724646 0.3936193231

0.0000000000 0.9453087204

N xi ωi

7 0.2651961356(1) 0.9717812450(−3)

0.1673551628(1) 0.5451558281(−1)

0.8162878828 0.4256072526

0.0000000000 0.8102646175

10 0.3436159118(1) 0.7640432855(−5)

0.2532731674(1) 0.1343645746(−2)

0.1756683649(1) 0.3387439445(−1)

0.1036610829(1) 0.2401386110

0.3429013272 0.6108626337

Note: a(k) means a × 10k. A (x,ω) entry for N means that ±x are quadrature nodes in
the N-point formula, and each gets weight ω. Source: Stroud and Secrest [52].

Table 4.2: Errors in computing U(0) of (4.1) with Gauss-Hermite quadrature
γ 0.5 1.1 2.0 3.0 4.0 5.0 10.0
U(0) 2.0404 −9.9601 −0.96079 −0.46156 −0.29564 −0.21304 −0.07752
n = 3 1(−10) 5(−10) 5(−11) 2(−11) 2(−11) 1(−11) 4(−12)
n = 5 1(−9) 5(−9) 5(−10) 2(−10) 2(−10) 1(−10) 4(−11)
n = 7 1(−9) 6(−9) 6(−10) 3(−10) 2(−10) 1(−10) 5(−11)
n = 9 1(−9) 5(−9) 5(−10) 2(−10) 2(−10) 1(−10) 4(−11)
n = 11 2(−9) 1(−8) 1(−9) 5(−10) 3(−10) 2(−10) 8(−11)

Note: a(k) means a × 10k.

riskless annual return Rf = er with an interest rate r = 0.04, and one stock with a random log-normal

annual return R with log(R) ∼ N(µ, σ2). If he invests x in the stock, and the remaining (1 − x) in

the bond, then his wealth after one year becomes W = xR + (1 − x)Rf . If the investor consumes all

the wealth W and his utility is u(W ) = W 1−γ/(1 − γ), then his expected utility is

U(x) = (2πσ2)−1/2

∫ +∞

−∞
u(xez + (1 − x)Rf )e−(z−µ)2/(2σ2)dz. (4.1)

When the investor invests all of his money into the bond, i.e., x = 0, we have U(0) = u(Rf ) =

R1−γ
f /(1 − γ). When the investor invests all of his money into the stock, i.e., x = 1, we have

U(1) = E[u(R)] = exp((1− γ)µ+ (1− γ)2σ2/2)/(1− γ). Table 4.2 and 4.3 display the absolute errors

of the Gauss-Hermite quadrature rules applied to (4.1) for various values of n (number of Gauss-

Hermite quadrature nodes) and γ when x = 0 and x = 1 respectively. Here we choose µ = 0.07 and

σ = 0.2.

In comparison with Monte Carlo integration methods, Table 4.4 provides the absolute errors of

Monte Carlo integration methods applied to (4.1) for various values of n (number of Monte Carlo

simulations) and γ when x = 1, µ = 0.07, and σ = 0.2.
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Table 4.3: Errors in computing U(1) of (4.1) with Gauss-Hermite quadrature
γ 0.5 1.1 2.0 3.0 4.0 5.0 10.0
U(1) 2.0816 −9.9322 −0.95123 −0.47088 −0.32348 −0.2602 −0.29903
n = 3 2(−8) 5(−10) 5(−7) 2(−5) 1(−4) 5(−4) 4(−2)
n = 5 1(−9) 5(−9) 5(−10) 2(−9) 6(−8) 8(−7) 2(−3)
n = 7 1(−9) 6(−9) 5(−10) 2(−10) 2(−11) 8(−10) 3(−5)
n = 9 1(−9) 5(−9) 6(−10) 4(−10) 4(−10) 5(−10) 3(−7)
n = 11 2(−9) 1(−8) 1(−9) 4(−10) 1(−10) 1(−9) 1(−7)

Note: a(k) means a × 10k.

Table 4.4: Errors in computing U(1) of (4.1) with Monte Carlo method
γ 0.5 1.1 2.0 3.0 4.0 5.0 10.0
U(1) 2.0816 −9.9322 −0.95123 −0.47088 −0.32348 −0.2602 −0.29903
n = 1(3) 9(−3) 9(−3) 2(−3) 3(−3) 2(−3) 3(−3) 1(−2)
n = 1(4) 9(−4) 1(−4) 2(−3) 7(−5) 5(−3) 9(−4) 1(−2)
n = 1(5) 6(−4) 3(−4) 2(−4) 6(−4) 4(−4) 1(−4) 1(−3)
n = 1(6) 2(−4) 3(−6) 2(−4) 2(−4) 3(−4) 2(−4) 9(−4)

Note: a(k) means a × 10k.

In next example, we assume that the riskless annual return of the bond is Rf = 1 + r with an

interest rate r, and the stock has a random normal annual return R ∼ N(1 + µ, σ2). Assume that

the investor has an initial wealth W0, and he invests xW0 in the stock and the remaining (1 − x)W0

in the bond. If we assume that the investor consumes all the wealth W1 = W0(xR + (1 − x)Rf ) at

the end of one year with an exponential utility u(W ) = −e−λW for a constant absolute risk aversion

coefficient λ > 0, then his expected utility is

U(x) = (2πσ2)−1/2

∫ +∞

−∞
−e−λW0(1+xz+(1−x)r)e−(z−µ)2/(2σ2)dz

= − exp(−λW0(1 + r + x(µ− r)) + (λxW0σ)2/2). (4.2)

Table 4.5 and 4.6 display the relative errors of Gauss-Hermite quadrature rules and Monte Carlo

methods, respectively, for various values of n (number of Gauss-Hermite quadrature nodes) and λ

when x = 0.5, r = 0.04, µ = 0.07, and σ = 0.2.

Table 4.2, 4.3, 4.4, 4.5 and 4.6 tell us that Gauss-Hermite quadrature rules work very well with

high accuracy and small numbers of function evaluation, while Monte Carlo methods have much lower

accuracy even with very large numbers of function evaluation.

Table 4.5: Errors in computing U(0.5) of (4.2) with Gauss-Hermite quadrature
λ 0.1 0.5 1.0 2.0 5.0 10.0
U(0.5) −0.89992 −0.59082 −0.34994 −0.12369 −0.0057994 −4.3186(−5)
n = 3 5(−11) 8(−11) 8(−9) 5(−7) 1(−4) 6(−3)
n = 5 5(−10) 5(−10) 5(−10) 5(−10) 3(−8) 3(−5)
n = 7 6(−10) 6(−10) 6(−10) 6(−10) 2(−10) 5(−8)
n = 9 5(−10) 5(−10) 5(−10) 6(−10) 1(−9) 3(−9)
n = 11 1(−9) 1(−9) 1(−9) 1(−9) 4(−10) 2(−8)

Note: a(k) means a × 10k.
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Table 4.6: Errors in computing U(0.5) of (4.2) with Monte Carlo method
λ 0.1 0.5 1.0 2.0 5.0 10.0
U(0.5) −0.89992 −0.59082 −0.34994 −0.12369 −0.0057994 −4.3186(−5)
n = 1(3) 3(−5) 1(−3) 5(−4) 4(−3) 3(−3) 3(−2)
n = 1(4) 9(−5) 4(−4) 1(−3) 8(−4) 5(−3) 1(−2)
n = 1(5) 5(−6) 9(−5) 2(−5) 1(−4) 4(−5) 4(−3)
n = 1(6) 5(−6) 5(−6) 2(−5) 3(−4) 1(−3) 2(−3)

Note: a(k) means a × 10k.

Table 4.7: Gauss-Legendre quadrature
N xi ωi

2 0.5773502691 0.1000000000(1)

3 0.7745966692 0.5555555555

0.0000000000 0.8888888888

4 0.8611363115 0.3478548451

0.3399810435 0.6521451548

5 0.9061798459 0.2369268850

0.5384693101 0.4786286704

0.0000000000 0.5688888888

N xi ωi

7 0.9491079123 0.1294849661

0.7415311855 0.2797053914

0.4058451513 0.3818300505

0.0000000000 0.4179591836

10 0.9739065285 0.6667134430(−1)

0.8650633666 0.1494513491

0.6794095682 0.2190863625

0.4333953941 0.2692667193

0.1488743389 0.2955242247

Note: a(k) means a × 10k. A (x, ω) entry for N means that ±x are quadrature nodes
in the N-point formula, and each gets weight ω. Source: Stroud and Secrest [52].

4.3.2 Gauss-Legendre Quadrature

In the expectation operator of the objective function of the Bellman equation, if the random variable

has a uniform distribution, then it will be good to apply the Gauss-Legendre quadrature formula to

compute the numerical integration. That is, if we want to compute E(f(Y )) where Y has a uniform

distribution over [a, b], then

E(f(Y )) =

∫ b

a

f(y)
1

b− a
dy

.
=

1

2

n∑

i=1

ωif

(
(xi + 1)(b− a)

2
+ a

)
,

where the ωi and xi are the Gauss-Legendre quadrature weights and nodes over [−1, 1]. We list some

of ωi and xi in Table 4.7.

4.3.3 Gauss-Laguerre Quadrature

In the expectation operator of the objective function of the Bellman equation, if the random variable

has an exponential distribution, then it will be good to apply the Gauss-Laguerre quadrature formula

to compute the numerical integration. That is, if we want to compute E(f(Y )) where Y has a

exponential distribution over [0,∞) with a rate λ, then

E(f(Y )) =

∫ ∞

0

f(y)λe−λydy
.
=

n∑

i=1

ωif(xi/λ),
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Table 4.8: Gauss-Laguerre quadrature
N xi ωi

2 0.5857864376 0.8535533905

0.3414213562(1) 0.1464466094

3 0.4157745567 0.7110930099

0.2294280360(1) 0.2785177335

0.6289945082(1) 0.1038925650(−1)

4 0.3225476896 0.6031541043

0.1745761101(1) 0.3574186924

0.4536620296(1) 0.3888790851(−1)

0.9395070912(1) 0.5392947055(−3)

5 0.2635603197 0.5217556105

0.1413403059(1) 0.3986668110

0.3596425771(1) 0.7594244968(−1)

0.7085810005(1) 0.3611758679(−2)

0.1264080084(2) 0.2336997238(−4)

N xi ωi

7 0.1930436765 0.4093189517

0.1026664895(1) 0.4218312778

0.2567876744(1) 0.1471263486

0.4900353084(1) 0.2063351446(−1)

0.8182153444(1) 0.1074010143(−2)

0.1273418029(2) 0.1586546434(−4)

0.1939572786(2) 0.3170315478(−7)

10 0.1377934705 0.3084411157

0.7294545495 0.4011199291

0.1808342901(1) 0.2180682876

0.3401433697(1) 0.6208745609(−1)

0.5552496140(1) 0.9501516975(−2)

0.8330152746(1) 0.7530083885(−3)

0.1184378583(2) 0.2825923349(−4)

0.1627925783(2) 0.4249313984(−6)

0.2199658581(2) 0.1839564823(−8)

0.2992069701(2) 0.9911827219(−12)

Note: a(k) means a × 10k. A (x, ω) entry for N means that ±x are quadrature nodes
in the N-point formula, and each gets weight ω. Source: Stroud and Secrest [52].

where the ωi and xi are the Gauss-Laguerre quadrature weights and nodes over [0,∞). We list some

of ωi and xi in Table 4.8.

4.3.4 General Quadrature Formula

In the expectation operator of the objective function of the Bellman equation, if the random variable

has a probability distribution which is not one of normal distribution, log normal distribution, uniform

distribution, or exponential distribution, then there are some other ways to give a good quadrature

formula.

The first way is to give a specific formula for such a specific distribution, like Gauss-Hermite formula

for normal distribution, Gauss-Legendre formula for uniform distribution, and Gauss-Laguerre formula

for exponential distribution.

The second way is to try to transform this specific distribution into one kind of distribution

among normal distribution, uniform distribution and exponential distribution, like that log normal

distribution can be transformed into a normal distribution.

The third way is the following method:

If the domain of the random variable is finite, then we can use the Gauss-Legendre formula. That
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is, if the random variable Y has a density function p(y) over [a, b], then

E[f(Y )] =

∫ b

a

f(y)p(y)dy

.
=

1

2

n∑

i=1

ωif

(
(xi + 1)(b− a)

2
+ a

)
p

(
(xi + 1)(b− a)

2
+ a

)
,

where the ωi and xi are the Gauss-Legendre quadrature weights and nodes over [−1, 1].

If the domain of the random variable is (−∞,+∞), then we can use the Gauss-Hermite formula.

That is, if the random variable Y has a density function p(y) over (−∞,+∞), then

E[f(Y )] =

∫ +∞

−∞
f(y)p(y)dy

=

∫ +∞

−∞

(
f(x)p(x)

√
2πσ2e(x−µ)2/(2σ2)

) 1√
2πσ2

e−(x−µ)2/(2σ2)dx

.
=

√
2σ

n∑

i=1

ωif
(√

2σxi + µ
)
p
(√

2σxi + µ
)
ex2

i ,

where the ωi and xi are the Gauss-Hermite quadrature weights and nodes over (−∞,+∞), and µ and

σ are chosen such that p(x) is close to the normal density function 1√
2πσ2

e−(x−µ)2/(2σ2).

If the domain of the random variable is [a,+∞), then we can use the Gauss-Laguerre formula.

That is, if the random variable Y has a density function p(y) over [a,+∞), then

E[f(Y )] =

∫ +∞

a

f(y)p(y)dy

=

∫ +∞

0

(
f(x+ a)p(x + a)eλx/λ

)
λe−λxdx

.
=

1

λ

n∑

i=1

ωif (xi/λ+ a) p (xi/λ+ a) exi ,

where the ωi and xi are the Gauss-Laguerre quadrature weights and nodes over [0,+∞), and λ is

chosen such that p(x+ a) is close to the exponential density function λe−λx.

If the domain of the random variable is (−∞, b], then we can use the Gauss-Laguerre formula too.

That is, if the random variable Y has a density function p(y) over (−∞, b], then

E[f(Y )] =

∫ b

−∞
f(y)p(y)dy

=

∫ +∞

0

(
f(−x+ b)p(−x+ b)eλx/λ

)
λe−λxdx

.
=

1

λ

n∑

i=1

ωif (−xi/λ+ b) p (−xi/λ+ b) exi,

where the ωi and xi are the Gauss-Laguerre quadrature weights and nodes over [0,+∞), and λ is
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chosen such that p(−x+ b) is close to the exponential density function λe−λx.

4.3.5 Multidimensional Integration

If we want to compute a multidimensional integration, when the dimension is low, then we can apply

the product rule to do it. For example, suppose that we want to compute E(f(X)) where X is a

random vector with multivariate uniform distribution over [−1, 1]d, then

E(f(X)) =

∫

[−1,1]d
f(x) dx

.
=

1

2d

n∑

i1=1

· · ·
n∑

id=1

ωi1 · · ·ωid
f (xi1 , · · · , xid

)

where the ωi and xi are the Gauss-Legendre quadrature weights and nodes over [−1, 1].

Suppose that we want to compute E(f(X)) where X is a random vector with multivariate normal

distribution N(µ,Σ) over (−∞,+∞)d, where µ is the mean column vector, and Σ is the covariance

matrix, then we could do the Cholesky factorization at first, i.e., find a lower triangular matrix L

such that Σ = LL⊤. This is feasible as Σ must be a semi-positive definite matrix from the covariance

property. Thus,

E(f(X)) =
(
(2π)ddet(Σ)

)−1/2
∫

Rd

f(y)e−(y−µ)⊤Σ−1(y−µ)/2dy

=
(
(2π)ddet(L)2

)−1/2
∫

Rd

f
(√

2Lx+ µ
)
e−x⊤x2d/2det(L)dx

.
= π− d

2

n∑

i1=1

· · ·
n∑

id=1

ωi1 · · ·ωid
f(
√

2l11xi1 + µ1,

√
2(l21xi1 + l22xi2 ) + µ2, · · · ,

√
2(

d∑

j=1

ldjxij
) + µd),

where the ωi and xi are the Gauss-Hermite quadrature weights and nodes over (−∞,∞), and lij is

the (i, j)-element of L, and det(·) means the matrix determinant operator.

While the dimension is high, the product rule becomes infeasible because it will use nd points and

associated weights which is called the “curse of dimensionality”. But we can use monomial formulas

which is a nonproduct approach. A degree-k monomial formula uses N points xi and associated

weights ωi such that the
∑N

i=1 ωif(xi) is equal to the exact integration of f if f is a polynomial with

a degree k or lower. The reader can refer to Judd [28] and Stroud [52] for the detailed formulas.

The monomial formulas are especially useful in the integration operator of the DP process if we use

a low degree Chebyshev polynomial approximation. In that case, we try to compute the integration

E
(
V̂ (x+ | x)

)
in the objection function, where V̂ (x) is a degree-k Chebyshev polynomial. Thus if

we can have a degree-k monomial quadrature formula, then the calculation of the integration will be

exact.



4.3. NUMERICAL INTEGRATION 31

Sometimes the dimension of the multivariate integration could be reduced, even multivariate inte-

gration could be transformed into univariate integration. For example, suppose that we have a normal

random vector X ∼ N(µ,Σ) in R
d, and we want to compute E[f(X)] while the multivariate function

f has the form f(x) = g
(∑d

i=1 aixi

)
for some constants ai and x = (x1, . . . , xd) ∈ R

d. From the

property of normal random vector, Y =
∑d

i=1 aiXi has a normal distribution with mean
∑d

i=1 aiµi

and variance a⊤Σa. Thus E[f(X)] = E[g(Y )], which is a univariate integration and can be estimated

by the Gauss-Hermite quadrature rule. This technique will be applied in the portfolio optimization

problems.

If the dimension of the multivariate integration is high, and it can not be reduced, then we may

have to apply Monte-Carlo-like method. When we applied the Monte-Carlo-like method in the DP

scheme, it is often called as stochastic DP method.

4.3.6 Estimation of Parameters and Distribution

In the previous sections, we always assume that the probability distribution, discrete state values and

their transition probability matrix are given. For example, in the portfolio optimization problem, we

often assume that the return of the asset has a normal or log-normal distribution, the parameters

including the interest rate, the mean return and the standard deviation of the assets are given at

first. And if we let these parameters follow discrete Markov processes, then we also assume that their

discrete values and transition probability matrix are known in advance. Moreover, if we let these

parameters follow continuous stochastic processes, then some new parameters defining the stochastic

processes should be given at first.

But in the real life, these information cannot be seen usually. So we have to use some ways to

estimate them.

For example, for the return of an asset, we can use the historical return data of this asset to plot

out its histogram, then use this historical distribution as the estimation of the distribution of the

return. When the histogram is close to a normal distribution, we may assume that the return of this

asset has a normal distribution.

The next step is to estimate the mean and standard deviation of the return. One way is to use

the historical mean and historical standard deviation as the estimation. The second way is to apply

some autoregressive methods such as ARIMA and GARCH to estimate them. The third way is to

use some regression methods with some economic factors as prediction variables to estimate the mean

and standard deviation. The fourth way is to use maximum likelihood method to estimate them. For

the standard deviation, it may be better to use an implied volatility of this asset as the estimation.

If we assume that the mean and standard deviation follow discrete Markov processes, then we

can use Hidden Markov Model (HMM) plus Expectation-Maximum (EM) algorithm to estimate their

discrete values and transition probability matrix.

Now if we have multiple assets, the distribution of each asset return is estimated and the correlation

matrix is estimated too, then we may want to know the multivariate distribution of the returns of

these assets. One way is to use copula methods. One common copula is Gaussian copula which
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assumes the multivariate distribution is normal if the marginal distributions are normal.



Chapter 5

Optimal Growth Problems

There are plenty of applications of dynamic programming (DP) method in economics. In this chapter

we present the application in the optimal growth models.

5.1 Deterministic Optimal Growth Problems

The simplest infinite-horizon economic problem is the discrete-time optimal growth model with one

good and one capital stock, which is a deterministic model. It is to find the optimal consumption

function such that the total utility over the infinite-horizon time is maximal, i.e.,

V (k0) = max
c,l

∞∑

t=0

βtu(ct)

s.t. kt+1 = F (kt) − ct, t ≥ 0,

where kt is the capital stock at time t with k0 given, ct is the consumption, β is the discounter factor,

F (k) = k + f(k) with f(kt) the aggregate net production function, and u(ct) is the utility function.

This objective function is time-separable.

If we add a new control variable l which is the labor supply in the above model, it becomes

V (k0) = max
c,l

∞∑

t=0

βtu(ct, lt)

s.t. kt+1 = F (kt, lt) − ct, t ≥ 0,

where F (k, l) = k + f(k, l) with f(kt, lt) the aggregate net production function, and u(ct, lt) is the

utility function. This objective function is still time-separable.

33
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After adding an irreversibility constraint, the problem becomes

V (k0) = max
c,l

∞∑

t=0

βtu(ct, lt)

s.t. kt+1 = F (kt, lt) − ct,

kt+1 ≥ (1 − δ)kt, t ≥ 0,

where δ is the depreciation rate.

5.2 Initialization Step in Dynamic Programming

The DP version of the discrete-time optimal growth problem is

V (k) = max
c,l

u(c, l) + βV (F (k, l) − c)

which is the Bellman equation. From the above equation, the steady states k∗ and its corresponding

optimal control variables (c∗, l∗) should satisfy the following equations:

k∗ = F (k∗, l∗) − c∗,

ul(c
∗, l∗) + βV ′(k∗)Fl(k

∗, l∗) = 0,

uc(c
∗, l∗) − βV ′(k∗) = 0,

V ′(k∗) = βV ′(k∗)Fk(k∗, l∗).

They can be simplified as 




k∗ = F (k∗, l∗) − c∗,

ul(c
∗, l∗) + uc(c

∗, l∗)Fl(k
∗, l∗) = 0,

βFk(k∗, l∗) = 1.

(5.1)

In our numerical examples, we will choose two different initial guess, one good choice is V̂ (k; b0) =

u(F (k, l∗) − k, l∗)/(1 − β), the another is V̂ (k; b0) = 0.

5.3 Maximization Step in Dynamic Programming

The most time-consuming part of the parametric DP algorithm is the maximization step. The maxi-

mization step for the growth model is

vi = max
ci,li

u(ci, li) + βV̂ (F (ki, li) − ci; b
t),

or

vi = max
k+

i
,li

u(F (ki, li) − k+
i , li) + βV̂ (k+

i ; bt),
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or

vi = max
k+

i ,ci,li

u(ci, li) + βV̂ (k+
i ; bt)

s.t. k+
i = F (ki, li) − ci,

for ki ∈ K. These three models are identical theoretically, but may produce different solutions

numerically. We can run the computation one node by one node, or only once in block form like

max
c,l

m∑

i=1

[
u(ci, li) + βV̂ (F (ki, li) − ci; b

t)
]
.

In the maximization step, the concavity of the objective function is a very valuable property. If

the maximization step is a concave problem, then the global maximum is the unique local maximum

and easy to find. Now, if u(c, l) is concave on (c, l), and F (k, l) is concave on l, then Hessian matrix

of u(F (k, l)− k+, l) for variables k+ and l is

M =

[
ucc −uccFl − ucl

−uccFl − ucl uccF
2
l + 2uclFl + ull + ucFll

]
.

We have

M11 = ucc < 0,

M22 = uccF
2
l + 2uclFl + ull + ucFll ≤ 2(−√

uccull + ucl)Fl + ucFll < 0,

det(M) = uccull − u2
cl + ucuccFll > 0,

as ucc, ull, Fll are negative, uc, Fl are positive, and det

(
ucc ucl

ucl ull

)
= uccull − u2

cl > 0, from the

concavity of u and F . Then M is a negative definite matrix. Thus, if V̂ (k+; bt) is concave on k+ too,

then the objective function of the second model of the maximization step must be concave. Similarly,

we can show that if V̂ (k+; bt) is concave on k+ and F (k, l) is concave on l, then V̂ (F (k, l) − c; bt) is

concave on (c, l) such that the objective function of the first model of the maximization step must

be concave if u(c, l) is concave on (c, l) too. For the objective function of the third model of the

maximization step, obviously it is concave on (k+, c, l) if V̂ (k+; bt) is concave on k+ and u(c, l) is

concave on (c, l). Therefore, if we choose a concave initial guess and u(c, l) is concave on (c, l), and

we can use some shape-preserving approximation method in the fitting step, then every maximization

step in the numerical DP algorithm will be a concave problem and easy to be solved theoretically.

