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Abstract

Several frictions restrict the government’s ability to tax assets. First, it is very costly

to monitor trades on international asset markets. Second, agents can resort to nonob-

servable low-return assets such as cash, gold or foreign currencies if taxes on observable

assets become too high. This paper shows that limitations in asset taxation have im-

portant consequences for the taxation of labor income. Using a dynamic moral hazard

model of social insurance, we find that optimal labor income taxes become less progressive

when governments face limitations in asset taxation. We evaluate the quantitative effect

of imperfect asset taxation for two applications of our model.
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1 Introduction

The existence of international asset markets implies that taxation authorities do not have

perfect (or low cost) control over agents’ wealth and consumption. This creates an important

obstacle for tax policy:

“In a world of high and growing capital mobility there is a limit to the amount of

tax that can be levied without inducing investors to hide their wealth in foreign

tax havens.” (Mirrlees Review 2010, p.916)

According to a study by the Tax Justice Network, in 2010 more than $21 trillion of global pri-

vate financial wealth was invested in offshore accounts and not reported to the tax authori-

ties. These considerations motivated the recent legal steps by most developed economies to

crack down on off-shore bank accounts and on the traditional norms of bank secrecy. How-

ever, even when agents choose not to hide their wealth abroad, they have access to number

of nonobservable storage technologies at home. For example, agents can accumulate cash,

gold, or durable goods. These assets bring lower returns, but nonetheless impose limits for

the collection of taxes on assets that are more easily observed.

Motivated by these considerations, this paper explores optimal tax systems in a frame-

work where assets are imperfectly taxable. We contrast two stylized environments. In the

first one, consumption and assets are observable (and contractable) for the government. In

the second environment, these choices are private information. We compare the constrained

efficient allocations of the two scenarios. When absolute risk aversion is convex, we find

that in the scenario with hidden assets, optimal consumption moves in a less concave (or

more convex) way with labor income. In this sense, the optimal allocation becomes less pro-

gressive in that scenario. This finding can be easily rephrased in terms of the progressivity

of labor income taxes, since our model allows for a straightforward decentralization: opti-

mal allocations can be implemented by letting agents pay nonlinear taxes on labor income

and linear taxes on assets. Our results show that marginal labor income taxes become less

progressive when the government’s ability to tax/observe asset holdings is imperfect.

We derive our results in a tractable dynamic model of social insurance. A continuum

of ex ante identical agents influence their labor incomes by exerting effort. Labor income is

subject to uncertainty and effort is private information. This creates a moral hazard prob-

lem. The social planner thus faces a trade-off between insuring agents against idiosyncratic

income uncertainty on the one hand and the associated disincentive effects on the other
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hand. In addition, agents have access to a risk-free asset, which gives them a means for

self-insurance.

In this model, the planner wants to distort agents’ asset decisions, because asset accumu-

lation provides insurance against the idiosyncratic income uncertainty and thereby reduces

the incentives to exert effort.1 When fully capable of doing so, the planner uses capital in-

come taxation to deter the agent from accumulating assets and labor income taxation to

balance consumption insurance and effort incentives optimally. When capital income taxa-

tion is limited, the planner is forced to use labor income taxation also to reduce the agent’s

incentive to save. Efficiency requires that, for each income state, the costs of increasing the

agent’s utility by a marginal unit equal the benefits of doing so. A marginal increase of

utility in a state with consumption c reduces the agent’s marginal return of savings in that

state by Ra(c), where a(c) is the absolute risk aversion of the agent at consumption c in that

state and R is the asset return.2 Hence, relative to the perfect capital taxation case, there is

an additional social return to allocating utility to a given state which is proportional to the

level of absolute risk aversion of the agent. Therefore, unless absolute risk aversion is con-

stant or linear, limits to capital taxation have direct implications for the curvature of optimal

consumption.3 In particular, whenever absolute risk aversion is convex, the planner finds it

optimal to generate an additional convexity (or regressivity) of consumption.

The paper also evaluates the quantitative impact of capital taxation on income tax pro-

gressivity and on welfare. The identification and estimation of the key parameters of our

framework is not straightforward because the technology that determines how effort affects

future income is not directly observable. In the paper, we use two different identification

strategies (and two distinct applications) to overcome this issue. The first application uses

consumption and income data from the PSID (Panel Study of Income Dynamics) as adapted

by Blundell, Pistaferri and Preston (2008). The main identification assumption is that the

data is generated by a tax system in which labor income taxes are set optimally given an

asset income tax rate of 40%.4 This strategy has the advantage that all the fundamental pa-

rameters can be identified using only one cross-sectional joint distribution of consumption

and income. The second application interprets our model as a model of unobservable hu-

1See Diamond and Mirrlees (1978), Rogerson (1985), and Golosov, Kocherlakota and Tsyvinski (2003).
2A marginal increase of utility in a state with consumption c reduces the agent’s marginal utility in that

state by −u′′(c)/u′(c). To increase u(c) by ε, indeed, c has to be increased by ε/u′(c). The first-order effect on
the agent’s marginal utility is therefore given by −εu′′(c)/u′(c).

3Of course, the very same argument implies that both the level and slope of the optimal consumption
allocation might also be affected by the properties of the absolute risk aversion.

4This rate is in line with U.S. effective tax rates on capital income calculated by Mendoza, Razin and Tesar
(1994) and Domeij and Heathcote (2004).
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man capital accumulation. Naturally, in this application, agents make their human capital

accumulation decision assuming a particular (progressivity of the) tax system. Given this,

an exogenous change of the tax system allows us to identify the underlying parameters of

the technology governing the effect of human capital accumulation on the (life-time) earn-

ings distribution. We use the Economic Recovery Tax Act of 1981 as such exogenous event

and we compare the distributions of life-time earnings of cohorts who presumably made

their most important human capital accumulation decisions before and after this tax reform

was enacted. We use the NLSY79 (1979 wave of the National Longitudinal Survey of the

Youth) data set for these calculations.