In our numerical examples, the aggregate net production function f(k, l) is chosen as f(k, l) =

Akαl1−α with α = 0.25 and A = (1 − β)/(αβ), and utility functions are chosen as u(c, l) = log(c) +

B log(3 − l) or u(c, l) = c1−γ/(1 − γ) − Bl1+η/(1 + η) (it could be u(c, l) = log(c) + log(1 − l) or

u(c, l) = c1−γ/(1 − γ) − l1+η/(1 + η)), where γ > 0 and η > 0 are two input parameters, B is chosen

such that k∗ = 1 and l∗ = 1, i.e., B = 2(1 − α) for the logarithm utility or B = (1 − α)A1−γ for the
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power utility. From numerical point of view, to let the functions feasible in the process of solving the

maximization step, we have to extend the definition of logarithm and power functions to nonnegative

region, and add some constraints, such as c > 0 and 0 < l < 3 in the logarithm utility.

The order to solve the optimal problems for the approximation nodes {k1, . . . , km} in one maxi-

mization step is important too. The intuitive choice is to solve the problems from k1 to km (here we

assume that k1 < k2 < · · · < km). But in fact, the order reverse to the order of the last maximization

step is better. That is, if the order of last maximization step is from k1 to km, then this step’s order

is from km to k1. This will benefit us from the “warm start” option provided by the optimization

solvers.

Another order to speed up the solving process of the maximization step is to start at the node k∗

and the node nearest to k∗ (denoted as ki) if k∗ is not a node (we could use (k∗, c∗, l∗) as the initial

guess of (k+, c, l) for this node), and then to proceed from ki to km and from ki to k1 separately with

“warm start” option.

Gauss-Seidel method may be another speeding-up technique.

5.4 Stochastic Optimal Growth Problems

We consider the stochastic optimal growth model now. Let θ denote the current productivity level and

f(k, l, θ) denote net income. Define F (k, l, θ) = k+f(k, l, θ), and assume that θ follows θt+1 = g(θt, εt)

where εt are i.i.d. disturbances. Then the infinite-horizon discrete-time optimization problem becomes

V (k0, θ0) = max
k,c,l

E

{ ∞∑

t=0

βtu(ct, lt)

}

s.t. kt+1 = F (kt, lt, θt) − ct,

θt+1 = g(θt, εt), t ≥ 0,

where x0 and θ0 are given. The θ has many economic interpretations. In the life-cycle interpretation,

θ is a state variable that may affect either asset income, labor income, or both. In the monopolist

interpretation, θ may reflect shocks to costs, demand, or both.

Its DP formulation is

V (k, θ) = max
c,l

u(c, l) + βE{V (F (k, l, θ) − c, θ+) | θ},

where θ+ is next period’s θ realization.

In the above model, kt+1 is a deterministic variable which is fully dependent on kt, lt, θt and ct.
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But we can extend it to a stochastic capital stock case:

V (k0, θ0) = max
k,c,l

E

{ ∞∑

t=0

βtu(ct, lt)

}

s.t. kt+1 = F (kt, lt, θt) − ct + ǫt,

θt+1 = g(θt, εt), t ≥ 0,

where ǫt are i.i.d. disturbances, and independent of εt. Its DP formulation is

V (k, θ) = max
c,l

u(c, l) + βE{V (k+, θ+) | θ}

s.t. k+ = F (k, l, θ) − c+ ǫ,

θ+ = g(θ, ε).

5.5 Multi-Dimensional Optimal Growth Problems

An n-dimensional discrete-time optimal growth problem is

V (k0) = max
k,c,l

∞∑

t=0

βtu(ct, lt, kt+1)

s.t. k+
i,t+1 = F (kit, lit) − cit, i = 1, . . . , n, t ≥ 0,

where the utility function can be chosen as

u(c, l, k) =

n∑

i=1

[
c1−γ
i /(1 − γ) −Bl1+η

i /(1 + η)
]

+
∑

i6=j

µij(ki − kj)
2,

for n-dimensional vectors c, l and k.

Its DP formulation is

V (k) = max
k+,c,l

u(c, l, k+) + βV (k+)

s.t. k+
i = F (ki, li) − ci, i = 1, . . . , n.

In multi-dimensional DP, multiple loop sequence is important by using last node’s solution, or

combining last node’s solution and last solution of the same node. For example, in two-dimensional

case, we should loop from left to right in the first line of nodes, then from right to left in the second

line of nodes, and then from left to right in the third line of nodes, continue this sequence until the

end line. This is more important if we are using “Warm Start” option.

Using complete Chebyshev polynomials in multi-dimensional numerical DP algorithms will save

time in computing with almost same accuracy by comparison with tensor Chebyshev polynomials.
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5.6 Multi-Dimensional Stochastic Optimal Growth Problems

We consider the multi-dimensional stochastic optimal growth model now. Let θ denote the current

productivity levels and f(k, l, θ) denote net income. Define F (k, l, θ) = k+ f(k, l, θ), (e.g., f(k, l, θ) =

θAkαl1−α), and assume that θ follows θt+1 = g(θt, εt) where εt are i.i.d. disturbances. Then the

infinite-horizon discrete-time optimization problem becomes

V (k0, θ0) = max
k,c,l

E

{ ∞∑

t=0

βtu(ct, lt, kt+1)

}

s.t. kt+1 = F (kt, lt, θt) − ct + ǫt,

θt+1 = g(θt, εt), t ≥ 0,

where k0 and θ0 are given. Here kt, lt and ct are multi-dimensional vectors, θ may be a random

variable or random vector.

Its DP formulation is

V (k, θ) = max
k+,c,l

u(c, l, k+) + βE[V (k+, θ+) | θ]

s.t. k+ = F (k, l, θ) − c+ ǫ,

where θ+ is next period’s θ realization.

5.6.1 Numerical Examples

We use one numerical example to show the stability and convergence of numerical DP for the above

infinite-horizon multi-dimensional stochastic optimal growth problem. We let k, θ, k+, θ+, c and l

be 2-dimensional vectors, ǫ ≡ 0, β = 0.8, [k, k̄] = [0.5, 3.0]2, F (k, l, θ) = k + θAkαl1−α with α = 0.25,

and A = (1 − β)/(αβ) = 1, and

u(c, l, k+) =

2∑

i=1

[
c1−γ
i /(1 − γ) −Bl1+η

i /(1 + η)
]

+ µ(k+
1 − k+

2 )2,

with γ = 2, η = 1, µij = 0, and B = (1 − α)A1−γ = 0.75.

Here we let θ+1 and θ+2 be independent, and assume that the possible values of θi, θ
+
i are a1 = 0.9

and a2 = 1.1, and the probability transition matrix from θi to θ+i is

P =

[
0.75 0.25

0.25 0.75

]
,

for each i = 1, 2. That is,

Pr[θ+ = (aj1 , aj2) | θ = (ai1 , ai2)] = Pi1,j1Pi2,j2 ,
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where Pid,jd
is the (id, jd) element of P , for any id, jd = 1, 2, d = 1, 2.

Therefore,

E{V (k+, θ+) | k, θ = (ai1 , ai2), c, l} =

2∑

j1,j2=1

Pi1,j1Pi2,j2 · V (k+
1 , k

+
2 , aj1 , aj2),

where k+
d = F (kd, ld, aid

) − cd, for any id = 1, 2, d = 1, 2.

For this example, we use value function iteration method while the continuous function approxima-

tion is complete degree-9 Chebyshev polynomial approximation method with 102 Chebyshev nodes for

continuous state variables, and the optimizer is NPSOL, and the initial value function is 0 everywhere.

The stopping criterion for the parametric value function iteration (VFI) method is

Dt := max
|V̂ (k, θ; bt+1) − V̂ (k, θ; bt)|

1 + |V̂ (k, θ; bt)|
< ε,

for ε = 10−5, where bt is the Chebyshev polynomial coefficient vector at the t-th VFI, and Dt is called

as the relative change of V̂ (k, θ; bt+1) from V̂ (k, θ; bt).

The parametric value function iteration method converges at the 48-th iteration with a decreasing

process Dt, shown in Figure 5.1.
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Figure 5.1: Relative change of VFI for growth problems



Chapter 6

Shape Preserving Approximation

Method

In economics and finance, many DP models have the monotone and/or concave/convex value functions

such that objective functions in their optimization models preserve the shape property theoretically.

So if we can have the shape-preserving value function approximation in the fitting step, then it will

be very helpful to get good optimal solutions as the local optimizer will be also the global optimizer

for convex optimization problems. One good shape-preserving method is the so-called Schumaker

shape-preserving interpolation method. J.C.Fiorot and J. Tabka [16], and Steven Pruess [44] give

some other shape-preserving splines approximation methods.

6.1 Schumaker Shape-Preserving Spline Method

Here we present the shape-preserving quadratic spline of Schumaker [50] which produces a smooth

function which both interpolates data and preserves some shape. We first examine the Hermite

interpolation version and then discuss the Lagrange version.

Let us consider the shape-preservation problem on a single interval [x1, x2]. The basic Hermite

problem on the interval takes the data v1, v2, s1, s2, and constructs a piecewise-quadratic function

s ∈ C1[x1, x2] such that

s(xi) = vi, s′(xi) = si, i = 1, 2.

Here is the interpolation algorithm.

Algorithm 6.1. Schumaker Shape-Preserving Interpolation

Step 1. Compute δ = (v2 − v1)/(x2 − x1). If (s1 + s2)/2 = δ, then

s(x) = v1 + s1(x− x1) +
(s2 − s1)(x− x1)

2

2(x2 − x1)
,

41
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and STOP.

Step 2. If (s1 − δ)(s2 − δ) ≥ 0, set ξ = (x1 + x2)/2; Else if |s2 − δ| < |s1 − δ|, then let

ξ̄ = x1 +
2(x2 − x1)(s2 − δ)

(s2 − s1)
,

and let ξ = (x1 + ξ̄)/2; Else let

ξ = x2 +
2(x2 − x1)(s1 − δ)

(s2 − s1)
,

and let ξ = (x2 + ξ)/2. Then

s(x) =

{
v1 + s1(x− x1) + C1(x− x1)

2, x ∈ [x1, ξ],

A2 + s̄(x− ξ) + C2(x− ξ)2, x ∈ [ξ, x2],

where C1 = (s̄ − s1)/(2a), A2 = v1 + as1 + a2C1, C2 = (s2 − s̄)/(2b), s̄ = [2(v2 − v1) − (as1 +

bs2)]/(x2 − x1), a = ξ − x1, and b = x2 − ξ.

The reader can refer to Judd [28] and Larry Schumaker [50] for detailed discussion.

Notice that a and b are used as denominators for C1 and C2. This may give rise to the problem

when a or b is close to 0, i.e., ξ is close to x1 or x2. Practically, this problem is often encountered in

our numerical examples. Numerically, we should not use a = ξ − x1 or b = x2 − ξ to compute a or b

if ξ is close to x1 or x2.

Here we will propose a new version of the algorithm. From the step 2 of the algorithm, we know

that if (s1 − δ)(s2 − δ) < 0 and |s2 − δ| < |s1 − δ| then

ξ = (x1 + ξ̄)/2 = x1 +
(x2 − x1)(s2 − δ)

(s2 − s1)
,

else if |s2 − δ| ≥ |s1 − δ| then

ξ = (x2 + ξ)/2 = x2 +
(x2 − x1)(s1 − δ)

(s2 − s1)
.

Note that

x1 +
(x2 − x1)(s2 − δ)

(s2 − s1)
= x2 +

(x2 − x1)(s1 − δ)

(s2 − s1)
,

we just need to set

ξ = x1 +
(x2 − x1)(s2 − δ)

(s2 − s1)
,

if (s1−δ)(s2−δ) < 0. This saves the distinction of computing ξ under the comparison between |s2−δ|
and |s1 − δ| in the original algorithm 6.1. Thus,

a = ξ − x1 = (s2 − δ)/λ, b = x2 − ξ = (δ − s1)/λ,
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where λ = (s2 − s1)/(x2 − x1). It follows that

s̄ =
2(v2 − v1) − (as1 + bs2)

(x2 − x1)

= 2δ − (s2 − δ)

λ

s1
(x2 − x1)

− (δ − s1)

λ

s2
(x2 − x1)

= 2δ − (s2 − δ)s1 + (δ − s1)s2
(s2 − s1)

= 2δ − δ = δ,

by δ = (v2− v1)/(x2 −x1) if (s1− δ)(s2− δ) < 0. There are several issues we still need to worry about

numerically: s1 ≃ s2, s1 ≈ δ, or s2 ≈ δ. The case s1 ≈ s2 happens practically when the shape of the

function is very close to a straight line in this interval. By replacing the condition (s1 + s2)/2 = δ in

the step 1 into |(s1 + s2)/2 − δ| < ǫ for some given tolerance ǫ > 0, these cases disappear.

By C1 = (s̄− s1)/(2a), we have

A2 = v1 + as1 + a2C1 = v1 + a(s1 + s̄)/2.

Moreover, if (s1− δ)(s2− δ) ≥ 0, then from ξ = (x1 +x2)/2 we have a = b = (x2 −x1)/2, and then

s̄ =
2(v2 − v1) − (as1 + bs2)

(x2 − x1)
= 2δ − s1 + s2

2
.

Algorithm 6.2. Revised Schumaker Shape-Preserving Interpolation

Step 1. Compute δ = (v2 − v1)/(x2 − x1). If |(s1 + s2)/2 − δ| < ǫ, then

s(x) = v1 + s1(x− x1) +
(s2 − s1)(x− x1)

2

2(x2 − x1)
,

and STOP.

Step 2. If (s1 − δ)(s2 − δ) ≥ 0, set

ξ = (x1 + x2)/2, a = b = ξ − x1, s̄ = 2δ − s1 + s2
2

.

Else let

λ =
s2 − s1
x2 − x1

, a = (s2 − δ)/λ, b = (δ − s1)/λ, ξ = x1 + a, s̄ = δ.

Then

s(x) =

{
v1 + s1(x− x1) + C1(x− x1)

2, x ∈ [x1, ξ],

A2 + s̄(x− ξ) + C2(x− ξ)2, x ∈ [ξ, x2],

where C1 = (s̄− s1)/(2a), A2 = v1 + a(s1 + s̄)/2, and C2 = (s2 − s̄)/(2b).

This revised algorithm not only has less computation, but also is more accurate than the original

version.
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Now we consider a general interpolation problem. If we have Hermite data {(xi, vi, si) : i =

1, . . . , n}, we then apply the shape-preserving interpolant algorithm to each interval to find ξi ∈
[xi, xi+1]. If we have Lagrange data, {(xi, vi) : i = 1, . . . , n}, we must first add estimates of the

slopes and then proceed as we do with Hermite data. Schumaker suggests the following formulas for

estimating slopes s1 through sn:

L =
[
(xi+1 − xi)

2 + (vi+1 − vi)
2
]1/2

, δi =
vi+1 − vi

xi+1 − xi
, i = 1, . . . , n− 1,

si =






Li−1δi−1+Liδi

Li−1+Li
, if δi−1δi > 0,

0, if δi−1δi ≤ 0,
i = 2, . . . , n− 1,

s1 =
3δ1 − s2

2
, sn =

3δn−1 − sn−1

2
.

But the estimation might not preserve the monotonicity. Aatos Lahtinen [31, 32] suggested a

variation version to avoid the problem.

Since Schumaker method is only a quadratic splines approximation, it is only C1 and not smooth

enough for some optimization solvers such that we need some more care in the maximization step if

we use Schumaker approximation in the fitting step of the DP procedure. When the value function

is concave or convex in DP, if we can compute the values (xi, vi, si) approximately enough, then we

should have (s1 − δ)(s2 − δ) < 0. If not, we need to modify the data set instead of keeping these data

and using the branch for (s1 − δ)(s2 − δ) ≥ 0.

6.2 Shape Correction and Preserving

For a univariate approximation problem, Schumaker interpolation method preserves the shape prop-

erties including monotonicity and concavity. But many approximation methods such as Chebyshev

approximation do not have the shape-preserving property, so we can use least-square-error approx-

imation with shape constraints to guarantee the shape-preservation partially. For example, if we

know that the value function is strictly increasing and concave, then we could try to find the optimal

parameters b in the following model:

min
b

n∑

i=1

(
V̂ (xi; b) − vi

)2

s.t. V̂ ′(xi; b) > 0, i = 1, . . . , n,

V̂ ′′(xi; b) < 0, i = 1, . . . , n.

But sometimes this model may return some binding solutions numerically, which we do not hope to

happen.

Before doing the shape-preserving fitting, we should modify the values of vi such that the discrete

set of vi have the same properties of value function. For example, if value function is strictly increasing,

then we should have vi < vi+1, which can not be guaranteed by the optimization solvers due to the
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numerical errors (e.g., the optimization solver returns a local optimizer which is not global). This

step is called shape correction. To do it, we could modify the optimization step in the DP method for

finite horizon problems as

max
ai∈D(xi,t)

m∑

i=1

vi

s.t. vi = ut(xi, ai) + βE{V̂ (x+
i ; bt+1) | xi, ai}, i = 1, . . . ,m,

vi < vi+1, i = 1, . . . ,m− 1.

But sometimes this model may return some binding solutions numerically, e.g., vi−1 < vi ≈ vi+1 <

vi+2 for some i. In this case, we should modify vi as (vi−1 + vi+1)/2, or vi+1 as (vi + vi+2)/2.

If the linear modification is not good for the approximation method, then we could use quadratic

modification, i.e., use three points (xi−1, vi−1), (xi, vi), (xi+2, vi+2) to generate a quadratic function

q(x), and then modify vi+1 as q(xi+1).

6.3 Shape-preserving Chebyshev Approximation

One problem for Chebyshev approximation is the absence of shape-preservation in the algorithm. To

solve this, one way is to modify the Chebyshev coefficients such that the concavity and monotonicity

of the value function can be preserved at the interpolation nodes. That is, we could solve a new least

square problem which has a quadratic objective and linear inequality constraints:

min
cj

m∑

i=1



1

2
c0 +

n∑

j=1

cjTj

(
2xi − a− b

b− a

)
− vi




2

s.t.

n∑

j=1

cjT
′
j

(
2xi − a− b

b− a

)
> 0,

n∑

j=1

cjT
′′
j

(
2xi − a− b

b− a

)
< 0, i = 1, . . . ,m.

We can use the following recursive formula to evaluate T ′
j(zi) and T ′′

j (zi) for zi = 2xi−a−b
b−a , i =

1, . . . ,m:

T ′
0(x) = 0,

T ′
1(x) = 1,

T ′
j+1(x) = 2Tj(x) + 2xT ′

j(x) − T ′
j−1(x), j = 1, 2, . . . ,
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and

T ′′
0 (x) = 0,

T ′′
1 (x) = 0,

T ′′
j+1(x) = 4T ′

j(x) + 2xT ′′
j (x) − T ′′

j−1(x), j = 1, 2, . . . .

This least square solution may not preserve the shape along the whole domain of x, but sometimes

it helps in the DP procedure. Intuitively, the Chebyshev coefficients may be a good initial guess, but

in fact sometimes the coefficients in the last iteration of the DP procedure may be better.

When slopes of the value function, v′i, are given by the Envelope theorem for the Bellman equation,

we can modify the model as

min
cj

m∑

i=1



1

2
c0 +

n∑

j=1

cjTj

(
2xi − a− b

b− a

)
− vi




2

+

λ

m∑

i=1



 2

b− a

n∑

j=1

cjT
′
j

(
2xi − a− b

b− a

)
− v′i




2

s.t.

n∑

j=1

cjT
′′
j

(
2xi − a− b

b− a

)
< 0, i = 1, . . . ,m,

where λ is some given parameter.

6.3.1 Numerical Example

We use one numerical example of the deterministic optimal growth model to illustrate the necessarity

of the shape-preserving property. The DP version of the deterministic optimal growth model is

V (k) = max
c,l

u(c, l) + βV (F (k, l) − c),

where k is the capital state variable, c > 0 is the consumption decision, l > 0 is the labor control

variable, β is the discount factor, u is a utility function, F (k, l) = k + f(k, l) while f(k, l) = Akαl1−α

is the production function.

In this example, we let α = 0.25, β = 0.9, A = (1 − β)/(αβ) = 4/9, u(c, l) = c1−γ/(1 − γ) −
Bl1+η/(1 + η) with γ = 4, η = 1 and B = (1 − α)A1−γ . According to the system of equations (5.1),

we know that the steady state is k∗ = 1 while the corresponding optimal labor is l∗ = 1 and optimal

consumption is c∗ = f(k∗, l∗) = 4/9. Moreover, V (k∗) = u(c∗, l∗)/(1 − β) = −80.6836.

Let the range of k be chosen as [0.1, 2]. We use the value function iteration method. The initial

guess of the value function is 0 everywhere. The stopping rule for the DP method is ‖Vn+1 − Vn‖ <
10−6. The approximation method is chosen as the degree-40 expanded Chebyshev polynomial inter-

polation method with 41 Chebyshev nodes in [0.1, 2]. The optimization solver is chosen as KNITRO

and the program code is written in AMPL.
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Figure 6.1: Numerical DP with shape-preserving Chebyshev approximation

At first, we try the standard Chebyshev polynomial interpolation method without shape con-

straints. After 634 iterations, the value function iteration method converges. When the capital state

is k∗ = 1, the corresponding computed optimal l̂∗ = 3.08035, ĉ∗ = 0.241709 and V̂ (1) = −74.0949. All

of these are far away from the exact optimal labor, consumption and value at the steady state. The

approximated optimal control functions and value functions are shown with dashed lines in Figure

6.1. We see that all three functions have many large wiggles.

Next, we try the shape-preserving Chebyshev polynomial approximation method with positive

gradient and negative Hessian constraints. The value function iteration method converges at the 78-

th step. When the capital state is k∗ = 1, the corresponding computed optimal l̂∗ = 0.999998, ĉ∗ =

0.444445 and V̂ (1) = −80.6836. All of these are very close to the exact optimal labor, consumption

and value at the steady state. The approximated optimal control functions and value functions are

shown with solid lines in Figure 6.1. We see that all three functions are smooth, monotone and

concave.



Chapter 7

Dynamic Programming with

Hermite Interpolation

The conventional dynamic programming (DP) algorithm uses the maximization step to compute

vi = Vt(xi) = max
ai∈D(xi)

u(xi, ai) + βE{Vt+1(x
+
i ) | xi, ai},

for each pre-specified node xi, i = 1, . . . ,m. Then it applies the Lagrange data set {(xi, vi) : i =

1, . . . ,m} in the fitting step to construct the approximated value function V̂t(x). If the fitting step uses

a Hermite interpolation method requiring slope information at nodes xi of Vt(x), such as Schumaker

interpolation method, then it seems that we have to estimate the slopes, si, by use of finite difference

methods. But if we can get the slope information directly, then it will save computation time and

make the function approximation more accurate, such that the numerical DP algorithm with Hermite

interpolation will be more efficient and accurate.

7.1 Hermite Interpolation

In the approximation methods, we need to know the levels vi and/or the slopes si at nodes xi, for

i = 1, . . . ,m. If the Hermite data set {(xi, vi, si) : i = 1, . . . ,m} is available, then the Hermite

interpolation method can be applied in the fitting step of the numerical DP algorithm.

The following envelope theorem tells us how to calculate the first derivative of a function which is

defined by a maximization operator.

Theorem 7.1. (Envelope theorem) Let

V (x) = max
y

f(x, y) (7.1)

s.t. g(x, y) = 0.

48
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Suppose that y∗(x) is the optimizer of (7.1), and that λ∗(x) is the corresponding shadow price vector.

Then
dV (x)

dx
=
∂f

∂x
(x, y∗(x)) + λ∗(x)⊤

∂g

∂x
(x, y∗(x)).

Thus, it is not necessary to compute dy∗(x)/dx term in order to get dV (x)/dx. If there is an

inequality constraint in (7.1), h(x, y) ≥ 0, we can simply add a slack variable s to transform it into

an equality constraints, h(x, y) − s = 0, then use the envelope theorem to compute dV (x)/dx.

Since the problem (7.1) could have many other equivalent forms, sometimes we can choose an

alternative form such that dV (x)/dx can have a much simpler computation. This will be discussed in

the next sections.

7.2 Hermite Interpolation in Optimal Growth Models

The DP model for the optimal growth model is

Vt(k) = max
c,l

u(c, l) + βVt+1(F (k, l) − c),

for some utility function u and production function F . In the maximization step of the numerical DP

method, after using the envelope theorem, we have

si = V ′
t (ki) = βV ′

t+1(k
+
i )Fk(ki, li),

where k+
i = F (ki, li) − ci for optimal ci and li given ki.

In the maximization step of the numerical DP method, we can have the second equivalent model

Vt(k) = max
k+,l

u(F (k, l)− k+, l) + βVt+1(k
+),

by using k+ and l as control variables, while the first model uses c and l as control variables. By the

envelope theorem, we have

si = V ′
t (ki) = uc(ci, li)Fk(ki, li),

where ci = F (ki, li) − k+
i for optimal k+

i and li given ki.

The first model we have to compute the derivative of Vt+1, and the second model we have to

compute the partial derivative of u. Now we have the third equivalent model

Vt(k) = max
k+,l,c

u(c, l) + βVt+1(k
+),

s.t. F (k, l) − k+ − c = 0,

by using k+, l, and c as control variables. By the envelope theorem, we have

si = V ′
t (ki) = λiFk(ki, li),
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where λi is the Lagrange multiplier of the constraint F (k, l) − k+ − c = 0 given ki. Theoretically, we

can show that λi = uc(ci, li) = βV ′
t+1(k

+
i ) for optimal k+

i , li and ci given ki, but this multiplier λi is

a direct output of the optimization solvers, so we do not need to calculate it.

Similarly, if there is the irreversibility constraint k+ ≥ (1− δ)k with δ as a depreciation rate, then

si = V ′
t (ki) = λiFk(ki, li) − (1 − δ)µi,

where µi is the Lagrange multiplier for the irreversibility constraint, which is also available in the

output information of the optimization solvers.

7.3 Hermite Interpolation in Multi-period Asset Allocation

Models

Here we come to see the application of Hermite interpolation method in one simple multi-period

portfolio optimization model. Assume an investor has an initial wealth W0 and want to invest it

into n stocks with a risky random return vector R and one bond with a riskless return Rf , he can

reallocate the portfolio at stage t = 0, 1, . . . , T − 1, and his objective is to maximize the expected

utility of terminal wealth. Then the DP model for this problem is

Vt(Wt) = max
Xt

E
[
Vt+1(Rf (Wt − e⊤Xt) +R⊤Xt) | Wt

]
,

for 0 ≤ t < T , where Xt is the amount of dollars invested in the risky assets, while VT (W ) = u(W )

for some utility function u. Here we assume that there is no transaction cost for simplicity.

Theoretically, this model is equivalent to

Vt(Wt) = max
Bt,Xt

E
[
Vt+1

(
RfBt + R⊤Xt

)
|Wt

]

s.t. Bt + e⊤Xt = Wt,

where Bt is the amount of dollars invested in the bond.

But numerically there are some difference. By the envelope theorem for the first model, we have

V ′
t (Wt) = RfE

[
V ′

t+1

(
W ∗

t+1

)
| Wt

]
,

where W ∗
t+1 = RfWt +(R−Rf )⊤X∗

t , while X∗
t is the optimal allocation vector for the risky assets at

time t. This implies that we have to calculate the derivatives of Vt+1 and then compute the expectation

which may take a lot of time for high-dimensional integration. But using the envelope theorem for

the second model, we have

V ′
t (Wt) = −λ,

where λ is the multiplier for the constraint Bt + e⊤Xt = Wt, which is an output of optimization

solvers.
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If we do not allow borrowing money or shorting stocks, i.e., Bt ≥ 0 and Xt ≥ 0, then we just need

to add them into the second model, and we can still show that V ′
t (Wt) = −λ.

7.4 Numerical Example

We use a simple numerical example to show the improvement by Hermite interpolation. In the above

portfolio optimization problem, we assume that the number of risky asset is n = 1, the number of

periods is T = 6, the riskfree return Rf = 1.04, and

R =





0.9, with probability 1/2,

1.4, with probability 1/2.

Let the range of W0 as [0.9, 1.1], and the utility function is u(W ) = −(W − 0.2)−1.

By use of the tree method (discussed in section 9.1), we calculate the exact optimal allocations

and value functions and show them in Figure 7.1, for t = 0, 1, . . . , 5.

At first, we try Schumaker shape-preserving interpolation method with N = 30 nodes, we get

the results shown in Figure 7.2. We see that the results are not good in comparison with the exact

solutions, particularly for the bond allocation.

Now we come to see the solutions given by Schumaker plus Hermite interpolation method with

N = 30 nodes, shown in Figure 7.3. We see that the solutions are much closer to the exact solutions.

So the Hermite interpolation really helps to improve the accuracy of the solutions.

We also try other approximation methods, such as Chebyshev interpolation method, cubic B-spline

interpolation method, natural cubic spline interpolation, not-a-knot cubic spline interpolation method,

and so on. We found that the Schumaker plus Hermite interpolation provided the best solutions (cubic

B-spline interpolation method also gives good solutions, but is still less accurate than Schumaker plus

Hermite interpolation method). We show results from Chebyshev interpolation method in Figure 7.4,

cubic B-spline interpolation method in Figure 7.5, and not-a-knot cubic spline interpolation method

in Figure 7.6. We also tried natural cubic spline interpolation method, which results are worse than

not-a-knot cubic spline interpolation method, so its figure is omitted here.



52 CHAPTER 7. DYNAMIC PROGRAMMING WITH HERMITE INTERPOLATION

0.9 0.95 1 1.05 1.1
0.085

0.09

0.095

0.1

0.105

0.11
bond at stage t=0

0.9 0.95 1 1.05 1.1
0.7

0.8

0.9

1

1.1
stock at stage t=0

0.9 0.95 1 1.05 1.1
−0.8

−0.75

−0.7

−0.65

−0.6
value at stage t=0

0.8 1 1.2 1.4 1.6
0.06

0.08

0.1

0.12
bond at stage t=1

0.8 1 1.2 1.4 1.6
0.5

1

1.5
stock at stage t=1

0.8 1 1.2 1.4 1.6
−1

−0.8

−0.6

−0.4

−0.2
value at stage t=1

0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2
bond at stage t=2

0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5
stock at stage t=2

0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0
value at stage t=2

0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2
bond at stage t=3

0.5 1 1.5 2 2.5 3
0

1

2

3
stock at stage t=3

0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0
value at stage t=3

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2
bond at stage t=4

0 1 2 3 4 5
0

2

4

6
stock at stage t=4

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0
value at stage t=4

0 2 4 6
0

0.05

0.1

0.15

0.2
bond at stage t=5

0 2 4 6
0

2

4

6
stock at stage t=5

0 2 4 6
−3

−2

−1

0
value at stage t=5

Figure 7.1: Exact optimal allocation and value functions
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Figure 7.2: Schumaker interpolation
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Figure 7.3: Schumaker plus Hermite interpolation
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Figure 7.4: Chebyshev interpolation, N = 16, deg= 15
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Figure 7.5: Cubic B-spline interpolation, N = 30
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Figure 7.6: Not-a-knot cubic spline interpolation, N = 30



Chapter 8

Parallelization

From the numerical dynamic programming (NDP) algorithms 3.1 and 3.2, we see that it is common

that NDP requires weeks or months of computation to solve high-dimensional problems, due to the

“curse of dimensionality” of the number of optimization problems in each maximization step. It is

natural to do parallelization for the maximization steps to break the “curse of dimensionality”. In

the next section, we developed parallel numerical DP algorithms under the Condor system to solve

high-dimensional problems.

The Condor system is a high-throughput computing open-source software framework for dis-

tributed parallelization of computationally intensive tasks on a farm of computers, which is freely

available for use. It is developed by the Condor team at the University of Wisconsin-Madison. Here

we focused the Condor Master-Worker (MW) system for our parallel numerical DP algorithms. The

Condor MW system consists of two entities: a master process and a cluster of worker processes.

The master process manages basically for decomposing the problem into small tasks, queueing and

distributing the tasks among the worker processes, and collecting the results from the workers. The

workers’ execution is a simple cycle: receive a task from the master, do the task, and then send back its

result to the master. In MW applications, Condor acts as a resource management tool for allocating

and managing the requested computers available in the pool of machines. A file-based, remote I/O

scheme can be used as the message passing mechanism between the master and the workers.

It is easy to program in the master-worker paradigm, as the user can circumvent the typical

parallel programming hurdles, such as load balancing, termination detection, and algorithm control

information distributing among compute nodes. Moreover, the computation in the master-worker

paradigm is fault-tolerant: if a worker fails in executing a portion of the computation, the master

simply distributes the portion of the computation to another worker, which can be an additional

worker available in the pool of computers. Furthermore, the user can request any number of workers,

which is independent of the number of tasks. Thus, if the user requested m workers and there are

n×m tasks, then the fast computers will get more tasks than the slow machines, such that the parallel

block problem can almost disappear if n is not small.

58
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8.1 Parallel NDP Algorithms under the Condor MW System

We applied the NDP algorithms with value function iteration (VFI) for problems with multidimen-

sional continuous and discrete states in the Condor MW system. The model is

Vt(x, θ) = max
a∈D(x,θ,t)

ut(x, θ, a) + βE{Vt+1(x
+, θ+) | x, θ, a},

for continuous state vector x ∈ R
d and discrete state vector θ ∈ Θ = {θj = (θj1, . . . , θjk) : 1 ≤ j ≤ N}.

The following is the algorithm architecture for the master process:

Algorithm 8.1. Master Parametric Dynamic Programming with Value Function Iteration for Prob-

lems with Multidimensional Continuous and Discrete States

Initialization. Set up V̂ (x, θ; b0) and initial guesses of actions a, for all θ ∈ Θ = {θj = (θj1, . . . , θjk) :

1 ≤ j ≤ N}. Choose the approximation nodes, Xt = {xt
i = (xt

i1, . . . , x
t
id) : 1 ≤ i ≤ mt}.

Step 1. Separate the maximization step into N tasks, one task per θj ∈ Θ = {θj = (θj1, . . . , θjk) :

1 ≤ j ≤ N}. Each task contains the parameters bt, and initial guesses of actions a for all xi ∈ Xt

with a given θj . Then send these tasks to the workers.

Step 2. Wait until all tasks are done by the workers. Then collect the parameters bt+1
j and optimal

actions a∗ij from the workers, for 1 ≤ i ≤ mt and 1 ≤ j ≤ N .

Step 4. If t = T − 1 for a finite horizon problem, or if ‖V̂ (x, θ; bt+1) − V̂ (x, θ; bt)‖ < ε for an infinite

horizon problem, STOP; else go to step 1.

The following is the algorithm architecture for the workers:

Algorithm 8.2. Worker Algorithm for Problems with Multidimensional Continuous and Discrete

States

Step 1. Get the parameters bt and initial guesses of a for one given θj from the master.

Step 2. For this given θj , compute

vij = max
aij∈D(xi,θj ,t)

u(xi, θj , aij) + βE{V̂ (x+
i , θ

+
j ; bt) | xi, θj , aij},

for each xi ∈ Xt, 1 ≤ i ≤ mt.

Step 3. Using an appropriate approximation method, compute the bt+1
j , such that V̂ (x, θj ; b

t+1
j )

approximates {(xij , vij): 1 ≤ i ≤ mt}.

Step 4. Send bt+1
j and optimal actions a∗ij for 1 ≤ i ≤ mt, to the master.
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When there are too many nodes for continuous states, i.e., when mt is large, it will be better to

break the task for one θj into subtasks. Since partial number of nodes xi for one given θj can not

construct the approximation over the full range [xmin, xmax], the workers can not do the step 3 and 4

together with step 1 and 2 in the above algorithm 8.2. If it is quick to compute bt+1
j in the fitting step

(e.g., Chebyshev polynomial approximation using Chebyshev regression algorithm), then we can just

let the master do the step. Otherwise, the master process has to send two different kind of tasks to

the workers. The first kind of tasks will let the workers calculate vij for some given nodes xi and one

θj . Then, after collecting vij for all nodes xi and one θj , the master process sends the second kind

of tasks to the worker for computing bt+1
j . Therefore, the master algorithm will be changed into the

following version:

Algorithm 8.3. Master Parametric Dynamic Programming with Value Function Iteration for Prob-

lems with Multidimensional Continuous and Discrete States

Initialization. Set up V̂ (x, θ; b0) and initial guesses of actions a, for all θ ∈ Θ = {θj = (θj1, . . . , θjk) :

1 ≤ j ≤ N}. Choose the approximation grid, Xt = {xt
i = (xt

i1, . . . , x
t
id): i = 1, . . . ,mt}.

Step 1. Separate Xt into D disjoint subsets with almost equal sizes: Xt1, . . . , XtD, and separate the

maximization step into N ×D first kind of tasks, one task per (Xtd, θj), for d = 1, . . . , D and

j = 1, . . . , N . Each task contains the parameters bt, and initial guesses of actions a for nodes in

Xtd with a given θj . Then send these tasks to to the workers.

Step 2. Wait until all the first kind of tasks are done by the workers. Then collect all vij and optimal

actions a∗ij from the workers, for 1 ≤ i ≤ mt, 1 ≤ j ≤ N .

Step 3. Separate the fitting step into N second kind of tasks, one task per θj ∈ Θ. Each task contains

vij for all 1 ≤ i ≤ mt and one θj . Then send these tasks to the workers.

Step 4. Wait until all the second kind of tasks are done by the workers. Then collect the parameters

bt+1
j from the workers, for all 1 ≤ j ≤ N .

Step 5. If t = T − 1 for a finite horizon problem, or if ‖V̂ (x, θ; bt+1) − V̂ (x, θ; bt)‖ < ε for an infinite

horizon problem, STOP; else go to step 1.

Notice that in the step 4 of the above algorithm, if bt+1
j is quick to be computed, then we could

just let the master compute them, and cancel the second kind of tasks for the workers.

The worker algorithm will be separated into two kind of versions for two kinds of tasks:

Algorithm 8.4. Worker Algorithm for the First Kind of Tasks for Problems with Multidimensional

Continuous and Discrete States

Step 1. Get the parameters bt and initial guesses of aij for all nodes xi ∈ Xtd’s and one given θj

from the master process.
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Step 2. For this given θj , compute

vij = max
aij∈D(xi,θj ,t)

u(xi, θj , aij) + βE{V̂ (x+
i , θ

+
j ; bt) | xi, θj , aij},

for all xi ∈ Xtd.

Step 3. Send v∗ij for these given xi ∈ Xtd and θj , to the master process.

Algorithm 8.5. Worker Algorithm for the Second Kind of Tasks for Problems with Multidimensional

Continuous and Discrete States

Step 1. Get vij for all nodes xi ∈ Xt and one given θj from the master process.

Step 2. Using an appropriate approximation method, compute the bt+1
j , such that V̂ (x, θj ; b

t+1
j )

approximates {(xij , vij): 1 ≤ i ≤ mt}.

Step 3. Send bt+1
j to the master process.

We should note that the above algorithms have the parallel block problem, i.e., if all but one task

is still in running and it runs very slowly, then we have to wait until it finishes and then go to next

value function iteration. But we are able to minimize the parallel block problem by decomposing the

big tasks into more smaller tasks, unless the communication between the master and the workers may

take too much time, which is unusual in our application.

We use two numerical examples to illustrate the efficiency of the parallel numerical DP algorithms

under Condor system.

8.2 Parallelization in Optimal Growth Problems

In chapter 5, we discussed the following DP model for multi-dimensional stochastic optimal growth

problems:

V (k, θ) = max
k+,c,l

u(c, l, k+) + βE{V (k+, θ+) | k, θ, c, l}

s.t. k+ = F (k, l, θ) − c+ ǫ,

c > 0, l > 0, k+ ∈ [k, k̄],

In our first example, we come to see the application of parallelization of numerical DP for the

above model. We let k, θ, k+, θ+, c, l and ǫ be 4-dimensional vectors, β = 0.8, [k, k̄] = [0.5, 3.0]4,

F (k, l, θ) = k + θAkαl1−α with α = 0.25, and A = (1 − β)/(αβ) = 1, and

u(c, l, k+) =

4∑

i=1

[
c1−γ
i /(1 − γ) −Bl1+η

i /(1 + η)
]

+
∑

i6=j

µij(k
+
i − k+

j )2,
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with γ = 2, η = 1, µij = 0, and B = (1 − α)A1−γ = 0.75.

Here we let θ+1 , . . . , θ
+
4 be independent each other, and assume that the possible values of θi, θ

+
i

are

a1 = 0.7, a2 = 0.85, a3 = 0.95, a4 = 1.05, a5 = 1.15, a6 = 1.3,

and the probability transition matrix from θi to θ+i is

P =





0.75 0.25 0 0 0 0

0.25 0.5 0.25 0 0 0

0 0.25 0.5 0.25 0 0

0 0 0.25 0.5 0.25 0

0 0 0 0.25 0.5 0.25

0 0 0 0 0.25 0.75





,

for each i = 1, . . . , 4. That is,

Pr[θ+ = (aj1 , . . . , aj4) | θ = (ai1 , . . . , ai4)] = Pi1,j1Pi2,j2Pi3,j3Pi4,j4 ,

where Pid,jd
is the (id, jd) element of P , for any id, jd = 1, . . . , 6, d = 1, . . . , 4.

In addition, we assume that ǫ1, . . . , ǫ4 are i.i.d., and each ǫi has 3 discrete values:

δ1 = −0.001, δ2 = 0.0, δ3 = 0.001,

while their probabilities are q1 = 0.25, q2 = 0.5 and q3 = 0.25, respectively. That is,

Pr[ǫ = (δn1
, . . . , δn4

)] = qn1
qn2

qn3
qn4

,

for any nd = 1, 2, 3, d = 1, . . . , 4. Moreover, ǫ1, . . . , ǫ4 are assumed to be independent of θ+1 , . . . , θ
+
4 .

Therefore,

E{V (k+, θ+) | k, θ = (ai1 , . . . , ai4), c, l}

=

3∑

n1,n2,n3,n4=1

qn1
qn2

qn3
qn4

6∑

j1,j2,j3,j4=1

Pi1,j1Pi2,j2Pi3,j3Pi4,j4 ·

V (k̂+
1 + δn1

, . . . , k̂+
4 + δn4

, aj1 , . . . , aj4).

where k̂+
d = F (kd, ld, aid

) − cd, for any id = 1, . . . , 6, d = 1, . . . , 4.

For this example, we use value function iteration method while the continuous function approxi-

mation is complete degree-3 Chebyshev polynomial approximation method with 44 Chebyshev nodes

for continuous state variables, and the optimizer is NPSOL, and the initial value function is 0 every-

where. Since the number of possible values of θi is 6 for i = 1, . . . , 4, the total number of tasks for one

value function iteration is 64 = 1296. Under Condor system, we assign 25 workers to do this parallel

work by using the master algorithm 8.1 and the worker algorithm 8.2. After running 3 value function
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Table 8.1: Parallel efficiency for various number of worker processors

# Worker processors Parallel efficiency Average task Total wall clock
CPU time (minute) time (hour)

25 93.56% 21 65
54 93.46% 25 33
100 86.73% 25 19

iterations (VFI), we have the following statistic table:

Wall clock time for all 3 VFIs 235,364 seconds

Wall clock time for 1st VFI 42,034 seconds

Wall clock time for 2nd VFI 103,871 seconds

Wall clock time for 3rd VFI 89,458 seconds

Total time workers were up (alive) 5,354,677 seconds

Total cpu time used by all workers 4,887,384 seconds

Minimum task cpu time 557 seconds

Maximum task cpu time 4,196 seconds

Mean uptime for the workers 214,187 seconds

Standard deviation uptime for the workers 4,175 seconds

Mean cpu time for the workers 195,495 seconds

Standard deviation cpu time for the workers 7,362 seconds

Number of (different) workers 25

Average Number Present Workers 22.75

Overall Parallel Performance 93.56%

Notice that the overall parallel performance is 93.56%, so the parallel efficiency of our parallel

numerical DP method is very high for this example.

Moreover, the L∞ norm of relative change of value functions at 1st, 2nd and 3rd VFI are re-

spectively 8.259158, 1.548019, 0.6354596, which is decreasing. So it means that the value function

iteration method is converging.

Table 8.1 gives the parallel efficiency with various number of worker processors for this optimal

growth model.

8.3 Parallelization in Dynamic Portfolio Problems

In this section, we come to see the application of parallelization in a multi-period asset allocation

problem model. An investor wants to invest his money into n uncorrelated stocks and a bond with

a riskless return Rf for one year. The random annual return of stock i, Ri, is assumed to have a

log-normal distribution, i.e., log(Ri) ∼ N(µi − σ2
i

2 , σ
2
i ), for i = 1, . . . , n. The investor would like to

consume all the wealth at the end of T years with a power utility function u(W ) = W 1−γ/(1− γ). At
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the beginning of every year, he has a chance to re-balance his portfolio with a proportional transaction

cost rate τ for buying or selling stocks. From section 10.2, we know that the value function of the

problem’s DP model is

Vt(Wt, xt) = W 1−γ
t · gt(xt),

where Wt and xt are respectively wealth and allocation fractions of stocks rightly before re-balancing

at stage t = 0, 1, . . . , T , and

gt(xt) = max
δ+

t ,δ−

t

E
[
Π1−γ

t+1 · gt+1(xt+1)
]

s.t. mt = e⊤(δ+t − δ−t + τ(δ+t + δ−t )),

st+1 = R. ∗ (xt + δ+t − δ−t ),

Πt+1 = e⊤st+1 +Rf (1 − e⊤xt −mt),

xt+1 = st+1/Πt+1,

δ+t ≥ 0, δ−t ≥ 0,

for t = 0, 1, . . . , T − 1, while gT (x) = 1/(1 − γ).

In our numerical examples, we choose the following parameters and methods:

Number of periods (years) T = 6

interest rate r = 0.04

drift of stocks µi = 0.07, i = 1, . . . , n

standard deviation of stocks σi = 0.2, i = 1, . . . , n

proportional transaction cost ratio τ = 0.002

terminal utility u(W ) = W 1−γ/(1 − γ)

quadrature rule Gauss-Hermite quadrature rule with

5 nodes in one dimension

function approximation method degree-4 complete Chebyshev polynomial

with 5 nodes in one dimension

optimization solver NPSOL

To realize the importance of parallelization to high-dimensional dynamic portfolio problems, let

us at first take a look at the growth rate of run times for various numbers of stocks n = 3, 4, 5 and

γ = 3 on a single machine.

In Table 8.2, we see that the growth rate is about 60 times per stock. And we know that it could

be larger if we increase the number of Gauss-Hermite nodes or the degree of Chebyshev polynomials.