After the estimation, in both applications, we compare the optimal allocations of perfect

asset taxation (observable assets) and limited asset taxation (hidden assets). Under perfect

asset taxation, the progressivity of the optimal allocation increases sizably in both applica-

tions. The welfare gain of perfect asset taxation varies with the coefficient of relative risk

aversion and amounts to 1.3–1.5% in consumption equivalent terms in the benchmark cases

of the two applications. However, the required asset income tax rates are implausibly high,

being close to one hundred per cent or above for all specifications. This suggests that imper-

fect asset observability/taxability is the empirically relevant case for the United States.

Related literature. To the best of our knowledge, this is the first paper that explores op-

timal income taxation in a framework where assets are imperfectly taxable. Recent work

on dynamic Mirrleesian economies analyzes optimal income taxes when assets are observ-

able/taxable without frictions; see Farhi and Werning (2013) and Golosov, Troshkin, and

Tsyvinski (2013). In those works, the reason for asset taxation is very similar to our model

and stems from disincentive effects associated with the accumulation of wealth. While the

Mirrlees (1971) framework focuses on redistribution in a population with heterogeneous

skills that are exogenously distributed, our approach highlights the social insurance (or ex-

post redistribution) aspect of income taxation. In spirit, our model is therefore closer to the

works by Varian (1980) and Eaton and Rosen (1980). With respect to the nonobservability of

assets, our model is related to Golosov and Tsyvinski (2007), who analyze capital distortions

in a dynamic Mirrleesian economy with private insurance markets and hidden asset trades.

An entirely different link between labor income and capital income taxation is explored

by Conesa, Kitao and Krueger (2009). Using a life-cycle model with age-dependent labor

supply elasticities and borrowing constraints, they argue that capital income taxes and pro-

gressive labor income taxes are two alternative ways of providing age-dependent insurance

against idiosyncratic shocks. They then use numerical methods to determine the efficient re-

lation between the two instruments. Interestingly, in the present environment capital taxes
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play an entirely different role and we obtain very different conclusions. While in Conesa,

Kitao and Krueger (2009) capital income taxes and progressive labor income taxes are sub-

stitutable instruments, in our model they are complements. Laroque (2010) derives analyt-

ically a similar substitutability between labor income and capital income taxes, restricting

labor taxation to be nonlinear but homogenous across age groups. In both of these cases, the

substitutability arises because exogenously restricted labor income taxes are in general im-

perfect instruments to perform redistribution. In our (fully-optimal taxation) environment,

labor income taxes can achieve any feasible redistributional target. The role of capital taxes

is to facilitate the use of such redistributional instrument in the presence of informational

asymmetries. Hence we obtain a complementarity between capital taxes and labor income

tax progressivity.

Finally, our paper is related to the literature on optimal tax progressivity in static models.

This literature highlights the roles of the skill distribution (Mirrlees, 1971), the welfare cri-

terion (Sadka, 1976) and earnings elasticities (Saez, 2001). For a recent survey on the issue,

see Diamond and Saez (2011). However, dynamic considerations and, in particular, asset

decisions are absent in those works. The present paper explores how the access to saving

technologies changes the progressivity of the optimal tax scheme.

The paper proceeds as follows. Section 2 describes the setup of the model. Section 3

presents the main theoretical results of the paper. We show that hidden asset accumulation

leads to optimal consumption schemes that are less progressive according to several pro-

gressivity concepts. Section 4 explores the quantitative importance of our results. Section

5 provides concluding remarks. The appendix collects all proofs that are omitted from the

main text and provides further details on the estimation strategy for Section 4.

2 Model

Consider a benevolent social planner (the principal) whose objective is to maximize the wel-

fare of its citizens. The (small open) economy consists of a continuum of ex ante identical

agents who live for two periods, t = 0, 1, and can influence their date-1 labor income re-

alizations by exerting effort. The planner designs an allocation to insure them against id-

iosyncratic risk and provide them appropriate incentives for exerting effort. The planner’s

budget must be (intertemporally) balanced.

Preferences. The agent derives utility from consumption ct ≥ c ≥ −∞ and effort et ≥ 0

according to u(ct, et), where u is a concave, twice continuously differentiable function which
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is strictly increasing and strictly concave in ct, strictly decreasing and (weakly) concave in et.

We assume that consumption and effort are complements: u′′
ec(ct, et) ≥ 0. This specification

of preferences includes both the additively separable case, u (c, e) = u (c) − v (e) , and the

case with monetary costs of effort, u(c − v (e)), assuming v is strictly increasing and convex.

The agent’s discount factor is denoted by β > 0.

Technology and endowments. The technological process can be seen as the production

of human capital through costly effort, where human capital represents any characteristic

that determines the agent’s productivity and, ultimately, labor income. At date t = 0, the

agent has a fixed endowment y0. At date t = 1, the agent has a stochastic income y ∈ Y :=

[y, y]. The realization of y is publicly observable, while the probability distribution over Y is

affected by the agent’s unobservable effort level e0 that is exerted at t = 0. The probability

density of this distribution is given by the smooth function f (y, e0). As in most of the the

optimal contracting literature, we assume full support, that is f (y, e0) > 0 for all y ∈ Y, and

e0 ≥ 0. There is no production or any other action at t ≥ 2. Since utility is strictly decreasing

in effort, the agent exerts effort e1 = 0 at date 1. In what follows, we therefore use the

notation u1(c) := u(c, 0) for date-1 utility.