Now we come to use parallelization algorithms to solve the high-dimensional dynamic portfolio

problems. Since there is no discrete state variables in this model, we just need the master algorithm

8.3 and the worker algorithm 8.4. In this example, we choose a dynamic portfolio problem with n = 6

stocks and one riskless bond, and we let the relative risk aversion coefficient γ = 3.5. Since the number
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Table 8.2: Run times of NDP for portfolio problems on a single machine
n = 3 n = 4 n = 5

Run time of 1st VFI 0 6 196
Run time of 2nd VFI 2 91 5,554
Run time of 3rd VFI 1 96 5,926
Run time of 4th VFI 1 62 3,619
Run time of 5th VFI 1 62 3,616
Run time of 6th VFI 1 65 3,764
Total run time of 6 VFIs 6 382 22,675

Note: the time unit is second. They run on a Mac with a 2.2 GHz Intel Core

2 Duo processor and 2 GB memory.

The objective function of 1st VFI is independent of xT , so it is much faster

than other VFIs.

of Chebyshev nodes is 5 for each dimension, the total number of tasks for one value function iteration

could be up to 5n = 15625, here we set it as 3125 such that each task contains 5 nodes. Under Condor

system, we assign 200 workers to do this parallel work.

Wall clock time for all 6 VFIs 5,624 seconds

Wall clock time for 1st VFI 484 seconds

Wall clock time for 2nd VFI 1,451 seconds

Wall clock time for 3rd VFI 1,026 seconds

Wall clock time for 4th VFI 898 seconds

Wall clock time for 5th VFI 886 seconds

Wall clock time for 6th VFI 878 seconds

Total time workers were up (alive) 1,061,396 seconds

Total cpu time used by all workers 892,446 seconds

Minimum task cpu time 2 seconds

Maximum task cpu time 395 seconds

Mean uptime for the workers 5,307 seconds

Standard deviation uptime for the workers 136 seconds

Mean cpu time for the workers 4,462 seconds

Standard deviation cpu time for the workers 355 seconds

Number of (different) workers 200

Average Number Present Workers 189

Overall Parallel Performance 87.2%



Chapter 9

Dynamic Portfolio Problems

There are plenty of applications of dynamic programming (DP) method in finance. In this chapter

we present the application in dynamic portfolio problems.

Dynamic portfolio problems are multi-stage asset allocation problems, which are popular in asset

management. Assume that n risky assets (“stocks”) and/or a riskless asset (“bank account” paying a

fixed interest rate r) are available for trading. Adjustments of the assets are made through N stages

to maximize the investor’s expected utility of terminal wealth. Assume that T is the terminal time

and in [0, T ] there are N+1 stages at times: 0 = t0 < t1 < · · · < tN−1 < tN = T with tj+1− tj = ∆tj ,

and the portfolio could be re-allocated on the stages t0, . . . , tN−1. We always assume that the stocks

may be bought or sold in arbitrary amounts (not necessarily integral number of shares, and they will

be bounded if there are “no-shorting” or “no-borrowing” constraints.).

If we let the annual risk-free interest rate be r, then the risk-free return over the period (tj , tj+1)

is Rf = er∆tj for a continuously compound rate, or Rf = 1+ r∆tj for a discretely compound rate. In

practice, if borrowing cash is allowed, then the interest rate for borrowing cash from banks should be

higher than the interest rate from saving cash in the banks. But here we assume that they are same

for simplicity.

Let St = (St1, . . . , Stn)⊤ denote the price vector of risky assets at time t ∈ [0, T ], and let their

random asset returns be Rj = (Rj
1, . . . , R

j
n)⊤ over the period (tj , tj+1) for j = 0, 1, . . . , N−1, where x⊤

denotes the transpose of a vector x. In a multi-stage portfolio problem, the distribution of the random

asset returns are given or derived from discretizing continuous time models. In continuous time world,

we often assume that St follows a n-dimensional geometric Brownian motion with a constant drift

vector µ = (µ1, . . . , µn)⊤ and volatility vector σ = (σ1, . . . , σn)⊤, i.e,

dSt

St
= µdt+ σdzt,

where zt is an n-dimensional Brownian motion with a correlation matrix Σ. Here dSt

St
denotes

(dSt1

St1
, . . . , dStn

Stn
)⊤, and σdzt denotes (σ1dzt1, . . . , σndztn)⊤, similar notations are used later.

66
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By discretizing the stochastic process directly, we get

∆St

St
= µ∆t+ σ

√
∆tz1, (9.1)

where z1 is an n-dimensional normal random variable vector while its covariance matrix is its corre-

lation matrix Σ. That is, St+∆t = RSt, while the return

R ∼ N(1 + µ∆t, (ΛΣΛ)∆t),

where Λ =diag(σ1, . . . , σn) is a diagonal matrix with diagonal elements (σ1, . . . , σn), and 1 + µ∆t

denotes (1 + µ1∆t, . . . , 1 + µn∆t). Since the return R usually should be positive, but the normal

distribution may have negative values, so we adjust the distribution of R such that the adjusted

probability distribution has the following property:

Pr(Ri < ε) = 0,

Pr(Ri = ε) = Φ

(
ε− (1 + µi∆t)

σi

√
∆t

)
,

Pr(Ri < y) = Φ

(
y − (1 + µi∆t)

σi

√
∆t

)
, if y > ε,

for some small positive constant ε < µi∆t and all i = 1, . . . , n, where Φ(x) denotes the standard normal

cumulative probability distribution. Since usually σi ≤ 0.25, then Φ
(

ε−(1+µi∆t)

σi

√
∆t

)
≤ Φ(−4/

√
∆t)

which is close to 0 when ∆t ≤ 1. So this adjustation has a very little effect on the distribution. Later

we will say that this R has a truncated multivariate normal distribution.

By applying the Ito’s formula, the asset price process St has another equivalent stochastic differ-

ential equation:

d(log(St)) = (µ− σ2

2
)dt+ σdzt,

where σ2 denotes (σ2
1 , . . . , σ

2
n). By discretizing the stochastic differential equation, we have

∆(log(St)) = (µ− σ2

2
)∆t+ σ

√
∆tz1. (9.2)

That is, St+∆t = RSt, while the log-return

log(R) = ∆(log(St)) ∼ N((µ− σ2

2
)∆t, (ΛΣΛ)∆t).

For simplicity, in this chapter we always assume that ∆tj = ∆t = 1, and the one-period risk-free

return is Rf , and the one-period risky asset return Rj = R = (R1, . . . , Rn)⊤ has same distribution,

for j = 0, 1, . . . , N − 1, unless it is specifically defined.

Let Wt denote the wealth at time t = 0, 1, . . . , T , and let the investment fractions in the risky

assets after reallocation be xt = (xt1, . . . , xtn)⊤ with e⊤xt =
∑n

i=1 xti ≤ 1, where e is the vector with

1 everywhere. Then the investment fraction in the riskless asset is (1−e⊤xt). At time t+1, the wealth
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becomes

Wt+1 = Wt(Rf (1 − e⊤xt) +R⊤xt)

= Wt(Rf + (R −Rf )⊤xt),

for t = 0, 1, . . . , T − 1. If there is no riskless asset, then Wt+1 = Wt(R
⊤xt), while xt should satisfy

e⊤xt = 1.

A simple dynamic portfolio optimization problem is to find optimal portfolio at each stage such

that we have a maximal expected utility of the terminal wealth, i.e.,

max E[u(WT )], (9.3)

where u is the given utility function (e.g., an exponential utility u(W ) = − exp(−λW ) with λ > 0,

which has an absolute risk aversion coefficient λ = −u′′(W )/u′(W ), or a power utility u(W ) =

W 1−γ/(1− γ) with γ > 0 and γ 6= 1, or the log utility u(W ) = log(W ) for γ = 1, which has a relative

risk aversion coefficient γ = −Wu′′(W )/u′(W )).

There are several ways to solve this multi-stage portfolio problem: (1) tree method if the random

returns are discrete; (2) stochastic programming (SP); (3) dynamic programming (DP).

9.1 Tree Method

For the dynamic portfolio optimization problem 9.3, if we discretize the random returns of n risky

assets as R = R(j) = (R1,j , . . . , Rn,j) with probability pj for 1 ≤ j ≤ m, then it becomes a tree model:

max
mT∑

k=1

PT,ku(WT,k),

where

Pt+1,k = Pt,(k−1)/m+1p(k mod m)+1, P0,j = 1,

and

Wt+1,k = Wt,(k−1)/m+1(Rf (1 − e⊤xt,(k−1)/m+1) +

n∑

i=1

Ri,(k mod m)+1xi,t,(k−1)/m+1),

for 1 ≤ k ≤ mt+1 and 0 ≤ t < T .

The disadvantage of tree method is that whenm or T is large, the problem size will be exponentially

increased, such that it will be a big challenge for an optimizer to get accurate solution.



9.2. STOCHASTIC PROGRAMMING MODEL 69

9.2 Stochastic Programming Model

For the dynamic portfolio optimization problem 9.3, the stochastic programming model is

max
1

M

M∑

k=1

u(WT,k),

where M =
∏T−1

t=0 mt, and mt is the number of scenarios in the period t given the previous scenario,

and

Wt+1,k = Wt,(k−1)/mt+1(Rf (1 − e⊤xt,(k−1)/mt+1) +

n∑

i=1

Ri,t,kxi,t,(k−1)/mt+1),

where (R1,t,k, . . . , Rn,t,k) is the k-th sample of random return over the period (t, t + 1), for 1 ≤ k ≤
∏t

i=0mi and 0 ≤ t ≤ T − 1.

In order to get a good estimation of optimal asset allocation, stochastic programming method

often has to generate or simulate a huge amount of scenarios O(M), while the number of unknowns

are O(n
∏T−2

t=0 mt), such that it will be a big challenge for an optimizer to get good solution. Often

stochastic programming has to use some decomposition techniques (such as Benders decomposition,

Dantzig-Wolfe decomposition, etc.) and variance reduction techniques. See Infanger [25] and Collumb

[9].

The disadvantage of stochastic programming is the huge size of optimization problem and uncer-

tainty of scenarios. A typical scenario tree was represented by (50 × 50 × 40) scenarios leading to

100, 000 scenarios.

9.3 Dynamic Programming Model

For the dynamic portfolio optimization problem 9.3, the DP model is

Vt(Wt) = max E [Vt+1(Wt+1) |Wt]

= max
xt

E
[
Vt+1

(
Wt(Rf (1 − e⊤xt) +R⊤xt

)]
, (9.4)

for 0 ≤ t < T , while VT (W ) = u(W ). The function Vt(W ) is called as the value function at time t,

which is also called as indirect utility function or derived utility function. If there is no riskless asset,

then Wt+1 = Wt(R
⊤xt) and we just need to cancel the Rf term in the Bellman equation, while xt

should satisfy e⊤xt = 1.

Many researchers attacked the dynamic portfolio problems by using the DP method. Most re-

search discussed the problems with only 2 or 3 assets for standard utility functions (CARA, CRRA,

or HARA). Gupta [24] studied the problem with behavior utilities. Wang [53] applied suboptimal so-

lution methods based on approximate value iteration to solve the dynamic portfolio problem without

transaction costs. His primary innovation is the use of mean-variance portfolio selection methods to

find suboptimal portfolios instead of optimal portfolios. Unfortunately, the solutions from this method
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cannot guarantee to be close to the optimal solutions. Moreover, since he did not apply efficient, ac-

curate and stable approximation method and integration method in the value function iteration, such

that his method is inefficient and the solutions may be inaccurate.

9.4 Numerical Dynamic Programming

If we use some determined quadrature formulas to estimate the expectation in the objective function

of the DP model, we call it as the numerical DP method.

9.4.1 Integration for Truncated Normal Random Returns

In the above DP model for discrete-time optimal asset allocation problem, we know the approximation

for the value functions is one-dimensional problem, the optimization problem has a size O(n), but

the integration operator of the expected value at next stage, E[Vt+1(Wt+1) | Wt], is a n-dimensional

problem in the standard way which suffers the well-known “curse of dimensionality”, as there are n

random variables: R1, . . . , Rn.

However, this “curse of dimensionality” can be solved, if R = (R1, · · · , Rn)⊤ ∈ R
n is assumed to

be a random vector with a truncated multivariate normal distribution over one period (t, t+∆t). For

example, if we assume that the risky asset price vector St is an n-dimensional geometric Brownian

motion:
dSt

St
= µdt+ σdzt,

where µ = (µ1, · · · , µn)⊤ is the drift, σ = (σ1, . . . , σn) is the volatility, zt is an n-dimensional Brownian

motion with a correlation matrix Σ, then we can discretize the stochastic process

∆St

St
= µ∆t+ σ

√
∆tz1,

such that the asset return over the period [t, t+∆t), R = St+∆t/St, is normal with mean (1+µ∆t) and

variance matrix (ΛΣΛ)∆t, where Λ =diag(σ1, . . . , σn). Then we adjust R such that P (Ri < ε) = 0

for some small positive number ε and all i = 1, . . . , n.

In the following, we assume that ∆t = 1 for simplicity, and R is a random vector with a truncated

multivariate normal distribution with mean 1+µ and variance matrix ΛΣΛ, where Λ =diag(σ1, . . . , σn)

is the standard deviation vector of R, and Σ is the correlation matrix of R. Let Rf = 1 + r be the

riskfree return.

Let the risky asset allocation fraction xt = (xt1, . . . , xtn)⊤, and let Wt be the wealth at stage t,

then

Wt+1 = Wt((R −Rf )⊤xt +Rf ),

Since R is a random vector with a truncated multivariate normal distribution, and Wt+1 is a linear

combination of Ri, from the property of normal random vector, we know that Wt+1 is close to be
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normal with mean Wt(1 + µ̂(xt)) and standard deviation σ̂(xt)Wt, where

{
µ̂(xt) = (µ− r)⊤xt + r,

σ̂(xt) =
√
x⊤t ΛΣΛxt.

(9.5)

If there is no riskless asset, then µ̂(xt) = µ⊤xt, while xt should satisfy e⊤xt = 1.

Thus E[Vt+1(Wt+1) | Wt] is transformed into a univariate integration approximately and we can

apply one-dimensional Gauss-Hermite quadrature to estimate it. The numerical DP model is

Vt(Wt) = π− 1
2 max

xt

m∑

i=1

ωiVt+1(Wt(1 + µ̂(xt) +
√

2σ̂(xt)qi)),

where the ωi and qi are the Gauss-Hermite quadrature weights and nodes over (−∞,∞), for i =

1, . . . ,m. This model is called as numerical DP model with normal random return of portfolio.

When m is big enough, 1 + µ̂(xt) +
√

2σ̂(xt)qi could be less than 0 such that Wt+1 may be less

than 0. But if the terminal utility function is a CRRA utility, then we should have to let Wt > 0.

One way to solve this drawback is to choose an appropriate m, which has no problem usually when

∆t ≤ 1.

If we do not allow shorting stocks or borrowing money, then we just need to add the constraints:

xt ≥ 0 and 1 − e⊤xt ≥ 0.

9.4.2 Nonlinear Change of Variables for States

Numerically, to approximate the value function, we need to have a lower bound and an upper bound

at each stage for the state variable W . When we do not allow shorting stocks or borrowing cash, the

lower bound of W must be bigger than 0. In the asset allocation problem, we often add the mean

return constraint µ̂(xt) ≥ µ and the standard deviation constraint σ̂(xt) ≤ σ̄ for some given µ and σ̄.

For simplicity, here we let ∆t = 1.

If the range of Wt at the time t is [Lt, Ut], and we use the m Gauss-Hermite quadrature nodes:

q1, . . . , qm in the numerical DP model with normal random return of portfolio, then the lower bound

of Wt+1 is

Lt+1 = Lt · min
xt

(1 + µ̂(xt) +
√

2σ̂(xt) min
1≤i≤m

(qi))

s.t. µ̂(xt) ≥ µ, σ̂(xt) ≤ σ̄,

xt ≥ 0, 1 − e⊤xt ≥ 0,

and the upper bound of Wt+1 is

Ut+1 = Ut · max
xt

(1 + µ̂(xt) +
√

2σ̂(xt) max
1≤i≤m

(qi))

s.t. µ̂(xt) ≥ µ, σ̂(xt) ≤ σ̄,

xt ≥ 0, 1 − e⊤xt ≥ 0.
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Note that the number of Gauss-Hermite quadrature nodes m should not be chosen too large such that

Lt+1 ≤ 0.

By observing the formulas of Lt+1 and Ut+1, we know that the range of W is exponentially

expanding over the time. For example, if we have only one stock asset and its one-period return has a

normal distribution with mean (1+µ) and standard deviation σ, then Lt+1 = Lt(1+µ+
√

2σmin(qi)) =

L0(1 + µ +
√

2σmin(qi))
t+1, and Ut+1 = Ut(1 + µ +

√
2σmax(qi)) = U0(1 + µ +

√
2σmax(qi))

t+1.

When we set L0 = 0.9 and U0 = 1.1, µ = 0.07, σ = 0.2 and the number of Gauss-Hermite nodes

m = 10, we have

[L0, U0] = [0.9, 1.1],

[L1, U1] = [0.088, 2.246],

[L2, U2] = [0.00866, 4.586],

[L3, U3] = [0.00085, 9.36],

[L4, U4] = [8 × 10−5, 19],

[L5, U5] = [8 × 10−6, 39].

If we choose the utility function u(W ) = W 1−γ/(1− γ) with γ > 1 (γ could be dependent on W ),

then u(W ) ↓ −∞ as W ↓ 0, and u(W ) → 0 as W → +∞. Then the value function at each stage

will be steep at the nearby of small lower bound and flat at the nearby of large upper bound on its

domain. So it will be hard to approximate the value function well directly on the state variable W at

a wide range with small lower bound and large upper bound. Thus, to approximate the value function

accurately, approximation nodes should be assigned in such a way that they are denser when they are

closer to the small lower bound, while they are sparser when they are closer to the nearby of large

upper bound.

To solve the above problem, we could change the state variable from W to w = log(W ). Thus the

range of w is just linearly expanding over the time. For the above example, the ranges of w over the

times are

[l0, u0] = [−0.1, 0.095],

[l1, u1] = [−2.4, 0.8],

[l2, u2] = [−4.7, 1.5],

[l3, u3] = [−7.1, 2.2],

[l4, u4] = [−9.4, 2.95],

[l5, u5] = [−11.7, 3.66],

and the new value function is v(w) = v(log(W )) = V (W ).

Besides the nonlinear change of state variable from W to w = log(W ), we could also apply the

change of value function form from V (W ) to log(−v(w)) (here we assume that the utility function



9.4. NUMERICAL DYNAMIC PROGRAMMING 73

u(W ) < 0 for all W > 0, such as u(W ) = W 1−γ/(1 − γ) for γ > 1). That is, if we approximate the

value function using V (W ) =
∑n

i=1 ciφi(W ), then now we use

log(−v(w)) =
n∑

i=1

ciφi(w),

i.e., v(w) = − exp(
∑n

i=1 ciφi(w)).

When we allow shorting stocks or borrowing cash, there may be no bound for next stage’s wealth.

But for the lower bound, it is natural to impose the constraint Wt+1 > 0. So the range of W will be

(0,∞) in every stage. Now we could use a rational change of variable from W to w = (W −a)/(W +a)

for some a > 0. Thus the range of w is (−1, 1) in every stage. This rational change is a one-to-one

mapping while the inverse function is W = a(1 + w)/(1 − w). Using this transformation, the value

function will be good at the nearby of W = a.

9.4.3 Integration for Log Normal Random Returns

When we assume that R is normal, it makes that the asset price could be less than 0. So we often as-

sume that the asset log returns over [t, t+∆t), log(R) = (log(R1), · · · , log(Rn))⊤ ∈ R
n (“log” denotes

the natural logarithm), has a multivariate normal random distribution N((µ − σ2

2 )∆t, (ΛΣΛ)∆t) in

R
n, where µ = (µ1, · · · , µn)⊤ is the drift, σ = (σ1, · · · , σn)⊤ is the volatility, and Σ is the correlation

matrix of the asset log returns, and Λ =diag(σ1, . . . , σn).

Since the correlation matrix is positive definite, we can apply Cholesky factorization to Σ such

that Σ = LL⊤, where L = (Lij)n×n is a lower triangular matrix. Then

log(R1) = (µ1 −
σ2

1

2
)∆t+ (L11z1)σ1

√
∆t,

log(R2) = (µ2 −
σ2

2

2
)∆t+ (L21z1 + L22z2)σ2

√
∆t,

...

log(Rn) = (µn − σ2
n

2
)∆t+ (Ln1z1 + Ln2z2 + · · · + Lnnzn)σn

√
∆t,

where zi are independent standard normal random variables. So

Ri = exp



(µi −
σ2

i

2
)∆t+ σi

√
∆t

i∑

j=1

Lijzj



 .

For simplicity, we let ∆t = 1 in the following.

Let the risky asset allocation fraction xt = (xt1, . . . , xtn)⊤, and let Wt be the wealth at stage t,
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then

Wt+1 = Wt(Rf (1 − e⊤xt) +R⊤xt)

= Wt(Rf (1 − e⊤xt) +

n∑

i=1

exp



(µi −
σ2

i

2
) + σi

i∑

j=1

Lijzj



 xti.

Therefore, we can apply product Gauss-Hermite quadrature to estimate the conditional expectation

of Vt+1(Wt+1) while Wt, xt are given. The numerical DP model is

Vt(Wt) = π−n
2 max

m∑

k1,...,kn=1

ωk1
· · ·ωkn

Vt+1(Wt(Rf (1 − e⊤xt) +

n∑

i=1

exp



µi −
σ2

i

2
+
√

2σi

i∑

j=1

qkj
Lij



xti)),

where the ωk and qk are the Gauss-Hermite quadrature weights and nodes over (−∞,∞), for k =

1, . . . ,m. If there is no riskless asset, then we just need to cancel the Rf term in the formula for

Vt(Wt), and add a constraint e⊤xt = 1.

Similarly with the normal random return case, if we do not allow shorting, we can also use the log

transformation of variable w = log(W ) and the transformation of value function

log(−v(w)) = log(−V (W )) =

n∑

i=1

ciφi(w).

And if we allow shorting stocks or borrowing cash, we just need to add the constraints: xt ≥ 0

and 1 − e⊤xt ≥ 0, and we can also use the rational change of variable w = W−a
W+a for some a > 0.

9.4.4 CARA Utility and Portfolio Problems

In portfolio problems, there are a lot of alternatives for utility functions, such as CRRA utility (u(W ) =

W 1−γ/(1 − γ) for γ > 0 and γ 6= 1, or u(W ) = log(W )), CARA utility (u(W ) = − exp(−λW )/λ

for λ > 0), and HARA (hyperbolic absolute risk aversion) utility (u(W ) satisfying −u′(W )/u′′(W ) =

η +W/γ), and so on. In fact, the HARA utility can be expressed explicitly as

u(W ) =






a(W − c)1−γ/(1 − γ) + b, if γ 6= 1,∞,

a log(W − c) + b, if γ = 1,

−a exp(−λW )/λ+ b, if γ = ∞,

for some constants a > 0, b and c (Usually we just let a = 1 and b = 0). So the CRRA utility class

and the CARA utility class are just subsets of the HARA utility class. See Merton [38], Rubinstein

[46], etc.

When the terminal utility function is a CARA utility u(W ) = −e−λW with a constant absolute

risk aversion coefficient λ > 0, the optimal solutions and value functions can be solved explicitly for
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the DP model (9.4) if the random return is assumed to be normal.

Assume that n stocks are available in the portfolio, and these stocks have a normal return vector

R ∼ N(1 + µ,ΛΣΛ), where µ = (µ1, . . . , µn)⊤ is the mean net return, Λ =diag(σ1, . . . , σn) is the

diagonalized matrix of standard deviation σ = (σ1, . . . , σn)⊤, and Σ is the correlation matrix of

stocks. If we invest x = (x1, . . . , xn)⊤ fractions of initial wealth W0 into these stocks, then x⊤R is

also normal with mean (1 + x⊤µ) and variance x⊤ΛΣΛx. Similarly with equation 4.2 for the case

with one stock and one bond, if we also invest the remaining (1 − e′x)W0 into a bond with a riskless

return Rf = 1 + r, then the expected exponential utility of wealth of the portfolio at the end of one

year is

U(x,W0) = (2π(x⊤ΛΣΛx))−1/2

∫ +∞

∞
−e−λW0(1+z+(1−e⊤x)r)e−(z−x⊤µ)2/(2(x⊤ΛΣΛx))dz

= − exp(−λW0(1 + r + x⊤(µ− r)) + (λW0)
2(x⊤ΛΣΛx)/2).

Thus, the optimal allocation of this one-period portfolio problem satisfies the following KKT

conditions:

µ− r = λW0ΛΣΛx.

That is, the optimal allocation fraction vector for stocks is

x∗ = (ΛΣΛ)−1(µ− r)/(λW0).

So x∗W0 is a constant vector, meaning that the optimal amount vector of dollars invested in stocks

is a constant vector independent of the total amount of wealth.

Moreover, the value function at initial stage for this one-period portfolio problem is

V0(W0) = U(x∗,W0) = −αe−λ(1+r)W0 ,

where

α = exp(−(µ− r)⊤(ΛΣΛ)−1(µ− r)/2).

Recursively, we can derive that for the T -period DP model (9.4),

Vt(Wt) = −αT−t exp(−λ(1 + r)T−tWt),

and the optimal allocation fraction vector for stocks is

x∗t = (ΛΣΛ)−1(µ− r)/(λ(1 + r)T−t−1Wt),

for t = 0, 1, . . . , T − 1.
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9.4.5 CRRA Utility and Portfolio Problems

The most common utility function in the economics and finance is CRRA utility. Let us assume that

the terminal utility function has the form yielding a constant relative risk aversion (CRRA) coefficient

γ > 0, i.e., the utility function is u(W ) = W 1−γ

1−γ for γ > 0 and γ 6= 1, or u(W ) = log(W ) for γ = 1.

Let R = (R1, . . . , Rn)⊤ be the random return of risky assets, and Rf is the return of the riskless asset,

over a period. Let the allocation fractions for the risky assets be x = (x1, . . . , xn)⊤, and let xi ≥ li

for some constant li, i = 1, . . . , n.

Assume that u(W ) = W 1−γ

1−γ for γ > 0 and γ 6= 1, then we can show that Vt(W ) = βT−tW 1−γ/(1−
γ) for some constant β > 0. Let the value function at stage t + 1 be assumed to be Vt+1(W ) =

αt+1W
1−γ/(1 − γ), where αt+1 is a given constant.

In the following, we come to show that Vt(W ) = αtW
1−γ/(1 − γ) for some constant αt and the

optimal xt is independent of W .

Under the constraints xt ≥ l and 1 − e⊤xt ≥ 0, the optimal xt satisfies the KKT equations

E
[
(Rf

(
1 − e⊤xt

)
+R⊤xt)

−γ(Rk −Rf )
]
− λk + ς = 0, k = 1, . . . , n,

λk(xtk − lk) = 0, k = 1, . . . , n,

ς
(
1 − e⊤xt

)
= 0,

and an implicit constraint Rf

(
1 − e⊤xt

)
+ R⊤xt > 0. Without loss of generality, let us assume that

xti > li for i = 1, . . . ,m, and xtj = lj for j = m+ 1, . . . , n, then λ1 = λ2 = · · · = λm = 0.

Now if 1 −∑k
i=1 xi > 0, then ς = 0, this implies that

E




(
Rf

(
1 −

m∑

i=1

xti

)
+

m∑

i=1

Rixti

)−γ

(Rk −Rf )



 = 0, (9.6)

for k = 1, . . . ,m, which is a system of m equations with m unknowns.

Otherwise, we have 1 −∑m
i=1 xi = 0, then

E




(

m∑

i=1

Rixi

)−γ

(Rk −Rf )



+ ς = 0,

for k = 1, . . . ,m. This follows that

E




(

m∑

i=1

Rixi

)−γ

(Rk −Rm)



 = 0, (9.7)

for k = 1, . . . ,m, which is also a system of m equations with m unknowns..

So we showed that under the constraints xt ≥ l and 1− e⊤xt ≥ 0, the optimal allocation fractions

are still independent of wealth Wt and αt+1, no matter which distribution R has, if we assume that

Vt+1(W ) = αt+1W
1−γ/(1 − γ).
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If there is no riskless asset or we cancel the constraint 1−e⊤xt ≥ 0, we can use a similar reasoning

to derive the same conclusion that the optimal allocation fractions are independent of wealth Wt.

Moreover, the value function at stage t is

Vt(W ) = E
[
αt+1(W

(
Rf (1 − e⊤x∗t ) +R⊤x∗t

)
)1−γ/(1 − γ)

]

= αt+1W
1−γE

[(
Rf

(
1 − e⊤x∗t

)
+R⊤x∗t

)1−γ
/(1 − γ)

]

= (αt+1βt)W
1−γ/(1 − γ)

= αtW
1−γ/(1 − γ),

where βt = E
[(
Rf

(
1 − e⊤x∗t

)
+R⊤x∗t

)1−γ
]

is a constant as the optimal allocation fractions x∗t are

independent of W , so that αt = αt+∆tβt is also a constant.

From the above discussion, if the value function at the end stage T is VT (W ) = u(W ) = W 1−γ

1−γ

with γ > 0 and γ 6= 1, then at every stage t = 0, 1, . . . , T − 1, we have

Vt(W ) =




T−1∏

j=t

βj



W 1−γ/(1 − γ).

Moreover, if Rf and the distribution of R are independent of t, then the optimal allocation fractions

x∗t are constant along with W and t, and the value function has the form

Vt(W ) = βT−tW 1−γ/(1 − γ),

for any t = 0, 1, . . . , T , while

β = E
[(
Rf

(
1 − e⊤x∗

)
+R⊤x∗

)1−γ
]

is a constant, where Rf is one-period riskless return and R is one-period risky asset return. If there

is no riskless asset, then we just need to cancel the Rf term in the formula for β, while x∗ should

satisfy e⊤x∗ = 1.

When the terminal utility function is u(W ) = log(W ) for the constant relative risk aversion

coefficient γ = 1, the above KKT conditions still hold, thus if we assume that Vt+1(W ) = log(W )+ξt+1

with a non-random ξt+1 independent of W , then we have

Vt(W ) = log(W ) + (ηt + ξt+1) = log(W ) + ξt,

with ηt = E
[
log
(
Rf

(
1 − e⊤x∗t

)
+R⊤x∗t

)]
. Thus, since VT (W ) = u(W ) = log(W ), we have

Vt(W ) = log(W ) +

T−1∑

j=t

ηj .

Moreover, if Rf and the distribution of R are independent of t, then the optimal allocation fractions
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x∗t are constant along with W and t, and the value function has the form

Vt(W ) = log(W ) + (T − t)η,

for t = 0, 1, . . . , T − 1, while

η = E
[
log
(
Rf

(
1 − e⊤x∗

)
+R⊤x∗

)]

is a constant, where Rf is one-period riskless return and R is one-period risky asset return. If there is

no riskless asset, then we just need to cancel the Rf term in the formula for η, while x∗ should satisfy

e⊤x∗ = 1.

Since the above results are independent of the distribution of R, it is simple to extend the above

results to the case when the re-allocation times 0 = t0 < t1 < · · · < tN = T are not equally spaced,

and/or Rf and the distribution of R change at each stage ti So we showed that myopia is optimal

for CRRA utility. That is, the investor bases each period’s decision on that period’s wealth and

probability distribution of random returns, while the objective is to maximize the expected utility

of wealth at the end of that period, where the utility function is the same CRRA utility in the

multiperiod problem. This result was also showed in Mossin [39], Samuelson [48], and Merton [37, 38].

Here we extended the conclusion to the case without riskless asset and the cases with some shorting

or borrowing constraints.

The above results can be extended to the continuous-time investment problem with no-shorting

and no-borrowing constraints and/or no-riskless-asset case, and the explicit solutions for the optimal

portfolio rules and explicit value function can be derived, see Cai [8].

9.4.6 Numerical Examples

In order to determine that our numerical DP is robust and the portfolio policy obtained from it is

accurate, we use a typical investment example to illustrate it. An investor has a current wealth of one

million dollars and plans to invest it in next 20 years. The investor wants to invest in the portfolio

of 5 assets: US stocks, International stocks, Corporate bonds, Government bonds, and Cash. The

risk-free interest rate of the Cash asset is r = 0.05. The continuous time stochastic process of these 4

risky asset prices St = (St1, . . . , St4) is assumed to be an 4-dimensional geometric Brownian motion:

dSt

St
= µdt+ σdzt,

where zt is an 4-dimensional Brownian motion with a correlation matrix Σ. The drift µ, standard

deviation σ and Σ are given in the following table (the data are from Infanger [26]).
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drifts µ and standard deviations σ

US stocks Int stocks Corp bnd Gvnt bnd

Mean 0.1080 0.1037 0.09 0.079

Std 0.1572 0.1675 0.0657 0.0489

correlation matrix Σ

US stocks Int stocks Corp bnd Gvnt bnd

US stocks 1.00 0.601 0.247 0.062

Int stocks 0.601 1.00 0.125 0.027

Corp bnd 0.247 0.125 1.00 0.883

Gvnt bnd 0.062 0.027 0.883 1.00

We assume that there is no transaction to reallocate portfolio, and shorting stocks or borrowing

cash is not allowed. At the beginning of each year, the investor has a chance to re-allocate the portfolio.

So we choose ∆t = 1 year, and the investor problem becomes a 20-period portfolio optimization

problem. All numerical solutions in this section are given by AMPL programs and KNITRO optimizer.

Example for Normal Return

In this example, we assume that the investor has a constant relative risk aversion coefficient γ = 2,

i.e., the terminal utility function is u(W ) = −W−1. Since St is a geometric Brownian motion, by

discretizing it directly as the equation (9.1), we know that one-year random return vector R could

be assumed to have a truncated multivariate normal distribution with mean (1 + µ) and variance

matrix ΛΣΛ, where Λ =diag(σ1, . . . , σ4). Let xt be the portfolio allocation at stage t, then from

the discussion in section 9.4.1, we know that Wt+1 is close to be normal with mean (1 + µ̂(xt)) and

standard deviation σ̂(xt), where µ̂(xt) and σ̂(xt) are given in the equation (9.5).

Let the range of initial wealth be [0.9, 1.1] millions. Let us require that µ̂(xt) ≥ µ = 0.09, and

σ̂(xt) ≤ σ̄ = 0.1. If we use the 9-node Gauss-Hermite quadrature formula, then the range of wealth

at the end time T = 20 could be chosen as [0.000115, 7211] millions. By use of a degree-9 Chebyshev

polynomial interpolation method and the techniques discussed in section 9.4.1 and 9.4.2, we found

that at any stage t = 0, 1, . . . , 19, the computed optimal risky asset allocation fraction x∗ are almost

constant for any wealth in its given range at stage t: x∗ ≈ (0.3858, 0.1370, 0.4772, 0), while the bound

of their numerical oscillation is only about 0.00001.

Moreover, the value function at time t = 0 is approximated by

V̂0(W ) ≈ − exp(−1.75032− log(W )) = −0.173718W−1,

which is very close to the true value function

V0(W ) = −β20W−1 ≈ 0.173709W−1,
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Table 9.1: Optimal allocation under power utility and log-normal returns, t = 19
Wealth US stocks Int stocks Corp bnd Gvnt bnd Cash Value

0.0002 1 0 0 0 0 −4565.8
0.001 0.3592 0.1337 0.5071 0.0000 0.0000 −913.16
0.01 0.3592 0.1337 0.5071 0.0000 0.0000 −91.316
0.1 0.3592 0.1337 0.5071 0.0000 0.0000 −9.1316
1 0.3592 0.1337 0.5071 0.0000 0.0000 −0.91316
10 0.3592 0.1337 0.5071 0.0000 0.0000 −0.09132
100 0.3592 0.1337 0.5071 0.0000 0.0000 −0.00913
1000 0.3592 0.1337 0.5071 0.0000 0.0000 −0.00091
8000 0.0088 0.0087 0.0342 0.0792 0.8656 −0.00012

as

β = E
[(
Rf (1 − e⊤x∗) +R⊤x∗

)−1
]
≈ 0.9162018,

where Rf = 1 + r = 1.05.

In addition, the mean return of the computed optimal portfolio is µ̂(x∗) ≈ 0.0988 > µ, and its

standard deviation is σ̂(x∗) ≈ 0.0893 < σ̄. So we verified that the constraints for µ̂(xt) ≥ µ = 0.09

and σ̂(xt) ≤ σ̄ = 0.1 hold and are not binding.

Example for Log-Normal Return

In this example, we still assume that the investor has a constant relative risk aversion coefficient

γ = 2, i.e., the terminal utility function is u(W ) = −W−1. However, by discretizing log(St) as the

equation (9.2), we assume that one-year random return vector R has a log-normal distribution with

mean (µ− σ2

2 ) and covariance matrix ΛΣΛ, where Λ =diag(σ1, . . . , σ4).

Let the range of initial wealth be [0.9, 1.1] millions and we use the product Gauss-Hermite quadra-

ture formula with 5-node in each dimension. In order to avoid overflow or underflow, we assume that

the value at Wt ≤ exp(−9) is equal to the value at Wt = exp(−9), and the value at Wt ≥ exp(9)

is equal to the value at Wt = exp(9). Thus the range of wealth at any time t could be a subset

of [exp(−9), exp(9)] = [0.00012, 8103] millions. By use of a degree-9 Chebyshev polynomial interpo-

lation method and the techniques discussed in section 9.4.3 and 9.4.2, we found that at any stage

t = 0, 1, . . . , 19, for any wealth in [0.1, 10] millions, the computed optimal asset allocation fraction x∗

is close to a constant vector: x∗ ≈ (0.36, 0.134, 0.51, 0), while the bound of their numerical oscillation

is about 0.001. Table 9.1, 9.2 and 9.3 respectively give optimal asset allocation fractions at time

t = 19, t = 9, t = 0.
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Table 9.2: Optimal allocation under power utility and log-normal returns, t = 9
Wealth US stocks Int stocks Corp bnd Gvnt bnd Cash Value

0.005 0.3596 0.1337 0.5067 0.0000 0.0000 −73.6104
0.01 0.3593 0.1337 0.5070 0.0000 0.0000 −36.804
0.1 0.3593 0.1337 0.5070 0.0000 0.0000 −3.68162
0.5 0.3597 0.1337 0.5065 0.0000 0.0000 −0.73816
1 0.3593 0.1337 0.5070 0.0000 0.0000 −0.36878
5 0.3580 0.1335 0.5084 0.0000 0.0000 −0.07334
10 0.3582 0.1336 0.5082 0.0000 0.0000 −0.03665
100 0.3621 0.1340 0.5038 0.0000 0.0000 −0.00371
1000 0.3397 0.1315 0.5287 0.0000 0.0000 −0.00036

Table 9.3: Optimal allocation under power utility and log-normal returns, t = 0
Wealth US stocks Int stocks Corp bnd Gvnt bnd Cash Value

0.9 0.3587 0.1336 0.5077 0.0000 0.0000 −0.18049
0.95 0.3586 0.1336 0.5078 0.0000 0.0000 −0.17096
1 0.3586 0.1336 0.5078 0.0000 0.0000 −0.16238
1.05 0.3585 0.1336 0.5079 0.0000 0.0000 −0.15462
1.1 0.3585 0.1336 0.5079 0.0000 0.0000 −0.14756

Moreover, the value function at time t = 0 is approximated by

V̂0(W ) ≈ − exp(−1.81782− 1.00384 log(W )) = −0.1624W−1.00384,

which is very close to the true value function

V0(W ) = −β20W−1 ≈ 0.1625W−1,

as

β = E




(
Rf +

4∑

i=1

(Ri −Rf )x∗i

)−1


 ≈ 0.9131586,

where Rf = er = 1.0513.

9.4.7 Dynamic Programming vs Stochastic Programming

By comparison with stochastic programming (SP), dynamic programming (DP) have the following

advantages:

(1) DP can solve the infinite horizon or large-number-of-period problems, while SP can only deal

with small-number-of-period problems.

(2) DP has much-smaller-size optimization problems, and runs much faster than SP.

(3) DP has stable solutions, while SP has solutions with only (1 − α) confidence level.

(4) DP can get solutions for a range of the initial wealth, while SP could only get solutions for one

given wealth, and will have to do another time-consuming non-stable optimization process for another

initial wealth.
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(5) DP has much more accurate solutions, while SP has low computation precision and the sum

of utilities in all scenarios may overflow.

The most of previous research on DP focuses on the discretization method or piecewise linear

interpolation method. But the discretization method performs poorly because of it needs a huge

amount of nodes such that it can get the desired precision, and the piecewise linear interpolation

method performs poorly because of it is non-differentiable on the joint nodes such that the optimizer

may give non-optimal solutions. However, after we applied those Chebyshev polynomials or spline

methods, these disadvantages disappear, such that DP method is very good in practice.

Many SP scholars may argue that DP method suffers from the “curse of dimensionality”. But

in fact, for the dynamic asset allocation problem without transaction cost, there is no such problem.

In the numerical approximation part, the number of state is only one (which is wealth), and in the

numerical integration part, DP method gives alternatives to avoid the “curse of dimensionality”:

(i) (pseudo) Monte Carlo method for very high dimensional integration; (ii) deterministic numerical

integration method for low or medium-dimensional integration, which are much faster, much stabler

and much more accurate than (pseudo) Monte Carlo method, while SP has only “(pseudo) Monte

Carlo” option.

Many scholars prefer to SP method because they thought that DP cannot deal with transaction

cost well. But in fact, transaction costs can be handled in DP method, and even better than SP in

view of accuracy. This is going to be further discussed in chapter 10.

Many programmers prefer SP method because they think that DP method is more complicated to

program, as it includes three major parts: numerical approximation, numerical integration and nu-

merical optimization. But in practice, SP method has to deal with large-scale numerical optimization

by using some decomposition techniques and requiring enormous attention for large-scale nonlinear

optimization problems, and has to consider the simulation process very carefully, and has to apply

some variance reduction techniques which are necessary to get a good solution. Therefore, now it is

hard to say which method is more complicated to program, after we give a clear and detailed discussion

on DP method.

Numerical Examples

Here we illustrate the difference between numerical DP and SP with some simple few-period portfolio

examples with one risky stock and one bond with a riskless interest rate r. Assume that the risky

stock price St follows a stochastic differential equation:

dSt

St
= µdt+ σdzt,

where zt is a standard Brownian motion. By discretizing the stochastic process of St, we know that

the stock return of one period could be assumed to be log-normal or normal.

In the following examples, numerical DP will use degree-9 Chebyshev polynomial interpolation

method and Gauss-Hermite quadrature rule with 9 nodes.
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Log-Normal Return and Power Utility

The first example is a very simple one-period portfolio problem with the above stock and bond,

while the terminal utility is assumed to be a power utility function u(W ) = W 1−γ

1−γ with γ > 0 and

γ 6= 1, and the stock return of one period with length ∆t, R, is assumed to be log-normal, i.e.,

log(R) ∼ N(µ− σ2

2 )∆t, σ2∆t). In the continuous time optimal portfolio problem of Merton [37], if the

stock price follows a geometric Brownian motion and the terminal utility function is assumed to be

u(W ) = W 1−γ

1−γ , then under some general assumptions, the continuous time optimal portfolio allocation

fraction is

x∗ = (µ− r)/(γσ2),

which is the well-known Merton’s ratio.

Since our log-normal return assumption is derived from discretization of the stochastic process of

the stock price, from the discussion in section 9.4.5, we know that the optimal allocation fraction x∗

for the discrete time model (9.4) should be also close to the Merton’s ratio, i.e., x∗ = (µ − r)/(γσ2),

if x∗ ∈ (0, 1).

In this one-period example, we let r = 0.04, µ = 0.108, σ = 0.1572, γ = 3, and let the initial

wealth be W0 = 1. Then we know the optimal allocation fraction x∗ = (µ− r)/(γσ2) = 0.9172391 for

the stock, while the optimal allocation fraction for the risk-free bond is 1 − x∗ = 0.0827609 for the

continuous time model.

Table 9.4 display the solutions of numerical dynamic programming (NDP) and stochastic program-

ming (SP) for this simple example with various ∆t = 0.01, 0.1, 1.

We see that NDP performs very well as its optimal allocation fraction is very close to the Merton’s

ratio in each table. But SP method gets a mean solution close to the Merton’s ratio with a small

standard deviation only when ∆t = 0.1, 1 and the number of scenarios is 10000.

The reason why SP does not work when ∆t = 0.01 is that in the model the objective function

f(x,W0) = E(u(W0(xR + (1 − x)Rf )))

is flat on x, where Rf = er∆t and log(R) ∼ N((µ − σ2

2 )∆t, σ2∆t). The following table lists the

objective values f(x, 1) when x = x∗, 1, 0:

f(x∗, 1) f(1, 1) f(0, 1)

∆t = 0.01 −0.499289 −0.5007098 −0.499600

∆t = 0.1 −0.492932 −0.5071438 −0.496016

∆t = 1 −0.433651 −0.5762102 −0.461558

In the above table, f(1, 1) and f(0, 1) are computed from the formulas

f(1, 1) = E(u(R)) = E(exp((1 − γ)X))/(1 − γ)

= exp((−µ+ γσ2/2)(1 − γ)∆t)/(1 − γ),
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Table 9.4: Solution of NDP and SP for 1-period problem with a power utility

∆t = 0.01

Optimal stock fraction
NDP with 9-node Gauss- x∗NDP = 0.916964
Hermite quadrature
SP with 10000 scenarios x̄∗SP10000 = 0.9361
(10 runs) sd(x∗SP10000) = 0.1115
SP with 1000 scenarios x̄∗SP1000 = 0.5446
(10 runs) sd(x∗SP1000) = 0.4156

∆t = 0.1

NDP with 9-node Gauss- x∗NDP = 0.917287
Hermite quadrature
SP with 10000 scenarios x̄∗SP10000 = 0.912
(10 runs) sd(x∗SP10000) = 0.062
SP with 1000 scenarios x̄∗SP1000 = 0.9109
(10 runs) sd(x∗SP1000) = 0.1036

∆t = 1

NDP with 9-node Gauss- x∗NDP = 0.918011
Hermite quadrature
SP with 10000 scenarios x̄∗SP10000 = 0.9253
(10 runs) sd(x∗SP10000) = 0.0124
SP with 1000 scenarios x̄∗SP1000 = 0.8669
(10 runs) sd(x∗SP1000) = 0.0443

Note: ·̄ means the average of the 10 solutions.

sd(·) means the estimated standard deviation of the 10 solutions.

Table 9.5: Solution of NDP and SP for 2-period problem with a power utility
Optimal stock fraction

NDP with 9-node Gauss-Hermite quadrature x∗

NDP = 0.91801

SP with 200 × 200 scenarios (10 runs) x̄∗

SP,200×200 = 0.9611
sd(x∗

SP,200×200) = 0.0747

SP with 40 × 40 scenarios (10 runs) x̄∗

SP,40×40 = 0.7971
sd(x∗

SP,40×40) = 0.2164

Note: The solutions are the allocation fractions at stage 0.

and f(0, 1) = u(Rf ).

The Monte Carlo property tells us that the relative error of Monte Carlo integration is O(1/
√
N)

where N is the number of scenarios. Thus when the objective function is flat within a relative change

O(ε), the number of scenarios should be about [1/ε2]. The comparison between Gauss-Hermite quadra-

ture rules and Monte Carlo methods for one-period investment problems with log-normal random

return and power utility functions are also shown in Table 4.2, 4.3, and 4.4.

For multi-period asset allocation problems, the same inaccuracy problem of SP occurs. For exam-

ple, if we modify the above a single period into 2-period or 3-period with each period ∆t = 1, then

the theoretical analysis tells us the optimal allocation fraction is still the above x∗ = 0.9172391 for

any period and any wealth. Table 9.5 and 9.6 list the solutions given by NDP and SP when ∆t = 1

for 2-period and 3-period problems respectively.
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Table 9.6: Solution of NDP and SP for 3-period problem with a power utility
Optimal stock fraction

NDP with 9-node Gauss-Hermite quadrature x∗

NDP = 0.91801

SP with 40 × 40 × 40 scenarios (10 runs) x̄∗

SP,40×40×40 = 0.7538
sd(x∗

SP,40×40×40) = 0.237

Note: The solutions are the allocation fractions at stage 0.