The agent has access to a linear savings technology that allows him to transfer qb0 units

of date-0 consumption into b0 units of date-1 consumption. The savings technology is ob-

servable to the planner.

Allocations. An allocation (c, e0) consists of a consumption scheme c = (c0, c(·)) and a

recommended effort level e0. The consumption scheme has two components: c0 denotes the

agent’s consumption in period t = 0 and c(y), y ∈ Y, denotes the agent’s consumption in

period t = 1 conditional on the realization y. An allocation (c0, c(·), e0) is called feasible if it

satisfies the planner’s budget constraint

y0 − c0 + q
∫ y

y
(y − c(y)) f (y, e0) dy − G ≥ 0, (1)

where G denotes government consumption and q is the rate at which planner and agent

transfer resources over time.
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2.1 Observable assets and ‘second best’ allocations

As a benchmark case, we assume that the agent’s savings technology is observable (and

contractable) for the planner. In this case, we can assume without loss of generality that the

planner directly controls consumption.

Second best. A second best allocation is an allocation that maximizes ex-ante welfare5

max
(c,e0)

u(c0, e0) + β

∫ y

y
u1(c(y)) f (y, e0) dy

subject to c0 ≥ c, c(y) ≥ c, e0 ≥ 0, the planner’s budget constraint

y0 − c0 + q
∫ y

y
(y − c(y)) f (y, e0) dy − G ≥ 0, (2)

and the incentive compatibility constraint for effort

e0 ∈ arg max
e

u(c0, e) + β

∫ y

y
u1(c(y)) f (y, e) dy. (3)

Any second best allocation can be generated as an equilibrium outcome of a competi-

tive environment where agents exert effort and save/borrow subject to appropriate taxes on

income and assets. To simplify the analysis, we assume throughout this paper that the first-

order approach (FOA) is valid. This enables us to characterize the agent’s choice of effort e0

and assets b0 based on the associated first-order conditions (in inequality or equality form).

When the FOA holds, second best allocations can be decentralized by imposing a linear tax

on assets, complemented by suitably defined nonlinear labor income taxes and transfers.

Proposition 1 (Decentralization). Suppose that the FOA is valid and let (c0, c(·), e0) be a second

best allocation that is interior: c0 > c, c(y) > c, y ∈ Y, e0 > 0. Then there exists a tax system

5Although for pure notational simplicity we consider the case with a continuum of output levels, we do not
discuss the technicalities related to the existence of a solution in infinite dimensional spaces. We can provide
details; alternatively, the reader can read the model as one with a large but finite number of output levels.
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consisting of income transfers (τ0, τ(·)) and an after-tax asset price q̃ (> q) such that

c0 = y0 + τ0,

c(y) = y + τ(y), y ∈ Y,

(e0, 0) ∈ arg max
(e,b)

u(y0 + τ0 − q̃b, e) + β

∫ y

y
u1(y + τ(y) + b) f (y, e) dy. (4)

In other words, there exists a tax system (τ0, τ(·), q̃) that decentralizes the allocation (c0, c(·), e0).

First, we note that an after-tax asset price q̃ is equivalent to a capital wedge τK (tax on

the gross return) that is constant across agents, τK = 1 − q/q̃, or a linear capital income tax

at rate τK/(1 − q). Notice moreover that we have normalized asset holdings to b0 = 0 in the

above proposition. This is without loss of generality, since there is an indeterminacy between

τ0 and b0. The planner can generate the same allocation with a system (τ0, τ(·), q̃) and b0 = 0

or with a system (τ0 − q̃ε, τ(·) + ε, q̃) and b0 = ε for any value of ε. This indeterminacy is not

surprising, because the timing of tax collection is irrelevant by Ricardian equivalence.

Proposition 1 is intuitive and the proof is omitted. It is efficient to tax the savings technol-

ogy, because savings provide intertemporal insurance when the agent plans to shirk. The

reason why a linear tax on assets is sufficient to obtain the second best becomes apparent

once we replace the incentive constraint (4) by the associated first-order conditions

u′
e(y0 + τ0, e0) + β

∫ y

y
u1(y + τ(y)) fe(y, e0) dy ≥ 0, (5)

q̃u′
c(y0 + τ0, e0)− β

∫ y

y
u′

1(y + τ(y)) f (y, e0) dy ≥ 0. (6)

The second first-order condition (6) determines the agent’s asset decision taking optimal

effort as given, while (5) is the optimality condition for the agent’s effort decision taking

optimal assets as given. In this sense, the planner can essentially ignore the problem of

‘joint deviations’ when taxing asset trades. That is the essence of the validity of the first-order

approach (FOA). It is now clear that by choosing a sufficiently large value for q̃, the planner

can in fact ignore the constraint for assets and obtain the second best allocation.

Sufficient conditions for the validity of the FOA in this setup are given in Abraham,

Koehne, and Pavoni (2011). Specifically, the FOA is valid if the agent has nonincreasing

absolute risk aversion and the cumulative distribution function of income is log-convex in

effort. As discussed by Abraham, Koehne, and Pavoni (2011), both conditions have quite

broad empirical support. First, virtually all estimations of u reveal NIARA; see Guiso and
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Paiella (2008) for example. The condition on the distribution function essentially restricts

the agent’s Frisch elasticity of labor supply. This restriction is satisfied as long as the Frisch

elasticity is smaller than unity. In fact, most empirical studies find values for this elasticity

between 0 and 0.5; see Domeij and Floden (2006), for instance.

Besides allowing for a very natural decentralization, the FOA also generates a sharp char-

acterization of second best consumption schemes. Assuming that consumption is interior,

the first-order conditions of the Lagrangian with respect to consumption are:6

λ

u′
c(c0, e0)

= 1 + µ
u′′

ec(c0, e0)

u′
c(c0, e0)

, (7)

λq

βu′
1(c(y))

= 1 + µ
fe(y, e0)

f (y, e0)
, y ∈ [y, y], (8)

where λ and µ are the (nonnegative) Lagrange multipliers associated with the budget con-

straint (2) and the first-order version of the incentive constraint (3), respectively.

2.2 Hidden assets and ‘third best’ allocations

Savings technologies such as domestic bank accounts, pension funds or houses may be ob-

servable at moderate costs, but there are many alternative ways of transferring resources

over time that are more difficult to monitor. For instance, agents may open accounts at

foreign banks or they may accumulate cash, gold or durable goods. These technologies typ-

ically bring low returns (or involve transaction costs of various sorts), but are prohibitively

costly to observe for tax authorities. Hence, if the after-tax return of the observable sav-

ings technology, 1/q̃, becomes too low, agents have a strong incentive to use nonobservable

assets to run away from taxation.

Notice that, even though we describe a particular decentralization mechanism in this

paper, the above problem is general. Decentralizations with income-dependent asset taxes

(Kocherlakota 2005), for instance, make the savings technology unattractive by lowering

the after-tax return specifically in low-income states. In this case, the average asset tax can be

zero, however agents would still prefer to save on a hidden asset market as long as the return

on this market is sufficiently close to the observable asset return, because the risk-adjusted

expected return of hidden assets dominates the risk-adjusted after-tax return of observable

assets.

6A sufficient condition for interiority is, for example, u′
e(c, 0) = 0 for all c > c in combination with the Inada

condition limc→c u′
c(c, 0) = ∞.
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This motivates the study of optimal allocations and decentralizations when agents have

access to a nonobservable savings technology. We assume that the nonobservable technol-

ogy is linear and transfers qn ≥ q units of date-0 consumption into one unit of date-1 con-

sumption.

Third best. Using the FOA, we define a third best allocation as an allocation (c0, c(·), e0)

that maximizes ex-ante welfare

max
(c,e0)

u(c0, e0) + β

∫ y

y
u1(c(y)) f (y, e0) dy

subject to c0 ≥ c, c(y) ≥ c, e0 ≥ 0, the planner’s budget constraint

y0 − c0 + q
∫ y

y
(y − c(y)) f (y, e0) dy − G ≥ 0 (9)

and the first-order incentive conditions for effort and nonobservable savings

u′
e(c0, e0) + β

∫ y

y
u1(c(y)) fe(y, e0) dy ≥ 0, (10)

qnu′
c(c0, e0)− β

∫ y

y
u′

1(c(y)) f (y, e0) dy ≥ 0. (11)

Obviously, in our terminology the notion second best refers to allocations that are con-

strained efficient given the nonobservability of effort, while the term third best refers to allo-

cations that are constrained efficient given the nonobservability of effort and assets/consumption.

Note moreover that we have written the agent’s Euler equation (11) in inequality form.

Proposition 2 below shows that this inequality is binding as long as the nonobservable asset

is not too expensive compared with the observable asset.

To decentralize a third best allocation (c0, c(·), e0), we define taxes/transfers (τ0, τ(·)) on

labor income and an after-tax price q̃ of the observable asset as follows:

τ0 = c0 − y0,

τ(y) = c(y)− y, y ∈ Y,

q̃ = qn.

If agents face this tax system and have access to the nonobservable savings technologies at

9



rate qn, the resulting allocation will obviously be (c0, c(·), e0).

Again we can use the FOA to characterize the consumption scheme. Assuming an inte-

rior solution, the first-order conditions of the Lagrangian with respect to consumption are

now:

λ

u′
c(c0, e0)

= 1 + µ
u′′

ec(c0, e0)

u′
c(c0, e0)

+ ξqn u′′
cc(c0, e0)

u′
c(c0, e0)

, (12)

λq

βu′
1(c(y))

= 1 + µ
fe(y, e0)

f (y, e0)
+ ξa(c(y)), y ∈ [y, y], (13)

where a(c) := −u′′
1 (c)/u′

1(c) denotes absolute risk aversion, and λ, µ and ξ are the (nonnega-

tive) Lagrange multipliers associated with the budget constraint (9), the first-order condition

for effort (10), and the Euler equation (11), respectively.

Proposition 2. Suppose that the FOA is valid and let (c0, c(·), e0) be a third best allocation that is

interior. Then there exists a number q̄ > q such that equations (12) and (13) characterizing the

consumption scheme are satisfied with ξ > 0 whenever qn
< q̄.

We provide the proof of Proposition 2, as well as all other omitted proofs, in Appendix

A. Proposition 2 states that if the return on the nonobservable savings technology 1/qn

is sufficiently high (although possibly lower than the return on observable savings), the

agent’s Euler equation will be binding in the planner’s problem. To simplify the exposition,

we set qn := q from now on, so that the returns of the nonobservable and observable savings

technologies coincide. All our results will be independent of this particular choice of qn and

rely only on the fact the Euler equation is binding for the planner in that case.

Comparing the characterization of third best consumption schemes, (12), (13), to the char-

acterization of second best consumption schemes, (7), (8), we notice that the difference be-

tween the two environments is closely related to the effect of the agent’s Euler equation

(11) and the associated Lagrange multiplier ξ. We discuss the implications of this finding in

detail in the next section.

3 Theoretical results on progressivity

We are interested in the shape of second best and third best consumption schemes c(y). As

we saw above, this shape is related one-to-one to the curvature of labor income taxes in the

associated decentralization.
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Definition 1. We say that an allocation (c0, c(·), e0) is progressive if c′(y) is decreasing in y.

We call the allocation regressive if c′(y) is increasing in y.