From the results in Table 9.4 ∼ 9.6, we see that NDP works very well, its solutions are same

across the time, while SP does not work well in the 2-period problem and becomes much worse in the

3-period problem with 40 × 40 × 40 scenarios.

Normal Return and Exponential Utility

The next example is a very simple one-period portfolio problem with the previous stock and bond,

while the terminal utility is assumed to be an exponential utility function u(W ) = −e−λW with λ > 0,

and the stock return of one period with length ∆t, R, is assumed to be normal, i.e., R ∼ N(µ∆t, σ2∆t).

From the discussion in section 9.4.4, we know that the optimal allocation fraction x∗t of the stock

for the DP model (9.4) with a period length ∆t is

x∗t = (µ− r)/(λ(1 + r∆t)T−t−1σ2Wt),

for t = 0, 1, . . . , T − 1.

In this one-period example, we let r = 0.04, µ = 0.07, σ = 0.2, λ = 1, and let the initial wealth

be W0 = 1, while T = 1. Then we know the optimal allocation x∗0W0 = (µ− r)/(λσ2) = 0.75 for the

stock, while the optimal allocation fraction for the risk-free bond is (1 − x∗)W0 = 0.25.

Table 9.7 displays the solutions of NDP and SP for this simple example with various ∆t =

0.01, 0.1, 1.

We see that NDP performs very well as its optimal allocation is very close to the exact optimal

allocation x∗0W0 = 0.75. But SP gets a close mean solution with a small standard deviation only when

∆t = 1 and the number of scenarios is 10000.

The comparison between Gauss-Hermite quadrature rules and Monte Carlo methods for one-period

investment problems with normal random return and exponential utility functions are also shown in

Table 4.5 and 4.6.

For multi-period asset allocation problems, the same inaccuracy problem of SP occurs. For exam-

ple, if we modify the above a single period into 2-period or 3-period with each period ∆t = 1, then

the theoretical analysis tells us the optimal allocation fraction is still the above x∗t for stage t. That

is, for the 2-period problem, the optimal allocation at stage 0 is

x∗0W0 = (µ− r)/(λ(1 + r)σ2) = 0.721154,
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Table 9.7: Solution of NDP and SP for 1-period problem with a CARA utility

∆t = 0.01

Optimal stock allocation
NDP with 9-node Gauss- x∗NDP = 0.742715
Hermite quadrature
SP with 10000 scenarios x̄∗SP10000 = 0.6723
(10 runs) sd(x∗SP10000) = 0.3802
SP with 1000 scenarios x̄∗SP1000 = 0.6081
(10 runs) sd(x∗SP1000) = 0.4345

∆t = 0.1

NDP with 9-node Gauss- x∗NDP = 0.749964
Hermite quadrature
SP with 10000 scenarios x̄∗SP10000 = 0.6751
(10 runs) sd(x∗SP10000) = 0.1707
SP with 1000 scenarios x̄∗SP1000 = 0.6356
(10 runs) sd(x∗SP1000) = 0.3778

∆t = 1

NDP with 9-node Gauss- x∗NDP = 0.749996
Hermite quadrature
SP with 10000 scenarios x̄∗SP10000 = 0.7591
(10 runs) sd(x∗SP10000) = 0.0569
SP with 1000 scenarios x̄∗SP1000 = 0.7357
(10 runs) sd(x∗SP1000) = 0.1800

Note: ·̄ means the average of the 10 solutions.

sd(·) means the estimated standard deviation of the 10 solutions.

Table 9.8: Solution of NDP and SP for 2-period problem with a CARA utility
Optimal stock allocation

NDP with 9-node Gauss-Hermite quadrature x∗

NDP = 0.720661

SP with 200 × 200 scenarios (10 runs) x̄∗

SP,200×200 = 0.7314
sd(x∗

SP,200×200) = 0.2676

SP with 40 × 40 scenarios (10 runs) x̄∗

SP,40×40 = 0.7289
sd(x∗

SP,40×40) = 0.3414

Note: The solutions are the allocation fractions at stage 0.

and for the 3-period problem, the optimal allocation at stage 0 is

x∗0W0 = (µ− r)/(λ(1 + r)2σ2) = 0.693417.

Table 9.8 and 9.9 list the solutions given by NDP and SP when ∆t = 1 for 2-period and 3-period

problems respectively.

From the results in Table 9.7 ∼ 9.9, we see that NDP works very well, while SP gives a mean

solution close to the exact optimal allocation with high standard deviation in the 2-period problem

and becomes much worse in the 3-period problem with 40 × 40 × 40 scenarios.
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Table 9.9: Solution of NDP and SP for 3-period problem with a CARA utility
Optimal stock allocation

NDP with 9-node Gauss-Hermite quadrature x∗

NDP = 0.691153

SP with 40 × 40 × 40 scenarios (10 runs) x̄∗

SP,40×40×40 = 0.5946
sd(x∗

SP,40×40×40) = 0.3764

Note: The solutions are the allocation fractions at stage 0.

In this section, all NDP results are given by AMPL programs and KNITRO optimizer, and all SP

results are given by GAMS programs and NEOS CONOPT optimizer (http://neos.mcs.anl.gov).

We also try other optimizers such as SNOPT, KNITRO for SP, all results are similar.

Since there is no difference between SP and stochastic DP for a single period asset allocation

problem, we see that the same inaccuracy problem occurs in the stochastic DP. Moreover, for multi-

period asset allocation problem, since stochastic DP uses (pseudo) Monte Carlo method to estimate

the expectation of next-stage value function, the same inaccuracy problem occurs again.

Apart from the inaccuracy occurred by Monte Carlo method, the large-scaliness of optimization

problem in SP will also make its solution inaccurate.

9.5 Dynamic Portfolio Optimization Problem with Consump-

tion

Let Wt be the wealth, and let xt be the allocation fractions in n risky assets after consumption and

reallocation at time t. If we consume Ct = ctWt, then

Wt+1 = Wt(1 − ct)(Rf (1 − e⊤xt) +R⊤xt),

for t = 0, 1, . . . , T − 1. If there is no riskless asset, then Wt+1 = Wt(1 − ct)(R
⊤xt), while xt satisfies

e⊤xt = 1.

The dynamic portfolio optimization problem is to find optimal portfolio and consumption decision

at each stage such that we have a maximal expected total utility, i.e.,

max βTE[u(WT )] +

T−1∑

t=0

βtE[u(Ct)],

where u is the given utility function, β is the discount factor.

The DP model for this problem is

Vt(Wt) = max u(Ct) + βE [Vt+1(Wt+1) |Wt] ,

for t = 0, 1, . . . , T − 1, while VT (W ) = u(W ).
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9.5.1 CRRA Utility and Investment-Consumption Problem

When the utility function in the investment-consumption problem is a CRRA utility with a constant

relative risk aversion coefficient γ > 0, Samuelson [48] told us that the optimal portfolio rule is

independent of wealth W at each stage and independent of all consumption-saving decisions, and

the optimal consumption decisions are proportional to the wealth at each stage. Merton [37] gave

the explicit optimal portfolio rule for continuous-time investment-consumption problem, and it was

extended in Merton [38] for HARA utility functions.

Here we extend the conclusion to the case with no-shorting and no-borrowing constraints, while

riskless asset may or may not exist. Assume that the wealth at stage t before consumption is Wt, the

return vector of all available assets is R (Rf will be an element of R if the riskless asset is available),

and the portfolio allocation fraction vector after consumption and reallocation at stage t is xt ≥ 0,

and the consumption at stage t is Ct = ctWt. Then the next-stage wealth is Wt+1 = Wt(1− ct)(R⊤xt)

while 1 − e⊤xt = 0.

When u(W ) = W 1−γ/(1 − γ) for γ > 0 and γ 6= 1, since u(Ct) = W 1−γ
t u(ct) and Wt+1 =

Wt(1 − ct)(R
⊤xt), we can show that

Vt(Wt) = αtW
1−γ
t ,

where

αt = max
ct,xt

u(ct) + βαt+1(1 − ct)
1−γE

[
(R⊤xt)

1−γ
]

s.t. xt ≥ 0, 1 − e⊤xt = 0,

for t = 0, 1, . . . , T − 1, and αT = 1/(1 − γ). From the above optimization problem, we see that the

optimal portfolio rules x∗t are independent of Wt, ct and time t (that is, x∗t ≡ x∗), and the optimal

consumption c∗t is independent of Wt and satisfies the following KKT condition:

(c∗t )
−γ = βαt+1(1 − γ)(1 − c∗t )

−γE[(R⊤x∗)1−γ ],

which implies that

c∗t =
[
1 +

(
βαt+1(1 − γ)E[(R⊤x∗)1−γ ]

)1/γ
]−1

.

Notice that the above formula for c∗t is same in principle with the formula given in Samuelson

[48] (The original equation (24) in Samuelson [48] was a1 = [(1 + r∗)/(1 + ρ)]1/γ−1, but it should be

understood as a1 = [(1 + r∗)γ/(1 + ρ)]1/(γ−1) by adding parentheses. And the γ in Samuelson [48]

is same with 1 − γ here, and β = 1/(1 + ρ), (1 + r∗)γ in Samuelson [48] is same with E[(R⊤x∗)1−γ ]

here). For x∗, it satisfies the same equations (9.6) or (9.7) in principle, which are different with those

in Samuelson [48]. Thus,

αt = u(c∗t ) + βαt+1(1 − c∗t )
1−γE

[
(R⊤x∗)1−γ

]
,
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which is dependent on T , for t = 0, 1, . . . , T − 1.

For the infinite-horizon problem (T = ∞), since x∗t ≡ x∗ are independent of Wt, ct and time t

and Vt(Wt) = αtW
1−γ
t , if there exists a stationary consumptions and a stationary value function, i.e.,

αt ≡ α, c∗t ≡ c∗ for all t, then we have





c∗ =

[
1 +

(
βα(1 − γ)E[(R⊤x∗)1−γ ]

)1/γ
]−1

,

α = u(c∗) + βα(1 − c∗)1−γE
[
(R⊤x∗)1−γ

]
.

Solving the equations, we get

{
c∗ = 1 −

(
βE[(R⊤x∗)1−γ ]

)1/γ

α = (c∗)−γ/(1 − γ)
.

That is, the value function for the infinite-horizon problem with u(W ) = W 1−γ/(1 − γ) is

V (W ) = (c∗)−γu(W ),

where c∗ = 1 −
(
βE[(R⊤x∗)1−γ ]

)1/γ
is the optimal consumption fraction of wealth, x∗ is the optimal

portfolio rule, at each stage. Notice that we should have c∗ > 0, so we should have βE[(R⊤x∗)1−γ ] < 1.

When u(W ) = log(W ), we can show that

Vt(Wt) = ξt + ηt log(Wt),

where

ξt = βξt+1 + max
ct,xt

log(ct) + βηt+1(log(1 − ct) + E
[
log(R⊤xt)

]
)

s.t. xt ≥ 0, 1 − e⊤xt = 0,

and ηt = 1 + βηt+1, for t = 0, 1, . . . , T − 1, while ξT = 0 and ηT = 1. In fact, from ηt = 1 + βηt+1 and

ηT = 1, we have

ηt = (1 − βT−t+1)/(1 − β),

when β 6= 1, or ηt = T−t+1 when β = 1, for t = 0, 1, . . . , T . Moreover, from the iterative relation of ξt,

we see that the optimal portfolio rules x∗t are independent of Wt, ct and time t (that is, x∗t = x∗, while

x∗ satisfies the equations (9.6) or (9.7) in principle), and the optimal consumption c∗t is independent

of Wt and xt, and

c∗t = 1/(1 + βηt+1) = (1 − β)/(1 − βT−t+1),

when β 6= 1, or c∗t = 1/(T − t+ 1) when β = 1, for t = 0, 1, . . . , T − 1. Thus, the iterative relation for

ξt is

ξt = βξt+1 + log(c∗t ) + βηt+1(log(1 − c∗t ) + E
[
log(R⊤x∗)

]
).

For the infinite-horizon problem with 0 < β < 1, if there exists a stationary consumptions and
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a stationary value function, i.e., ξt = ξ, ηt = η, and c∗t = ct for all t, then we have η = 1/(1 − β),

c∗ = 1 − β (which is equal to the optimal consumption decision in the degenerate case for the power

utility functions with γ = 1), and

ξ = βξ + log(c∗) + βη(log(1 − c∗) + E
[
log(R⊤x∗)

]
),

which implies that

ξ =

(
log(1 − β) +

β

1 − β
(log(β) + E

[
log(R⊤x∗)

]
)

)
/(1 − β).

That is, the value function for the infinite-horizon problem with u(W ) = log(W ) is

V (W ) = ξ + log(W )/(1 − β),

where ξ is given in the previous equation in which x∗ is the optimal portfolio rule, and the optimal

consumption fraction of wealth at each stage is c∗ = 1 − β.

The above results can be extended to the continuous-time investment-consumption problem with

no-shorting and no-borrowing constraints and/or no-riskless-asset case, and the explicit solutions for

the optimal portfolio rules and optimal consumption decisions and explicit value function can be

derived, see Cai [8].

9.6 Dynamic Portfolio Optimization Problem with Cash Flow

In some cases, there will be deposit or withdrawal at each stage t = 0, 1, . . . , T − 1. Let Dt denote the

possible cash flow over the time t = 0, . . . , T − 1. If we use wealth Wt, which is the amount of money

right before the cash flow Dt, as the state variables, then the model becomes

Vt(Wt) = max
xt

E
[
Vt+1((Wt +Dt)(Rf (1 − e⊤xt) +R⊤xt))

]
.

When there is no riskless asset, we just need to cancel the Rf term in the Bellman equation, and add

a constraint e⊤xt = 1.

When we use numerical DP method to solve this kind of problems, the techniques discussed in

section 9.4.2 can be applied. Moreover, if the random return vector R is assumed to have a trun-

cated multivariate normal distribution or a multivariate log-normal distribution, then the techniques

discussed in section 9.4.1 or 9.4.3 can also be applied to solve this kind of problems.



Chapter 10

Portfolio with Transaction Costs

In the previous chapter, we discussed the dynamic portfolio problems without transaction costs, and

the application of numerical DP methods for solving the problems. In this chapter, we consider

the transaction cost into the DP models in the previous chapter, then the problems have multiple

dimensional approximation.

10.1 DP Model for Portfolio Problems with Transaction Costs

For the dynamic portfolio problems with transaction costs, we can choose the state variables as the

wealth Wt and allocation fractions xt = (xt1, . . . , xtn)⊤ invested in the risky assets. Here Wt and xt

are the values rightly before re-allocation at time t. Thus, the DP model becomes

Vt(Wt, xt) = max
∆t

E [Vt+1(Wt+1, xt+1)]

s.t. e⊤(∆t + f(∆t)) = Mt,

Xt+1 = R. ∗ (xtWt + ∆t),

Wt+1 = e⊤Xt+1 +Rf ((1 − e⊤xt)Wt −Mt),

xt+1 = Xt+1/Wt+1,

where Rf is the riskfree return, R = (R1, . . . , Rn)⊤ is the random return vector of the risky assets, Xt

is the vector of the amount of dollars invested in the risky assets, ∆t is the vector of amount of dollars

with which buying or selling the risky assets, .∗ is elementwise product, e is a column vector with

1 everywhere, and f(∆ti) is the transaction cost function for buying or selling part of stock i with

amount of ∆ti dollars. We could let f(∆ti) = τ∆2
ti, or f(∆ti) = τ |∆ti|, or the hyperbolic form, for

some constant τ > 0. The terminal value function is VT (W,x) = u(W ) for some given utility function

u. Sometimes, the terminal value function is chosen as VT (W,x) = u(W − τe⊤f(xW )), if we assume

that all risky assets have to be converted into the riskless asset before consumption. Later, we just

assume that VT (W,x) = u(W ) for simplicity.

91



92 CHAPTER 10. PORTFOLIO WITH TRANSACTION COSTS

If we do not allow shorting stocks or borrowing cash, then we just need to add the constraints:

xtWt + ∆t ≥ 0 and (1 − e⊤xt)Wt ≥Mt. And the range of xt and xt+1 is [0, 1]n while e⊤xt+1 ≤ 1.

In the optimal asset allocation problem, R is often assumed to be log-normal and correlated.

Assume that the random log-returns of the assets, log(R) = (log(R1), · · · , log(Rn))⊤ ∈ R
n, have a

multivariate normal distribution N((µ− σ2

2 )∆t, (ΛΣΛ)∆t) in R
n, where ∆t is the length of a period,

µ = (µ1, · · · , µn)⊤ is the drift, σ = (σ1, · · · , σn)⊤ is the volatility, and Σ is the correlation matrix of

the log-returns, and Λ =diag(σ1, . . . , σn).

Since the correlation matrix is positive definite, we can apply Cholesky factorization to Σ such

that Σ = LL⊤, where L = (Lij)n×n is a lower triangular matrix. Then

log(Ri) = (µi −
σ2

i

2
)∆t+ σi

√
∆t

i∑

j=1

Lijzj ,

where zi are independent standard normal random variables, for i = 1, . . . , n. For simplicity, let

∆t = 1. Thus,

Wt+1 = Rf (Wt(1 − e⊤xt) −Mt) +R⊤(xtWt + ∆t)

= Rf (Wt(1 − e⊤xt) −Mt) +

n∑

i=1

exp



µi −
σ2

i

2
+ σi

i∑

j=1

Lijzj



 (xtiWt + ∆ti),

where Rf = er for the continuously compound interest rate r.

Therefore, we can apply product Gauss-Hermite quadrature to estimate the conditional expectation

of Vt+1(Wt+1, xt+1) while Wt, xt are given. The numerical DP model becomes

Vt(Wt, xt) = max
∆t

π− n
2

m∑

k1,...,kn=1

ωk1
· · ·ωkn

Vt+1(Wt+1,k1,...,kn
, xt+1,k1,...,kn

)

s.t. e⊤(∆t + f(∆t)) = Mt,

Wt+1,k1,...,kn
= Rf (Wt(1 − e⊤xt) −Mt) +

n∑

j=1

Xt+1,j,k1,...,ki
,

Xt+1,i,k1,...,ki
= exp



µi −
σ2

i

2
+ σi

√
2

i∑

j=1

qkj
Lij



 (xtiWt + ∆ti),

xt+1,i,k1,...,ki
= Xt+1,i,k1,...,ki

/Wt+1,k1,...,kn
, i = 1, . . . , n,

where xt+1,k1,...,kn
= (xt+1,1,k1

, xt+1,2,k1,k2
, . . . , xt+1,n,k1,...,kn

)⊤, VT (W,x) = u(W ), the ωk and qk

are the Gauss-Hermite quadrature weights and nodes over (−∞,∞), for k = 1, . . . ,m. When there

is no riskless asset, we just need to cancel the Rf term and replace Mt by 0 in the constraints,

while we should have e⊤xt = 1 (the state variable vector xt = (xt1, . . . , xtn) should be changed as

(xt1, . . . , xt,n−1), and there is same cutoff in xt+1,k1,...,kn
).
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10.2 Proportional Transaction Cost and CRRA Utility

In economics and finance, we usually assume a CRRA utility function and a proportional transaction

cost, i.e., u(W ) = W 1−γ/(1 − γ) for some constant γ > 0 and γ 6= 1, or u(W ) = log(W ) for γ = 1,

and f(∆) = τ |∆| for some constant τ > 0. By let ∆ = (δ+ − δ−)W with δ+, δ− ≥ 0, we have

|∆| = (δ+ + δ−)W . Let r be the risk-free rate.

The model becomes

Vt(Wt, xt) = max
δ+

t ,δ−

t

E [Vt+1(Wt+1, xt+1)]

s.t. mt = e⊤(δ+t − δ−t + τ(δ+t + δ−t )),

Xt+1 = R. ∗ (xt + δ+t − δ−t )Wt,

Wt+1 = e⊤Xt+1 +Rf (1 − e⊤xt −mt)Wt,

xt+1 = Xt+1./Wt+1,

δ+t ≥ 0, δ−t ≥ 0,

where the terminal value function is VT (W,x) = u(W ).

Thus, for u(W ) = W 1−γ/(1 − γ), if we assume that Vt+1(Wt+1, xt+1) = W 1−γ
t+1 · gt+1(xt+1), then

Vt(Wt, xt) = max
δ+

t ,δ−

t

E
[
W 1−γ

t+1 · gt+1(xt+1)
]

s.t. mt = e⊤(δ+t − δ−t + τ(δ+t + δ−t )),

st+1 = R. ∗ (xt + δ+t − δ−t ),

Πt+1 = e⊤st+1 +Rf (1 − e⊤xt −mt),

Wt+1 = Πt+1Wt,

xt+1 = st+1/Πt+1,

δ+t ≥ 0, δ−t ≥ 0.

By substituting Wt+1 by Πt+1Wt in the objective function, we get Vt(Wt, xt) = W 1−γ
t · gt(xt), where

gt(xt) = max
δ+

t ,δ−

t

E
[
Π1−γ

t+1 · gt+1(xt+1)
]

s.t. mt = e⊤(δ+t − δ−t + τ(δ+t + δ−t )),

st+1 = R. ∗ (xt + δ+t − δ−t ),

Πt+1 = e⊤st+1 +Rf (1 − e⊤xt −mt),

xt+1 = st+1/Πt+1,

δ+t ≥ 0, δ−t ≥ 0.
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Therefore, by induction, from VT (W,x) = u(W ) = W 1−γ · 1/(1 − γ), we showed that

Vt(Wt, xt) = W 1−γ
t · gt(xt),

for any time t = 0, 1, . . . , T , while gt(x) has the iterative formula given in the above optimization

problem and gT (x) = 1/(1 − γ) (or gT (x) = (1 − τe⊤|x|)1−γ/(1 − γ) when we assume that all risky

assets have to be converted into the riskless asset before consumption), if we assume a proportional

transaction cost and a power utility u(W ) = W 1−γ/(1 − γ) with a constant relative risk aversion

coefficient γ > 0 and γ 6= 1.

For u(W ) = log(W ), we can also show by induction that

Vt(Wt, xt) = log(Wt) + ψt(xt),

where

ψt(xt) = max
δ+

t ,δ−

t

E [log(Πt+1) + ψt+1(xt+1)]

s.t. mt = e⊤(δ+t − δ−t + τ(δ+t + δ−t )),

st+1 = Rt. ∗ (xt + δ+t − δ−t ),

Πt+1 = e⊤st+1 +Rf (1 − e⊤xt −mt),

xt+1 = st+1/Πt+1,

δ+t ≥ 0, δ−t ≥ 0,

while ψT (x) = 0 (or ψT (x) = log(1−τe⊤|x|), when we assume that all risky assets have to be converted

into the riskless asset before consumption).

When there is no riskless asset, we just need to cancel the Rf term and replace mt by 0 in the

above models for gt or ψt, while we should have e⊤xt = 1 (the state variable vector xt = (xt1, . . . , xtn)

should be changed as (xt1, . . . , xt,n−1), and there is same cutoff in xt+1).

If we do not allow shorting stocks or borrowing cash, then the range of xt is [0, 1]n, and in the

models we just need to add the constraints: xt + δ+t − δ−t ≥ 0 and mt ≤ 1 − e⊤xt, such that

xt+1 ∈ [0, 1]n and e⊤xt+1 ≤ 1. And we still have the property of separation of W and x in the value

functions V (W,x). In fact, in the above model, since variables mt, st+1,Πt+1, xt+1 will be substituted,

so the control variables are only δ+t , δ
−
t , and the constraints are only mt ≤ 1− e⊤xt, xt + δ+t − δ−t ≥ 0,

δ+t ≥ 0 and δ−t ≥ 0, which are linear, as mt = e⊤(δ+t −δ−t +τ(δ+t +δ−t )) = (1+τ)e⊤δ+t +(−1+τ)e⊤δ−t

is also linear on δ+t and δ−t . Thus, it is a model with 2n control variables with 2n bound constraints

and (n+ 1) linear constraints, where n is the number of risky assets.

In fact, if there is neither Li > 0 nor Ui > 0 such that Li ≤ Ri ≤ Ui for a risky asset i (e.g., Ri is

log-normal), called by no-boundness of returns, then we have Pr(Πt ≤ 0) > 0 when xti + δ+ti − δ−ti < 0.

This follows that for the CRRA utility functions, the optimal solution must have xti+(δ+ti)
∗−(δ−ti)

∗ ≥ 0

unless the asset i can be replicated by other assets which is a degenerate case. Since the expectation
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of next-time value function is computed numerically by numerical DP, we must add the constraint

xti + δ+ti − δ−ti ≥ 0 to avoid an unreasonable approximation solution. If the no-boundness of returns

applies for all risky assets, then for the CRRA utility functions, we must have both “no-shorting” and

“no-borrowing” constraints: xt + δ+t − δ−t ≥ 0 and mt ≤ 1 − e⊤xt.

We know that there will be a “no-trade” region Ωt for any t = 0, 1, . . . , T − 1. When xt ∈ Ωt, the

investor will not trade at all, and when xt /∈ Ωt, the investor will buy or sell the risky assets such that

(xt + δ+ − δ−)/(1− τe⊤(δ+ + δ−)) ∈ ∂Ωt with the smallest transaction costs, where ∂Ωt denotes the

boundaries of Ωt. That is, the “no-trade” region Ωt is defined as

Ωt = {xt : (δ+t )∗ = (δ−t )∗ = 0},

where (δ+t )∗, (δ−t )∗ are the optimal controls for the given xt. See Kamin [29], Constantinides [10, 11,

12], Davis and Norman [13], Muthuraman and Kumar [41], and so on.

Abrams and Karmarkar [1] showed that the “no-trade” region is a connected set and that it is a

cone when the utility function is assumed to be positively homogeneous (a function u(x) is positively

homogeneous if there exists a positively value function g(x) such that u(ax) = g(a)u(x) for any a > 0).

Moreover, in the case of proportional transaction costs and concave utility functions, the “no-trade”

region can take on many forms ranging from a simple halfline to a nonconvex set. So we should use

numerical methods to compute the “no-trade” region.

When we allow shorting stocks and borrowing cash, the domain of xt could be (−∞,+∞), such

that it is hard to approximate gt(xt) well. In the cases when the “no-trade” region Ωt ⊂ [0, 1]n at

each stage t, for the random returns R = (R1, . . . , Rn)⊤ and the riskfree return Rf , if at each stage t

we can have R⊤y +Rf (1 − e⊤y) ≥ Riyi almost surely for all 1 ≤ i ≤ n and y = (y1, . . . , yn)⊤ ∈ ∂Ωt,

then we can set the domain of xt as [0, 1]n for each stage t. For example, if (R1, . . . , Rn) are i.i.d.

random variables with a lower bound L > 0 (and we should have L < Rf for no-arbitrage), and let

yi ≤ a for a minimal constant a and all y = (y1, . . . , yn)⊤ ∈ ∂Ωt, then when a ≤ 1/(n− (n− 1)L/Rf),

we can set the domain of xt as [0, 1]n and require xt + δ+t − δ−t ≥ 0 and mt ≤ n− e⊤xt for each stage

t.

From the separability of W and x, we see that the optimal portfolio rules are independent of wealth

Wt. Thus the “no-trade” region Ωt are also independent of Wt, for the CRRA utility functions.

10.3 Numerical Examples

In this section, we will give several numerical examples, in which the number of risky assets n = 3, 6,

and there is one riskless asset (called as bond later) available with return Rf = er, the terminal value

function is u(W ) = W 1−γ/(1 − γ), and the transaction cost function is f(∆) = τ |∆| with τ > 0 for

buying or selling ∆ amount of money of risky assets.

To the best of our knowledge, when the number of correlated risky assets n ≥ 4 and the number

of periods T ≥ 6, this is the first time to explicitly give a good numerical solution with transaction

costs and non-quadratic utility functions. When n = 1, the problem has been well studied, see Zabel
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[54], Constantinides [10, 12], Gennotte and Jung [17], Boyle and Lin [6], and so on. Kamin [29]

considered the case without riskless asset and n = 2. Constantinides [11] and Abrams and Karmarkar

[1] established some properties of the “no-trade” region for multiple assets, but numerical examples

are for n = 1.

In the continuous-time version, there are a lot of papers about the portfolio optimization problem

with transaction costs when n ≤ 2, see Davis and Norman [13], Duffie and Sun [15], Akian [2], Janecek

and Shreve [27], Liu [33], and so on. Muthuraman and Kumar [41, 42] gave numerical examples with

n ≤ 3. In Muthuraman and Zha [43], they provided a computational scheme by combining simulation

with the boundary update procedure while the objective is to maximize the long-term expected growth

rate, and presented some computational results with n ≥ 3. But since they applied simulation into

the computational scheme, the accuracy of solutions can be guaranteed, just like what we showed in

the numerical examples for the comparison between SP and numerical DP.

By using the numerical DP method and the techniques discussed in section 10.2, we computed

the “no-trade” regions for each stage in the following examples. In the numerical DP, we applied

the NPSOL optimization package (see Gill, Murray, Saunders, and Wright [20]) for the numerical

optimization part. In these examples, we assume that the risky asset return vector R is log-normal,

i.e., log(R) ∼ N((µ − σ2/2),ΛΣΛ), where µ = (µ1, . . . , µn)⊤, σ = (σ1, . . . , σn), Λ =diag(σ1, . . . , σn),

and Σ is the correlation matrix of log(R).

10.3.1 Three Stocks with Log-Normal Returns and One Bond

The first example assumes that three stock returns R1, R2, R3 are independently and identically

distributed, and they are log-normal, i.e., log(Ri) ∼ N((µi − σ2
i /2), σ2

i ), where µi = 0.07, σi = 0.2,

for i = 1, 2, 3. Let T = 6, γ = 3.5, τ = 0.01, and r = 0.04. In the numerical DP, we applied the

degree-7 complete Chebyshev approximation method and multi-dimensional product Gauss-Hermite

quadrature rule with 9 nodes in each dimension. Our numerical results showed that the “no-trade”

regions are close to cubes after canceling small perturbations, and

Ω5 ≈ [0.139, 0.286]3,

Ω4 ≈ [0.166, 0.254]3,

Ω3 ≈ [0.1645, 0.2522]3,

Ω2 ≈ [0.1639, 0.2516]3,

Ω1 ≈ [0.1636, 0.2513]3,

Ω0 ≈ [0.1635, 0.2512]3.

So we see that the “no-trade” region shrinks and rapidly converges to the infinite horizon limit

as the time to the terminal time increases. This property was firstly observed in Gennotte and Jung

[17] for the case with only one risky asset and one riskless asset. Moreover, Merton’s ratio, which is

(ΛΣΛ)−1(µ− r)/γ = (0.214, 0.214, 0.214)⊤, is also located inside of Ωt, for all t.

The second example assumes that three stock returns are correlated with log-normal distribution,
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log(R) ∼ N((µ− σ2/2),ΛΣΛ), where R = (R1, R2, R3), µ = (0.07, 0.08, 0.09)⊤, σ = (0.16, 0.18, 0.2)⊤,

Λ is the diagonalized matrix of σ, and

Σ =





1 0.2 0.1

0.2 1 0.314

0.1 0.314 1



 .

Let T = 6, γ = 3.5, τ = 0.01 and r = 0.04. In the numerical DP, we applied the NPSOL optimization

package, the degree-7 complete Chebyshev approximation method and multi-dimensional product

Gauss-Hermite quadrature rule with 9 nodes in each dimension. Our numerical results gave us the

“no-trade” regions Ωt for t = 0, 1, 2, 3, 4, 5, shown in Figure 10.1.

We see again that the “no-trade” region shrinks and rapidly converges to the infinite horizon limit

as the time to the terminal time increases.

10.3.2 Six Stocks with Log-Normal Returns and One Bond

In this example, we assumes that six stock returns R1, . . . , R6 are independently and identically

distributed, and they are log-normal, i.e., log(Ri) ∼ N((µi − σ2
i /2), σ2

i ), where µi = 0.07, σi = 0.2,

for i = 1, . . . , 6. Let T = 6, γ = 3.5, τ = 0.002, and r = 0.05. In the numerical DP, we applied the

degree-4 complete Chebyshev approximation method and multi-dimensional product Gauss-Hermite

quadrature rule with 5 nodes in each dimension. Our numerical results showed that the “no-trade”

regions are close to cubes, and

Ω5 ≈ [0.1259, 0.1552]6,

Ω4 ≈ [0.1270, 0.1531]6,

Ωt ≈ [0.1269, 0.1530]6, t = 3, 2, 1, 0.

So we see again that the “no-trade” region shrinks and rapidly converges to the infinite horizon

limit as the time to the terminal increases. Moreover, Merton’s ratio, which is (ΛΣΛ)−1(µ − r)/γ =

0.143 · (1, 1, 1, 1, 1, 1)⊤, is also located inside of Ωt, for all t.

10.3.3 Two Stocks with Uniform Returns and One Bond

In this example, we assumes that two stock returns R1, R2 are independently and identically dis-

tributed, and they are uniform on [0.87, 1.27]. Let T = 6, γ = 2.5, τ = 0.005, and r = 0.05. In

the numerical DP, we applied the degree-9 complete Chebyshev approximation method and multi-

dimensional product Gauss-Legendre quadrature rule with 9 nodes in each dimension. Our numerical

results gave us the “no-trade” regions Ωt for t = 0, 1, 2, 3, 4, 5, shown in Figure 10.2. The circle point

in the region Ωt is the optimal allocation ratio when we assume that there is no transaction cost.

Notice that all the elements of points of the “no-trade” regions are bigger than 0.5, indicating that

the corresponding bond fractions are negative. That is, in the regions, the bond is shorted.
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Figure 10.1: No-trade regions for 3 correlated stocks with log-normal returns and 1 bond



10.3. NUMERICAL EXAMPLES 99

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Stock 1 fraction

S
to

ck
 2

 fr
ac

tio
n

No−trade region at stage t=0

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Stock 1 fraction

S
to

ck
 2

 fr
ac

tio
n

No−trade region at stage t=1

t = 0 t = 1

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Stock 1 fraction

S
to

ck
 2

 fr
ac

tio
n

No−trade region at stage t=2

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Stock 1 fraction

S
to

ck
 2

 fr
ac

tio
n

No−trade region at stage t=3

t = 2 t = 3

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Stock 1 fraction

S
to

ck
 2

 fr
ac

tio
n

No−trade region at stage t=4

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Stock 1 fraction

S
to

ck
 2

 fr
ac

tio
n

No−trade region at stage t=5

t = 4 t = 5

Figure 10.2: No-trade regions for 2 stocks with uniform returns and 1 bond
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10.3.4 Two Stocks with Discrete Returns and One Bond

In this example, we assumes that two stock returns R1, R2 are discrete with the following joint

probability mass function:

Pr(R1 = 0.85, R2 = 0.88) = 0.08,

Pr(R1 = 0.85, R2 = 1.06) = 0.1,

Pr(R1 = 1.08, R2 = 0.88) = 0.12,

Pr(R1 = 1.08, R2 = 1.06) = 0.4,

Pr(R1 = 1.08, R2 = 1.20) = 0.12,

Pr(R1 = 1.25, R2 = 1.06) = 0.1,

Pr(R1 = 1.25, R2 = 1.20) = 0.08.

Let T = 6, γ = 2.5, τ = 0.003, and r = 0.05. In the numerical DP, we applied the degree-9

complete Chebyshev approximation method. Our numerical results gave us the “no-trade” regions Ωt

for t = 0, 1, 2, 3, 4, 5, shown in Figure 10.3. The circle point in the region Ωt is the optimal allocation

ratio when we assume that there is no transaction cost.

Notice that all the second elements of points of the “no-trade” regions are negative, indicating

that the second stock is shorted in the region.

10.4 Asset Returns with Stochastic Mean and Covariance

In the previous sections, we always assume that the asset returns are normal or log-normal random

variables with fixed interest rate, fixed mean return vector and fixed covariance matrix along the

time. But in the real life models, the interest rate rt, and drift vector µt and covariance matrix are

stochastic. Let all these parameters be denoted as a vector θt at time t, and they could be discrete

Markov chains with a given transition probability matrix from previous stage to current stage, or

continuously distributed conditional on their previous-stage values.

Assume that the end time utility function is a CRRA utility with a constant relative risk aversion

coefficient γ > 0, and the transaction cost of buying or selling ∆ amount of money of one stock is

proportional with ratio τ . By choosing wealth Wt, allocation fractions xt and parameters θt as the



10.4. ASSET RETURNS WITH STOCHASTIC MEAN AND COVARIANCE 101

0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Stock 1 fraction

S
to

ck
 2

 fr
ac

tio
n

No−trade region at stage t=0

0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Stock 1 fraction

S
to

ck
 2

 fr
ac

tio
n

No−trade region at stage t=1

t = 0 t = 1

0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Stock 1 fraction

S
to

ck
 2

 fr
ac

tio
n

No−trade region at stage t=2

0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Stock 1 fraction

S
to

ck
 2

 fr
ac

tio
n

No−trade region at stage t=3

t = 2 t = 3

0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Stock 1 fraction

S
to

ck
 2

 fr
ac

tio
n

No−trade region at stage t=4

0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Stock 1 fraction

S
to

ck
 2

 fr
ac

tio
n

No−trade region at stage t=5

t = 4 t = 5

Figure 10.3: No-trade regions for 2 stocks with discrete returns and 1 bond
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state variables, the DP model becomes

Vt(Wt, xt, θt) = max
δ+

t ,δ−

t

E [Vt+1(Wt+1, xt+1, θt+1) |Wt, xt, θt]

s.t. mt = e⊤(δ+t − δ−t + τ(δ+t + δ−t )),

Xt+1 = Rt. ∗ (xt + δ+t − δ−t )Wt,

Wt+1 = e⊤Xt+1 +Rtf (1 − e⊤xt −mt)Wt,

xt+1 = Xt+1/Wt+1,

δ+t ≥ 0, δ−t ≥ 0,

where the terminal value function is VT (W,x, θ) = u(W ). Here Rtf is the riskfree return and Rt is

the random return of risky assets in the period [t, t+1), and they are dependent on the parameter θt.

When the utility function is u(W ) = W 1−γ/(1 − γ) with γ > 0 and γ 6= 1, if we assume that

Vt+1(Wt+1, xt+1, θt+1) = W 1−γ
t+1 · gt+1(xt+1, θt+1), then we have Vt(Wt, xt, θt) = W 1−γ

t · gt(xt, θt)

where

gt(xt, θt) = max
δ+

t ,δ−

t

ER

[
Π1−γ

t+1 · Eθ[gt+1(xt+1, θt+1) | θt, Rt]
]

s.t. mt = e⊤(δ+t − δ−t + τ(δ+t + δ−t )),

st+1 = Rt. ∗ (xt + δ+t − δ−t ),

Πt+1 = e⊤st+1 +Rtf (1 − e⊤xt −mt),

xt+1 = st+1/Πt+1,

δ+t ≥ 0, δ−t ≥ 0,

in which we applied the tower property of expectation operators.

Therefore, by induction, from VT (W,x, θ) = u(W ) = W 1−γ · 1/(1 − γ), we know that

Vt(Wt, xt, θt) = W 1−γ
t · gt(xt, θt),

for any time t = 0, 1, . . . , T , while gt(x, θ) has the iterative formula given in the above optimization

problem and gT (x, θ) = 1/(1 − γ), if we assume a power utility and a proportional transaction cost.

For u(W ) = log(W ), we can also show by induction that

Vt(Wt, xt, θt) = log(Wt) + ψt(xt, θt),
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where

ψt(xt, θt) = max
δ+

t ,δ−

t

ER [log(Πt+1) + Eθ[ψt+1(xt+1, θt+1) | θt, Rt]]

s.t. mt = e⊤(δ+t − δ−t + τ(δ+t + δ−t )),

st+1 = Rt. ∗ (xt + δ+t − δ−t ),

Πt+1 = e⊤st+1 +Rtf (1 − e⊤xt −mt),

xt+1 = st+1/Πt+1,

δ+t ≥ 0, δ−t ≥ 0,

with ψT (x, θ) = 0.

When there is no riskless asset, we just need to cancel the Rtf term and replace mt by 0 in the

above models for gt or ψt, while we should have e⊤xt = 1 (the state variable vector xt = (xt1, . . . , xtn)

should be changed as (xt1, . . . , xt,n−1), and there is same cutoff in xt+1).

If we do not allow shorting stocks or borrowing cash, then the range of xt is [0, 1]n, and in the

models we just need to add the constraints: xt+δ
+
t −δ−t ≥ 0 andmt ≤ 1−e⊤xt, such that xt+1 ∈ [0, 1]n

and e⊤xt+1 ≤ 1. And we still have the property of separation of W and (x, θ) in the value functions

V (W,x, θ). In fact, in the above model, since variables mt, st+1,Πt+1, xt+1 will be substituted, so the

control variables are only δ+t , δ
−
t , and the constraints are only mt ≤ 1−e⊤xt, xt +δ

+
t −δ−t ≥ 0, δ+t ≥ 0

and δ−t ≥ 0, which are linear, as mt = e⊤(δ+t − δ−t + τ(δ+t + δ−t )) = (1 + τ)e⊤δ+t + (−1 + τ)e⊤δ−t is

also linear on δ+t and δ−t . Thus, it is a model with 2n control variables with 2n bound constraints

and (n+ 1) linear constraints, where n is the number of risky assets.

10.4.1 Numerical Example

In this example, we assume that the interest rate rt and the covariance matrix of stocks are constant

along the time, but all drift terms of stocks are discrete Markov chains and independent each other.

Assume that the assets available for trading include one bond with a constant interest rate r = 0.04,

and 2 stocks with independent log-normal annual returns N(µi −σ2
i /2, σ

2
i ) for i = 1, 2. Let σ1 = σ2 =

0.2, and µi = 0.06 or 0.08 with the following transition probability matrix

[
0.75 0.25

0.25 0.75

]
,

for i = 1, 2, while µ1 is independent of µ2. Let the terminal time be T = 6 years while there is a

reallocation chance at the beginning of each year with a proportional transaction cost ratio τ = 0.01

for buying or selling stocks. The terminal utility function is u(W ) = W 1−γ/(1 − γ) with γ = 3.

The numerical solutions are given by using the product Gauss-Hermite quadrature rule with 9

nodes in each dimension, and the degree-9 complete Chebyshev polynomial approximation method

with 10 Chebyshev nodes in each dimension, Figure 10.4 displays the no-trade regions for four possible

discrete states of (µ1, µ2) at each stage t = 0, 1, . . . , 5. The top-right squares are the no-trade regions
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for the state (µ1, µ2) = (0.08, 0.08), and the bottom-left squares are the no-trade regions for the state

(µ1, µ2) = (0.06, 0.06), and the top-left and the bottom-right squares are respectively the no-trade

regions for the state (µ1, µ2) = (0.06, 0.08) and (µ1, µ2) = (0.08, 0.06). The circle points inside the

squares are the optimal allocation fractions given the discrete states (µ1, µ2) when we assume that

there is no transaction cost in trading stocks.

10.5 Portfolio with Transaction Costs and Consumption

At the time rightly before reallocation time t, let Wt be the wealth, and let xt be the allocation

fractions of the wealth in n risky assets. The dynamic portfolio optimization problem is to find

optimal portfolio and consumption decision Ct at each stage t such that we have a maximal expected

total utility, i.e.,

max βTE[u(WT )] +

T−1∑

t=0

βtE[u(Ct)],

where u is the given utility function, β is the discount factor.

By using Wt and xt as state variables, the DP model becomes

Vt(Wt, xt) = max
Ct,∆t

u(Ct) + βE [Vt+1(Wt+1, xt+1)]

s.t. e⊤(∆t + f(∆t)) = Mt,

Xt+1 = R. ∗ (xtWt + ∆t),

Wt+1 = e⊤Xt+1 +Rf (Wt(1 − e⊤xt) − Ct −Mt),

xt+1 = Xt+1/Wt+1,

where Rf is the riskfree return, R = (R1, . . . , Rn)⊤ is the random return vector of the risky assets,

Xt+1 is the vector of the amount of dollars in the risky assets at time rightly before (t+ 1), ∆t is the

vector of amount of dollars with which buying or selling the risky assets, .∗ is elementwise product,

e is a column vector with 1 everywhere, and f(∆ti) is the transaction cost function for buying or

selling part of stock i with amount of ∆ti dollars. We could let f(∆ti) = τ∆2
ti, or f(∆ti) = τ |∆ti|, or

the hyperbolic form, for some constant τ > 0. The terminal value function is VT (W,x) = u(W ) (or

VT (W,x) = u(W − τe⊤f(xW )) when we assume that all risky assets have to be converted into the

riskless asset before consumption) for some given utility function u.

If we do not allow shorting stocks or borrowing cash, then we just need to add the constraints:

xtWt +∆t ≥ 0 and Wt(1−e⊤xt) ≥Mt +Ct. And the range of xt and xt+1 is [0, 1]n while e⊤xt+1 ≤ 1.

Assume that the utility function u(W ) = W 1−γ/(1−γ) with γ > 0 and γ 6= 1, and the transaction

costs in buying or selling ∆ amount of dollars of a stock is τ |∆|. Then it can be shown that

Vt(Wt, xt) = W 1−γ
t · gt(xt),
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Figure 10.4: No-trade regions for 2 stocks with stochastic µ and 1 bond
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where

gt(xt) = max
ct,δ+

t ,δ−

t

u(ct) + βE
[
Π1−γ

t+1 · gt+1(xt+1)
]

s.t. e⊤(δ+t − δ−t + τ(δ+t + δ−t )) = mt,

st+1 = R. ∗ (xt + δ+t − δ−t ),

Πt+1 = e⊤st+1 +Rf ((1 − e⊤xt) − ct −mt),

xt+1 = st+1/Πt+1,

δ+t ≥ 0, δ−t ≥ 0,

while gT (x) = 1/(1 − γ) (or gT (x) = (1 − τe⊤|x|)1−γ/(1 − γ), when we assume that all risky assets

have to be converted into the riskless asset before consumption).

If the utility function is u(W ) = log(W ), and there are proportional transaction costs in buying

or selling stocks. Then we can show that

Vt(Wt, xt) = ηt log(Wt) + ψt(xt),

where ηt = 1 + βηt+1 with ηT = 1 (which implies that ηt = (1 − βT−t+1)/(1 − β)), and

ψt(xt) = max
ct,δ

+

t ,δ−

t

log(ct) + βE [ηt+1 log(Πt+1) + ψt+1(xt+1)]

s.t. e⊤(δ+t − δ−t + τ(δ+t + δ−t )) = mt,

st+1 = R. ∗ (xt + δ+t − δ−t ),

Πt+1 = e⊤st+1 +Rf ((1 − e⊤xt) − ct −mt),

xt+1 = st+1/Πt+1,

δ+t ≥ 0, δ−t ≥ 0,

while ψT (x) = 0 (or ψT (x) = log(1−τe⊤|x|), when we assume that all risky assets have to be converted

into the riskless asset before consumption).

When there is no riskless asset, we just need to cancel the Rf term and replace mt by −ct in the

above models for gt or ψt, while we should have e⊤xt = 1 (the state variable vector xt = (xt1, . . . , xtn)

should be changed as (xt1, . . . , xt,n−1), and there is same cutoff in xt+1).

From the separability of W and x, we see that the optimal portfolio rules are independent of wealth

Wt. Thus the “no-trade” regions Ωt are also independent of Wt, for the CRRA utility functions. Here

the “no-trade” region Ωt is defined as

Ωt = {xt/(1 − c∗t ) : (δ+t )∗ = (δ−t )∗ = 0},

where c∗t , (δ
+
t )∗, (δ−t )∗ are the optimal controls for the given xt.
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10.5.1 Numerical Examples

In this section, we will give several numerical examples, in which the number of risky assets is n = 3,

and there is one riskless asset (called as bond later) available with return Rf = er, the terminal value

function is u(W ) = W 1−γ/(1 − γ), and the transaction cost function is f(∆) = τ |∆| with τ = 0.01

for buying or selling ∆ amount of money of risky assets.