Recall that τ(y) = c(y) − y denotes the agent’s transfer in labor income state y, hence

the negative of τ(y) represents the labor income tax. Definition 1 implies that whenever

a consumption scheme is progressive (regressive), we have a tax system with increasing

(decreasing) marginal taxes −τ′(y) on labor income supporting it.

In a progressive system, taxes are increasing more quickly than income does. At the

same time, for the states when the agent is receiving a transfer, transfers are increasing more

slowly than income is decreasing. The opposite happens when we have a regressive scheme.

Intuitively, if the scheme is progressive, incentives are provided more by imposing ‘penal-

ties’ for low income realizations, since consumption decreases relatively quickly when in-

come decreases. Regressive schemes, by contrast, put more emphasis on ‘rewards’ for high

income levels than ‘punishments’ for low income levels.

We can find sufficient conditions for the progressivity or regressivity of optimal alloca-

tions by exploiting the optimality conditions for consumption. The curvature of consump-

tion in the second best allocation depends on the shape of the inverse marginal utility and

the likelihood ratio function, as equation (8) shows. The same forces are at work in the third

best allocation, as equation (13) shows, but the curvature of absolute risk aversion becomes

an additional factor. This allows us to establish the following sufficient conditions.

Proposition 3 (Sufficient conditions for progressivity/regressivity). Assume that the FOA is

justified and that second best and third best allocations are interior.

(i) If the likelihood ratio function l (y, e) :=
fe(y,e)
f (y,e)

is concave in y and 1
u′

1(c)
is convex in c,

then second best allocations are progressive. If, in addition, absolute risk aversion a(c) is

decreasing and concave, then third best allocations are progressive as well.

(ii) On the other hand, if l (y, e) is convex in y and 1
u′

1(c)
is concave in c, then second best

allocations are regressive. If, in addition, absolute risk aversion a(c) is decreasing and

convex, then third best allocations are regressive as well.

Note that in the previous proposition, consumption is increasing as long as the likelihood

ratio function l (y, e) is increasing in y.

Proposition 3 implies that CARA utilities with concave likelihood ratios lead to progres-

sive schemes, both in the second best and the third best.7 In the second best, progressive

7Other cases where the progressivity/regressivity does not differ between second best and third best are
when a has the same shape as 1/u′

1 (quadratic utility) and when a is linear (and hence increasing).
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schemes are also induced by concave likelihood ratios and CRRA utilities with σ ≥ 1, since
1

u′
1(c)

= cσ is convex in this case. For logarithmic utility with linear likelihood ratios we

obtain second best schemes that are proportional, since 1/u′
1(c) = c is both concave and con-

vex. Interestingly, since absolute risk aversion a(c) = 1/c is convex, third best schemes are

regressive in this case.8

3.1 Rankings of progressivity for linear likelihood ratios

Proposition 3 above studied the curvature of consumption in an absolute sense. However,

we are particularly interested in relative statements that compare the shape of consumption

between second best and third best allocations. The current and the following section will

provide such comparisons. We will find a general pattern for all utility functions with con-

vex absolute risk aversion: when assets are observable (second best), the allocation has a

more concave relationship between labor income and consumption. In other words, observ-

ability of assets calls for more progressivity in the labor income tax system.

In order to formalize this insight, we note that consumption patterns in moral hazard

models are generally obtained as functions of the likelihood ratio l(·, e), see e.g. Holmstrom

(1979). The most common way to measure concavity/progressivity, however, is to study

how consumption changes as a function of income. If likelihood ratios are linear in income,

then the curvature of consumption as a function of the likelihood ratio (the natural outcome

of a moral hazard model) is identical to the curvature of consumption as a function of income

(the typical way of measuring progressivity in the applied literature). In other cases, the

curvatures are related monotonically, but they are not exactly identical. Linear likelihood

ratios are thus a natural starting point for studying progressivity in moral hazard models.

Proposition 4 (Ranking of progressivity). Assume that the FOA is justified and that second best

and third best allocations are interior. Suppose that u1 has convex absolute risk aversion and

that the likelihood ratio l (y, e) is increasing and linear in y. Under these conditions, if the third

best allocation is progressive, then the second best allocation is progressive as well (but not

vice versa). On the other hand, if the second best allocation is regressive, then the third best

allocation is regressive as well (but not vice versa).

Proof. Given validity of the FOA, by equations (8) and (13) the second and third best con-

8More precisely, consumption is characterized by
λq
β c(y)− ξ 1

c(y)
= 1 + µ l(y, e) in this case. Since the left-

hand side is concave in c and the right-hand side is linear in y, the consumption scheme c(y) must be convex
in y.
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sumption schemes csb(y) and ctb(y) are characterized as follows:

gsb
(

csb(y)
)

= 1 + µsb l
(

y, esb
0

)

, where gsb (c) :=
λsbq

βu′
1(c)

, (14)

gtb
(

ctb(y)
)

= 1 + µtbl
(

y, etb
0

)

, where gtb (c) :=
λtbq

βu′
1(c)

− ξtba(c), with ξtb
> 0. (15)

Since l
(

y, etb
0

)

is linear in y by assumption, concavity of ctb is equivalent to convexity of

gtb. Moreover, since a(c) is convex in c by assumption, convexity of gtb implies convexity

of gsb =
(

gtb + ξtba
)

λsb/λtb (but not vice versa). Finally, notice that convexity of gsb is

equivalent to concavity of csb, since l
(

y, esb
0

)

is linear in y. This establishes the first part of

the proposition. The second part can be seen analogously. Q.E.D.

Many well-known probability distributions generate linear likelihood ratio functions as

assumed in Proposition 4. One example is the exponential distribution with mean ϕ(e), or

more generally the Gamma distribution with mean ϕ(e) for any shape parameter k > 0 and

any increasing function ϕ. Another example is the normal distribution with mean ϕ(e) and

fixed variance (truncated to the compact interval [y, y]).9 Moreover, we note that the linear

likelihood property is unrelated to the validity of the first-order approach, since the latter

imposes conditions on the curvature of ϕ, or equivalently on the convexity of u(c, e) as a

function of effort e.

In order to obtain a clearer intuition of Propostion 4, we further examine the planner’s

first-order condition (13), namely

λq

βu′
1(c(y))

= 1 + µ
fe(y, e0)

f (y, e0)
+ ξa(c(y)).

This expression equates the discounted present value (normalized by f (y, e0)) of the costs

and benefits of increasing the agent’s utility by one unit in state y. The increase in utility

costs the planner
q

βu′
1(c(y))

units in consumption terms. Multiplied by the shadow price of

resources λ, we obtain the left-hand side of the above expression. In terms of benefits, first

there is a return of 1, since the agent’s utility is increased by one unit. Furthermore, increas-

ing the agent’s utility also relaxes the incentive constraint for effort, generating a return of

µ
fe(y,e0)
f (y,e0)

.10 Finally, by increasing u1(c (y)) the planner alleviates the savings motive of the

9An example for discrete output spaces is the Poisson distribution with mean e.
10Of course, if the increase in consumption is done in a state with a negative likelihood ratio, this represents

a cost since the incentive constraint is in fact tightened.
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agent. Since the return to one unit of saving in state y is given by u′
1(c (y)), the gain of a unit

increase in u1(c (y)) is measured by ξa(c (y)), where ξ is the multiplier of the agent’s Euler

equation and a(c) = −u′′
1 (c)/u′

1(c). That is, a(c) is the appropriate measure for the gains

of relaxing the Euler equation. In other words, the social gains of deterring the agent from

saving in a given state are proportional to the agent’s absolute risk aversion in that state.

The novel term ξa(·) in the planner’s first-order condition captures the impact of nonob-

servable savings. To gain some intuition, suppose we hold all other parameters and the mul-

tipliers λ and µ as fixed. Then the impact of absolute risk aversion a(·) on the progressivity

of optimal consumption is immediately visible in the planner’s first-order condition. For

CARA utility, or generally whenever absolute risk aversion is linear, the relative reduction

of the agent’s marginal utility per unit of utility, measured by a(c) = −u′′(c)/u′(c), changes

linearly with consumption. For CARA utility, hidden saving therefore affects the level and

slope, but not the curvature of consumption. For the widespread case of convex absolute

risk aversion, however, the first-order condition suggests that the convexity of a(·) raises

the convexity of optimal consumption. This intuition is confirmed by our formal proof that

accounts for the endogeneity of the Lagrange multipliers. For convex absolute risk aversion,

it cannot happen that the third best allocation is progressive while the second best allocation

is not (Proposition 4). This provides a clear sense in which second best allocations are more

progressive than third best allocations.

Another common approach to compare the progressivity/concavity of functions is to

explore concave transformations. Recall that a function f1 is a concave transformation of a

function f2 if there is an increasing and concave function v such that f1 = v ◦ f2.

For the case of logarithmic utility, we are able to rank the progressivity of the second and

third best allocation in the sense of concave transformations.11

Proposition 5 (Logarithmic utility). In addition to the assumptions from Proposition 4, suppose

that u1 is logarithmic. Then second best consumption is a concave transformation of third best

consumption.

Proof. For logarithmic utility, we have u′
1(c) = a(c) = 1/c. By equations (14) and (15), we

can link second best and third best consumption as follows:

λsbq

β
csb(y)− µsb l

(

y, esb
0

)

+ µtbl
(

y, etb
0

)

=
λtbq

β
ctb(y)−

ξtb

ctb(y)
(16)

11For NIARA utilities, we can show more generally that second best consumption is a quasi-concave transfor-
mation of third best consumption. Yet, since consumption is typically monotonic for both cases (see Abraham,
Koehne, and Pavoni, 2011), such a result does not generate a meaningful ranking.
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Since l (y, e0) is linear in y by assumption, equation (14) shows that csb(y) is linear in y.

Hence all expressions on the left-hand side of (16) are linear in y, and hence linear in csb(y).

Since the right-hand side of (16) is concave in ctb(y), the result follows immediately. Q.E.D.

3.2 Rankings of progressivity for nonlinear likelihood ratios

For nonlinear likelihood ratios, progressivity changes come through two separate channels.

First, as pointed out in the analysis of the planner’s first-order conditions for consumption,

the efficient way of relaxing the agent’s Euler equation generates state-dependent returns in

the third best that are proportional to the coefficient of absolute risk aversion. If absolute

risk aversion is nonlinear, this has a direct influence on optimal progressivity. Second, the

implemented effort level may change from the second best to the third best, which means

that the role of income as an effort signal can differ between the two scenarios. This can

indirectly affect progressivity. The remainder of this section will mainly focus on the first

channel. That is, in the spirit of Grossman and Hart (1983), we will analyze how the imple-

mentation of a given effort level e0 depends on the economic environment. All propositions

that follow describe how the curvature of the efficient allocation of consumption changes in

the presence of hidden savings for any given effort level the planner aims to implement in the two

scenarios. Towards the end of the section, we describe how our results hold when we also

take into account changes in the implemented effort levels.

With slight abuse of notation, we denote the consumption allocation that optimally im-

plements a given effort e0 > 0 by (csb
0 , csb(·)) for the scenario with observable saving and by

(ctb
0 , ctb(·)) for the case of hidden saving. As usual, we assume that the FOA is justified and

that second best and third best consumption levels are interior.

For nonlinear likelihood ratios, we can rank the progressivity of allocations in a way that

is very similar to Proposition 4.