By using the numerical DP method and the techniques discussed in section 10.5, we computed

the “no-trade” regions for each stage in the following examples, when n = 3. In the numerical

DP, we applied the NPSOL optimization package (see Gill, Murray, Saunders, and Wright [20]).

In these examples, we assume that the risky asset return vector R is log-normal, i.e., log(R) ∼
N((µ − σ2/2),ΛΣΛ), where µ = (µ1, . . . , µn)⊤, σ = (σ1, . . . , σn), Λ =diag(σ1, . . . , σn), and Σ is the

correlation matrix of log(R).

The first example assumes that three stock returns are independently and identically distributed.

Let T = 50, γ = 3, β = 0.95, r = 0.04, µ = (0.07, 0.07, 0.07)⊤, σ = (0.2, 0.2, 0.2)⊤, and Σ =diag(1, 1, 1).

In the numerical DP, we applied the degree-9 complete Chebyshev approximation method and multi-

dimensional product Gauss-Hermite quadrature rule with 9 nodes in each dimension. Our numerical

results showed that the “no-trade” regions are close to cubes after canceling small perturbations, and

Ω49 ≈ [0.16, 0.33]3,

Ω48 ≈ [0.14, 0.24]3, . . . ,

Ωt ≈ [0.19, 0.27]3, for t = 0, . . . , 15,

c∗49 ≈ 0.51, c∗48 ≈ 0.35, c∗47 ≈ 0.27,

c∗46 ≈ 0.22, c∗47 ≈ 0.19, c∗46 ≈ 0.17, . . . ,

c∗2 ≈ 0.054, c∗1 ≈ 0.0535, c∗0 ≈ 0.053.

So we see that the “no-trade” region and the optimal consumption decision converges to their

infinite horizon limit as the time to the terminal time increases. From the discussion in section 9.5.1,

we know that the optimal consumption decision for the infinite-horizon problem without transaction

costs is

c∗ = 1 −
(
βE[(R⊤x∗ +Rf (1 − e⊤x∗))1−γ ]

)1/γ ≈ 0.05,

where

x∗ = (ΛΣΛ)−1(µ− r)/γ = (0.25, 0.25, 0.25)⊤

is the Merton’s ratio locating inside of converged “no-trade” region Ω ≈ [0.19, 0.27]3. We see that the

optimal consumption decision for the infinite-horizon problem with transaction costs is close to and a

bit larger than the one without transaction costs.

The second example assumes that three stock returns are correlated. Let T = 6, γ = 3, r = 0.04,
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µ = (0.07, 0.07, 0.07)⊤, σ = (0.2, 0.2, 0.2)⊤, and

Σ =





1 0.2 0.2

0.2 1 0.04

0.2 0.04 1



 .

Our numerical results gave us the “no-trade” regions Ωt for t = 0, 1, 2, 3, 4, 5, shown in Figure 10.5.

The third example assumes the same parameters with the above second example except that the

correlation matrix is changed as

Σ =





1 0.4 0.4

0.4 1 0.16

0.4 0.16 1



 .

Our numerical results gave us the “no-trade” regions Ωt for t = 0, 1, 2, 3, 4, 5, shown in Figure 10.6.

Notice that the faces of the “no-trade” regions seem to be flat, but in fact there are small perturba-

tion on the faces, which might be due to numerical errors or the possibility that the exact “no-trade”

region might have curvy faces.

10.6 Portfolio with Transaction Costs, Consumption and Wages

At the time rightly before reallocation time t, let Wt be the wealth of the portfolio, and let xt be the

allocation fractions of the wealth in n risky assets, while the fraction in the riskless asset is (1−e⊤xt).

Assume that the investor will receive wages wt at each stage t (wt = 0 for t > TR, where TR is the

retire time), and wt is a discrete Markov chain. The dynamic portfolio optimization problem is to find

optimal portfolio and consumption decision Ct at each stage t such that we have a maximal expected

total utility, i.e.,

max βTE[u(WT )] +
T−1∑

t=0

βtE[u(Ct)],

where u is the given utility function, β is the discount factor.

By using Wt, xt, wt as state variables, the DP model becomes

Vt(Wt, xt, wt) = max
Ct,∆t

u(Ct) + βE [Vt+1(Wt+1, xt+1, wt+1)]

s.t. e⊤(∆t + f(∆t)) = Mt,

Xt+1 = R. ∗ (xtWt + ∆t),

Wt+1 = e⊤Xt+1 +Rf (Wt(1 − e⊤xt) + wt − Ct −Mt),

xt+1 = Xt+1/Wt+1,

whereRf is the riskfree return, R = (R1, . . . , Rn)⊤ is the random return vector of the risky assets,Xt+1

is the vector of the amount of dollars in the risky assets at time rightly before (t+1), ∆t is the vector of

amount of dollars with which buying or selling the risky assets, .∗ is elementwise product, e is a column
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Figure 10.5: No-trade regions for 3 stocks and 1 bond with consumption (correlation: Σ12 = Σ13 = 0.2,
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Figure 10.6: No-trade regions for 3 stocks and 1 bond with consumption (correlation: Σ12 = Σ13 = 0.4,
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vector with 1 everywhere, and f(∆ti) is the transaction cost function for buying or selling part of stock

i with amount of ∆ti dollars. We could let f(∆ti) = τ∆2
ti, or f(∆ti) = τ |∆ti|, or the hyperbolic form,

for some constant τ > 0. The terminal value function is VT (WT , xT , wT ) = u(WT +wT−τe⊤f(xTWT ))

for some given utility function u. In the model, only Ct and ∆t is chosen as control variables, while

Mt, Xt+1,Wt+1 and xt+1 will be substituted.

If we do not allow shorting stocks or borrowing cash, then we just need to add the constraints:

xtWt + ∆t ≥ 0 and Wt(1 − e⊤xt) + wt ≥ Mt + Ct. And the range of xt and xt+1 is [0, 1]n while

e⊤xt+1 ≤ 1.

When there is no riskless asset, we just need to cancel the Rf term and replace mt by −ct in the

above models for gt or ψt, while we should have e⊤xt = 1 (the state variable vector xt = (xt1, . . . , xtn)

should be changed as (xt1, . . . , xt,n−1), and there is same cutoff in xt+1).



Chapter 11

Portfolio with Options and

Transaction Costs

In many cases, we would like to reduce or control the risk and amount of loss in the investment

strategies. One way is to add put options into the set of portfolio assets as a hedging strategy. A put

option is a financial contract that gives its holder the right to sell a certain amount of an underlying

security at a specified price (called as strike price) within a specified time (called as time to maturity,

or expiration time).

For simplicity, here we just assume that there is only one stock St and one put option Pt with

an expiration time T and a strike price K based on this stock. Here Pt is denoted as the stochastic

process of the price of a put option contract that gives its holder the right to sell one share of of

the underlying stock at the strike price within the expiration time. It is simple to extend it to the

case with multiple risky assets and/or multiple put/call options with different expiration times and/or

strike prices, or some other derivatives.

11.1 DP Models for Portfolio Problems with Options

Assume that there is a put option with an expiration time T , and it is available for trading at each

stage t = 0, 1, . . . , T , with a price process Pt, while its underlying stock price process is St. At the time

rightly before reallocation time t, assume that Wt is the wealth, Xt is the amount of money invested

in the stock, and Yt is the amount of money invested in the option. Since the price of the option is

dependent on the stock price, we should add St as a state variable. Thus we will use Wt, St, Xt, Yt as

112
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state variables in the DP method. Thus the DP model is

Vt(Wt, St, Xt, Yt) = max
∆Xt,∆Yt

E [Vt+∆t(Wt+∆t, St+∆t, Xt+∆t, Yt+∆t)]

s.t. St+∆t = StR,

Xt+∆t = R(Xt + ∆Xt),

Yt+∆t = (Yt + ∆Yt)Pt+∆t/Pt,

Mt = ∆Xt + ∆Yt + τ1f(∆Xt) + τ2f(∆Yt),

Wt+∆t = Rf (Wt −Xt − Yt −Mt) +Xt+∆t + Yt+∆t,

where R is the random return of the stock in one period with length ∆t, Rf is the riskfree return, ∆Xt

is the amount of dollars for buying or selling the stock, ∆Yt is the amount of dollars for buying or selling

the option, f(.) is the transaction cost function, τ1 and τ2 are respectively the transaction cost ratios

for buying or selling the stock and the option. The terminal value function is VT (W,S,X, Y ) = u(W )

(or VT (W,S,X, Y ) = u(W − τ1f(X) − τ2f(Y )) when we assume that all risky assets have to be

converted into the riskless asset before consumption) for some given utility function u.

If we do not allow shorting in stock, option or bond, then we just need to add the constraints:

Xt+∆t ≥ 0, Yt+∆t ≥ 0 and Wt −Xt − Yt ≥Mt, and the domain of (Xt, Yt) can be set as [0,Wt]
2.

If the utility function is a CRRA utility with relative risk aversion coefficient γ > 0, and there

are proportional transaction costs in buying or selling the stock or the option with the ratio τ ,

i.e., f(x) = τ |x|, then let ∆Xt = Wt(δ
+
tx − δ−tx) and ∆Yt = Wt(δ

+
ty − δ−ty) with δ+tx, δ

−
ty ≥ 0 such

that f(∆Xt) = Wt(δ
+
tx + δ−tx) and f(∆Yt) = Wt(δ

+
ty + δ−ty). Let xt = Xt/Wt and yt = Yt/Wt.

By using Wt, St, xt, yt as state variables, we can separate Wt and (St, xt, yt) in the value function

Vt(Wt, St, xt, yt).

When u(W ) = W 1−γ/(1 − γ) with γ > 0 and γ 6= 1, we have

Vt(Wt, St, xt, yt) = W 1−γ
t · gt(St, xt, yt),

where

gt(St, xt, yt) = max
δ+

tx,δ−

tx,δ+
ty ,δ−

ty

E
[
Π1−γ

t+∆t · gt+∆t(St+∆t, xt+∆t, yt+∆t)
]

s.t. St+∆t = StR,

ξt+∆t = R(xt + δ+tx − δ−tx),

ηt+∆t = (yt + δ+ty − δ−ty)Pt+∆t/Pt,

mt = δ+tx − δ−tx + δ+ty − δ−ty + τ1(δ
+
tx + δ−tx) + τ2(δ

+
ty + δ−ty),

Πt+∆t = Rf (1 − xt − yt −mt) + ξt+∆t + ηt+∆t,

xt+∆t = ξt+∆t/Πt+∆t,

yt+∆t = ηt+∆t/Πt+∆t,

δ+tx, δ
−
tx, δ

+
ty, δ

−
ty ≥ 0,
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with gT (S, x, y) = 1/(1− γ) (or gT (x) = (1 − τ1|x| − τ2|y|)1−γ/(1− γ) when we assume that all risky

assets have to be converted into the riskless asset before consumption).

When u(W ) = log(W ), we have

Vt(Wt, St, xt, yt) = log(Wt) + ψt(St, xt, yt),

where

ψt(St, xt, yt) = max
δ+

tx,δ−

tx,δ+

ty,δ−

ty

E [log(Πt+∆t) + ψt+∆t(St+∆t, xt+∆t, yt+∆t)]

s.t. St+∆t = StR,

ξt+∆t = R(xt + δ+tx − δ−tx),

ηt+∆t = (yt + δ+ty − δ−ty)Pt+∆t/Pt,

mt = δ+tx − δ−tx + δ+ty − δ−ty + τ1(δ
+
tx + δ−tx) + τ2(δ

+
ty + δ−ty),

Πt+∆t = Rf (1 − xt − yt −mt) + ξt+∆t + ηt+∆t,

xt+∆t = ξt+∆t/Πt+∆t,

yt+∆t = ηt+∆t/Πt+∆t,

δ+tx, δ
−
tx, δ

+
ty, δ

−
ty ≥ 0,

with ψT (S, x, y) = 0 (or ψT (S, x, y) = log(1− τ1|x| − τ2|y|) when we assume that all risky assets have

to be converted into the riskless asset before consumption).

If we do not allow shorting in stock, option or bond, then we just need to add the constraints:

xt+∆t ≥ 0, yt+∆t ≥ 0 and 1 − xt − yt ≥ mt, and the domain of (xt, yt) can be set as [0, 1]2.

When there is no riskless asset, we just need to cancel the Rf term and replace mt by 0 in the

above models for gt or ψt, while we should have xt + yt = 1 (the state variable yt could be cancelled)

in the case with only one stock and one derivative.

It is simple to extend the above models to include consumption decision at each stage, just like

what we did in section 10.5.

11.2 Pricing Formulas for Put Option

Let the expiration time of the put option be T , and let its strike price be K. Then the payoff of the

put option at the expiration time T is max(K − ST , 0), where ST is the price of the underlying stock

at time T . We assume that the price St of the underlying asset follows a geometric Brownian motion

with constant drift µ and volatility σ, the risk-free interest rate is r, and all other Black and Scholes

[4] assumptions hold. Then the Black-Scholes formula gives us the risk-neutral price for the European

put option at time t < T :

Pt = Ke−r(T−t)Φ(−d2) − StΦ(−d1),
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where

d1 =
log(St/K) + (r + σ2/2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t,

and Φ(x) denotes the standard cumulative normal probability distribution. When we use the Black-

Scholes formula as the pricing formula of the option, we should also assume that the one-period

log-return of the underlying stock log(R) ∼ N((µ− σ2

2 )∆t, σ2∆t) for the consistency, where ∆t is the

time length of one period.

The Black-Scholes pricing formula of the European put option is dependent on the Black and

Scholes [4] assumptions, for example, there are no transaction costs in buying or selling the stock or

the option, and the stock can be traded continuously. But in our portfolio model, we assume that

there are transaction costs in buying or selling the stock or the option, and the stock can only be

traded at stages.

To solve the above conflict, we choose the binomial lattice method for pricing the put option numer-

ically, see Luenberger [34]. The binomial lattice method can also be applied for pricing American-type

options, while the Black-Scholes formula is only for European-type options.

In the binomial lattice model, we set h as a subperiod length and N as the number of subperiods

such that Nh = ∆t, where ∆t is the length of one period in the multi-period portfolio optimization

model. If the price is known as S at the beginning of a subperiod, the price at the beginning of the

next subperiod is Su or Sd, with u > 1 and 0 < d < 1. The probability of the upward movement is

p, and the probability of the downward movement is 1 − p. To match the log normal assumption of

the stock return, we assume that 




p = 1
2 + µ−σ2/2

2σ

√
h,

u = exp(σ
√
h),

d = exp(−σ
√
h),

(11.1)

such that the expected growth rate of log(S) in the binomial model converges to (µ− σ2/2), and the

variance of the rate converges to σ2, as h goes to zero. Let r be the riskfree interest rate, such that

the riskfree return of one subperiod is exp(rh). Thus, the value of one subperiod put option on the

stock governed by the binomial lattice is given as

P = exp(−rh)(qPu + (1 − q)Pd),

where Pu and Pd are respectively the values at the upward branch and the downward branch at the

end of this subperiod, q is the risk-neutral probability with q = (exp(rh)−d)/(u−d). Since the payoff

of the put option at the expiration time T is PT = max(K − ST , 0), we can compute the price of the

put option at any binomial nodes by applying the above backward iterative relation.

From the above binomial model, we know that the stock return of one period, R, has the following
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probability distribution:

Pr(R = ukdN−k) =
N !

k!(N − k)!
pk(1 − p)N−k,

for k = 0, 1, . . . , N. And the riskfree return of one period is Rf = (exp(rh))N = exp(r∆t).

11.3 Numerical Examples

In all the examples in this section, we assume that the available assets for trading are one bond with a

riskless annual rate r = 0.04, one stock St with a binormal return and a proportional transaction cost

ratio τ1, and one put option Pt with an expiration time T and a strike price K based on the stock and

a proportional transaction cost ratio τ2. The terminal value function is u(W ) = W 1−γ/(1 − γ) with

γ = 3. The length of one period is ∆t = 1/12 year, i.e., one month. We apply the binomial lattice

model (11.1) with h = 1/120, µ = 0.07 and σ = 0.2. So the number of subperiods is N = ∆t/h = 10.

We assume that shorting the stock, the option or the bond are forbidden.

In the numerical DP method, we use the degree-11 complete Chebyshev polynomial approximation

method with 12 Chebyshev nodes in each dimension of continuous states: (xt, yt), where xt and yt

are respectively the fractions of wealth invested in the stock and the option at the time rightly before

the reallocation time t. The optimization software is chosen as NPSOL.

In the first example, we let the transaction cost ratios τ1 = τ2 = 0.01, the strike price K = S0, and

the expiration time T = 0.5, so this is a 6-period portfolio optimization problem with an at-the-money

put option. The domain of (xt, yt) is set as [0, 1]× [0, 0.2].

In Figure 11.1, we give the “no-trade” region and the optimal allocation fractions at stage 0 when

the initial allocation has no options.

Since the payoff of put option at the expiration time is max(K − ST , 0), we know that the put

option is negatively and highly correlated to the underlying stock. The high correlation of these two

risky assets implies that the objective function of the optimization problem is flat and the “no-trade”

region should be a strip which is close to a line and the strip should be tilted toward one axis. The

negative correlation implies that the strip should be tilted with a positive slope. All these properties

can be observed from Figure 11.1: the strip’s width is about 0.018, and its length is about 0.8, and

its slope is about 0.09.

The dotted arrows in Figure 11.1 show the paths from the initial allocations without option to the

optimal allocations. We see that when the initial stock allocation fraction is between 40% and 90%

(and the initial option allocation is 0), the optimal allocation is to keep the stock and use cash to buy

some of the put option.

For example, if the total amount of wealth is one million dollars at stage 0, and the current stock

price is S0 = 100 dollars, all the wealth is invested in the stock initially (there are 10000 shares),

then the optimal transaction is to sell 744 shares of the stock to get 73657 dollars after paying 744

dollars for transaction costs, and then pay 54220 dollars to buy the put option with a contract size

of 11727 shares (as the price of the put option is 0.0462351K and S0 = K) after paying 542 dollars
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Figure 11.1: No-trade region for 1 stock, 1 put option, 1 bond

for transaction costs. So the total amount of transaction costs is 744 + 542 = 1286 dollars, and the

left amount of cash is 73657− 54220− 542 = 18895 dollars, which will be invested in the bond. Thus,

after all transactions, we have 10000− 744 = 9256 shares of the stock, the put option with a contract

size of 11727 shares, and the bond worth of 18895 dollars, and the new total amount of wealth is

106 − 1286 = 998714 dollars. That is, the optimal allocation fractions among the new total amount

of wealth are, respectively, 925600/998714 ≈ 92.68% for the stock, 54220/998714 ≈ 5.43% for the put

option, and 18895/998714 ≈ 1.89% for the bond.

Figure 11.2 tells us that the put option contributes to the value functions for the above 6-period

dynamic portfolio problem with τ1 = 0.01, K = S0 and T = 0.5 year (i.e., 6 periods). We see that

all three value functions for the dynamic portfolio problem with the put option are bigger than the

value function for the portfolio problem that has no options available for trading. Moreover, if the

transaction cost ratio for the put option is larger, then the corresponding value function V0(W,S, x, y)

at y = 0 for the portfolio problem with the put option is closer to the value function for the portfolio

problem without options.

11.3.1 No-Trade Regions for Various Transaction Cost Ratios

In this subsection, we let the expiration time T = 6 months and the strike price is K = S0, so this is a

6-period portfolio optimization problem with an at-the-money put option, and we come to observe the

effect of various transaction cost ratios: τ1 = 0.01, 0.005, 0.002, and τ2 = 2τ1, τ1, τ1/2. See the figures
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Figure 11.2: Value functions with/without options

11.3 and 11.4. The “no-trade” region for the case τ1 = τ2 = 0.01 has been shown in Figure 11.1, so

we omit it here. Since the values of τ1 and τ2 has no impact on our option pricing formula, our put

option prices for various τ1 and τ2 are same with its price when τ1 = τ2 = 0.01, which is 0.0462351K.

In the cases with τ1 = 0.01, 0.005 and τ2 = 2τ1, τ1, τ1/2, the domain of (xt, yt) is set as [0, 1]× [0, 0.2].

And in the cases with τ1 = 0.002 and τ2 = 2τ1, τ1, τ1/2, the domain of (xt, yt) is set as [0, 1]× [0, 0.1].

We see that the “no-trade” region becomes thinner as τ1 and/or τ2 is smaller, and it becomes

shorter as τ1 is smaller, which match the intuition, and in fact the “no-trade” region will converge to a

point as τ1 → 0 and τ2 → 0. Notice that in the cases when τ2 = 2τ1 = 0.01 or τ2 = 2τ1 = 0.004, if the

initial allocation for stock is bigger than 33% or 30% respectively, and there is no allocation for option

initially, then the optimal transaction is to sell stocks and put all the earned cash into the bond (do

not buy the put option) such that the optimal allocation for stock is 33% or 30% respectively among

the wealth after transactions.

11.3.2 No-Trade Regions for Various Expiration Times

We let τ1 = τ2 = 0.01, K = S0 in this subsection. And we choose various expiration times T = j

months, , which implies j-period portfolio allocation problems with an at-the-money put option, for

j = 1, . . . , 6. See Figure 11.5. The “no-trade” region for the case T = 6 month is omitted here as
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Figure 11.3: No-trade regions for 1 stock, 1 put option, 1 bond (various transaction cost ratios, part
1)



120 CHAPTER 11. PORTFOLIO WITH OPTIONS AND TRANSACTION COSTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Stock fraction

O
pt

io
n 

fr
ac

tio
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Stock fraction

O
pt

io
n 

fr
ac

tio
n

τ1 = 0.005, τ2 = 0.0025 τ1 = 0.002, τ2 = 0.004

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Stock fraction

O
pt

io
n 

fr
ac

tio
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Stock fraction

O
pt

io
n 

fr
ac

tio
n

τ1 = 0.002, τ2 = 0.002 τ1 = 0.002, τ2 = 0.001

Figure 11.4: No-trade regions for 1 stock, 1 put option, 1 bond (various transaction cost ratios, part
2)
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it has been shown in the first example of this section (Figure 11.1). The domain of (xt, yt) is set as

[0, 1]× [0, 0.2] for all the expiration times.

We see that the “no-trade” region strip becomes thinner and more tilted toward the horizon axis

when the time to maturity is smaller.

11.3.3 No-Trade Regions for Various Strike Prices

We let τ1 = τ2 = 0.01, the expiration time is T = 6 months, which implies 6-period portfolio problems

with a put option. And we choose one of three kinds of European put options: out-of-the-money one

with K = 0.8S0, at-the-money one with K = S0, and in-the-money one with K = 1.2S0. See Figure

11.6. The at-the-money case has been shown in the first example of this section (Figure 11.1), so we

omit it here. The domain of (xt, yt) is set as [0, 1] × [0, 0.1] for the case with K = 0.8S0, while it is

[0, 1]× [0, 0.5] for the case with K = 1.2S0,.

Notice that the range of the vertical axis is different in the above figures. We see that the “no-

trade” region strip becomes thinner and more tilted toward the horizon axis as the strike price goes

lower.



122 CHAPTER 11. PORTFOLIO WITH OPTIONS AND TRANSACTION COSTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Stock fraction

O
pt

io
n 

fr
ac

tio
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Stock fraction

O
pt

io
n 

fr
ac

tio
n

T = 1 month T = 2 months

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Stock fraction

O
pt

io
n 

fr
ac

tio
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Stock fraction

O
pt

io
n 

fr
ac

tio
n

T = 3 months T = 4 months

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Stock fraction

O
pt

io
n 

fr
ac

tio
n

T = 5 months

Figure 11.5: No-trade regions for 1 stock, 1 put option, 1 bond (various expiration times)
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Figure 11.6: No-trade regions for 1 stock, 1 put option, 1 bond (various strike prices)
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