Proposition 6. Assume that u1 has convex absolute risk aversion. Then, if ctb is a concave trans-

formation of l(·, e0), then csb is a concave transformation of l(·, e0). On the other hand, if csb

is a convex transformation of l(·, e0), then ctb is a convex transformation of l(·, e0).

The previous result generates a sense in which the consumption scheme implementing

e0 in the case of observable assets is more progressive than the scheme in the case of hidden

assets. This result is analogous to Proposition 4 for the case of nonlinear likelihood ratios.

We can also derive an analogue to Proposition 5. To this end, let us consider the class of
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HARA (or linear risk tolerance) utility functions, namely

u1 (c) = ρ

(

η +
c

γ

)1−γ

with ρ
1 − γ

γ
> 0, and η +

c

γ
> 0.

For this class, absolute risk aversion is a convex function given by a(c) =
(

η + c
γ

)−1
. Special

cases of the HARA class are CRRA, CARA, and quadratic utility.

Lemma 1. Given a strictly increasing, differentiable function u1 : [c, ∞) → R, consider the two

functions defined as follows:

gλ,µ (c) :=
λq

µβu′
1(c)

−
1

µ
,

gλ̂,µ̂,ξ̂ (c) :=
λ̂q

µ̂βu′
1(c)

−
1

µ̂
−

ξ̂

µ̂
a(c).

If u1 belongs to the HARA class with γ ≥ −1, then gλ̂,µ̂,ξ̂ is a concave transformation of gλ,µ

for all λ̂, ξ̂ ≥ 0, λ, µ, µ̂ > 0.

The restriction of γ ≥ −1 in the above result is innocuous to most applications, because

it allows for all HARA functions with nonincreasing absolute risk aversion (γ ≥ 0) as well

as quadratic utility (γ = −1), for instance.

Lemma 1 enables us to rank the progressivity of consumption in the sense of concave

transformations. Recall that the consumption allocations that optimally implement a given

effort are characterized as follows:

gλsb,µsb

(

csb(y)
)

= l (y, e0) , (17)

gλtb,µtb,ξ tb

(

ctb(y)
)

= l (y, e0) . (18)

Due to the link between second best and third best consumption schemes in equations (17)

and (18), Lemma 1 has the following consequence.

Proposition 7. Suppose that u1 belongs to the HARA class with γ ≥ −1. Then there exists a

monotonic function g such that g ◦ csb is a concave transformation of g ◦ ctb. In particular, if

u1 is logarithmic, csb is a concave transformation of ctb.
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Proof. Let g(·) := gλsb,µsb(·) and note that g is an increasing function. By Lemma 1 and

equations (17) and (18), there exists a concave function h such that csb and ctb are related as

follows:

g(csb(y)) = h ◦ g(ctb(y)).

For logarithmic utility, g is an affine function, which implies that the composition g−1 ◦ h ◦ g

is concave whenever h is concave. Hence, for logarithmic utility, csb = g−1 ◦ h ◦ g ◦ ctb is a

concave transformation of ctb. Q.E.D.

Proposition 7 shows that for HARA utilities, csb is a concave transformation of ctb (after

a change of variables). In this sense, optimal consumption is more progressive in the case of

observable savings than in the case of hidden savings for any given effort level the planner

aims to implement. Proposition 7 generalizes Proposition 5 to the class of non-logarithmic

HARA utilities and nonlinear likelihood ratios.12

All our results for nonlinear likelihood ratios generalize when we take into account

changes in the implemented effort levels provided that l
(

l−1
(

y, etb
0

)

, esb
0

)

is concave. The

last condition is satisfied if the likelihood ratio in the third best is a convex transformation

of the likelihood ratio in the second best. In fact, a weaker condition is sufficient. As the

line of proof of Proposition 7 shows, it is sufficient that l
(

·, esb
0

)

◦ l−1
(

·, etb
0

)

◦ h is concave,

where h is a strictly concave function. This condition is satisfied whenever l
(

y, etb
0

)

is “not

too concave” relative to l
(

y, esb
0

)

. How much the curvature of the likelihood ratio differs

between the two scenarios is impossible to predict without detailed knowledge of density

function f (y, e). We will try to make progress on this issue in our quantitative analysis. In

both of our quantitative applications, the likelihood ratio induced by the effort for hidden

assets will be more convex (less concave) than the one for observable assets. Therefore, our

theoretical insights on nonlinear likelihood ratios are, in fact, further strengthened through

the variation of effort between the two allocations.

4 Applications

In this section, we apply our model to study two macroeconomic problems from a quantita-

tive perspective. The quantitative analysis serves multiple purposes. First, we complement

our theoretical results. For example, recall that the theoretical results on nonlinear likeli-

hood ratios compare two allocations that implement the same effort level. In this section,

12The same generalization of Proposition 5 exists for HARA utilities and linear likelihood ratios (allowing
for endogenous effort).
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we allow effort to change between the two scenarios.

Second, we discuss and implement two estimation strategies to recover the fundamental

parameters of our model. In dynamic private information models, the standard strategy is

to use cross-sectional and longitudinal income data to recover the underlying shock process

(see for example Farhi and Werning, 2013, and Golosov, Troshkin and Tsyvinski, 2013) as-

suming that agents face a stylized form of the existing tax and transfer system. Given that

the income process is partially endogenous in our environment, this approach would not

fully identify the deep parameters. In particular, it would not provide sufficient information

about the effect of effort on the distribution of income.

Below, we present two applications showing two very different ways to overcome this

problem. The first approach (see Section 4.1) assumes that the joint distribution of consump-

tion and income is generated by the third-best allocation. The advantage of this approach is

that a single cross section of consumption and income (or consumption and income growth)

suffices to identify all the fundamental parameters. Gayle and Miller (2009) use a similar

identification strategy to estimate dynamic moral hazard models of executive compensation.

The strong assumption behind this approach is that the data is generated by a constrained

efficient allocation. The key advantage is that by using the necessary optimality conditions

all the key parameters of the model are naturally identified.

The second application (see Section 4.2) is based upon the agents’ optimal choices given

the existing system of taxes. Here the difficulty is that identification requires an exogenous

change of the tax system, and data on the income distribution both before and after the tax

reform. For this exercise, we apply our model to a human capital accumulation problem.

Effort is interpreted as the human capital investment decision of young individuals. We

take the Economic Recovery Tax Act of President Reagan in 1981 as an exogenous event

that has changed the incentives for human capital investment. Then, by comparing the ex

post life-time income distributions of cohorts making the investment before and after the tax

reforms, we are able to identify the key parameters of the model.

The third target of this exercise is to evaluate quantitatively how the limited possibility of

taxing capital affects the optimal allocation, and consequently optimal labor income taxes.

We will see that, in both applications, the effect of imperfect asset taxation is considerable.

4.1 Application I: Optimal labor income taxation

For this application, we use the following interpretation of our model: agents face income

shocks, they exert unobservable work effort and they can use a saving technology with a
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gross return given by 1/q̃, where q̃ is the after-tax asset price. In order to estimate the key

parameters of the model, we use consumption and income data and postulate that the data is

generated by a specification of the model where capital income is taxed at an exogenous rate

of 40%. Equivalently, the after-tax asset price is given by q̃ =
q

0.6+0.4q .13 Note that the capital

income tax of 40% is in line with U.S. effective tax rates on capital income as calculated

by Mendoza, Razin and Tesar (1994) and Domeij and Heathcote (2004). We estimate the

key parameters of the model by matching joint moments of consumption and income in an

appropriately cleaned cross-sectional data. We then use the estimated parameters and solve

the (counterfactual) model with perfect capital taxes, assuming full observability/taxability

of capital. The final outcome is a comparison of the optimal labor income taxes between the

two scenarios, with a special attention to the change in progressivity.

Data. We use PSID (Panel Study of Income Dynamics) data for 1992 as adapted by Blun-

dell, Pistaferri and Preston (2008). This data source contains consumption data and income

data at the household level. The consumption data is imputed using food consumption

(measured at the PSID) and household characteristics using the CEX (Survey of Consump-

tion Expenditure) as a basis for the imputation procedure. Household data is useful for two

reasons: (i) Consumption can be credibly measured at the household level only. (ii) Taxa-

tion is mostly determined at the family level (which is typically equivalent to the household

level) in the United States. We will use two measures of consumption: nondurable con-

sumption expenditure and total consumption expenditure, the latter being our benchmark

case.

In our model, we have ex ante identical individuals who face the same (partially endoge-

nous) process of income shocks. In the data, however, income is influenced by observable

factors such as age, education and race. We want to control for these characteristics in order

to make income shocks comparable across individuals. To do this, we postulate the follow-

ing process for income:

yi = φ(Xi)ηi,

where yi is household i’s income, Xi are observable household characteristics (a constant,

age, education and race of the household head), and ηi is our measure of the cleaned income

shock. In order to isolate ηi, we regress log(yi) on Xi. The predicted residual η̂i of this

regression is our estimate of the income shock.

The next objective is to find the consumption function. To be able to relate it to the

13Under the assumption that agents have access to a nonobservable asset with price qn = q̃, the allocation
with a distorted asset price of q̃ coincides with the third best allocation defined in Section 2.2.
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cleaned income measure ηi, we postulate that the consumption function is multiplicatively

separable as well:

ci = g0(Zi)g1
(

φ(Xi)
)

c
(

ηi
)

,

where Zi are household characteristics that affect consumption, but (by assumption) do not

affect income, such as number of kids and beginning of period household assets. Our target

is to identify c (η), the pure response of consumption to the income shock. To isolate this

effect, we first run a separate regression of log(ci) on Xi and Zi. The predicted residual of

this regression is ε̂i. We then use a flexible functional form to obtain c (·). In particular, we

estimate the following regression:

log(ε̂i) =
4

∑
j=0

γj

(

log(η̂i)
) j

.

Hence, in our model’s notation, the estimate of the consumption function is given by

ĉ (y) = exp

(

4

∑
j=0

γ̂j (log(y)) j

)

.

Figure 1 displays the estimated consumption function for both of our measures of consump-

tion. Note that our estimate based on total consumption expenditure displays both signifi-

cantly more dispersion and a higher overall level.

Empirical specification. For the quantitative exploration of our model, we move to a for-

mulation with discrete income levels. We assume that we have N levels of second-period

income, denoted by ys, s = 1, . . . , N, with ys > ys−1. This implies that the density function

of income, f (y, e), is replaced by probability weights ps(e), with ∑
N
s=1 ps(e) = 1 for all e. For

the estimation of the parameters, we impose further structure. We assume

ps(e) = exp(−ρe)πl
s + (1 − exp(−ρe))πh

s ,

where πh and πl are probability distributions on the set {y1, . . . , yN} and ρ is a positive

scalar. In addition to tractability, this formulation has the advantage that it satisfies the

requirements for the applicability of first-order approach.14

14Note that we do not need to impose the monotone likelihood ratio (MLR) property, because in the proof
of the validity of the first-order approach we only need monotone consumption (see Abraham, Koehne and
Pavoni (2011) for details). And as Figure 1 shows, this is given to us by the data. Note that MLR is a sufficient
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Figure 1: Estimated consumption functions

In order to account for heterogeneity in the data, we allow for heterogeneity in the initial

endowments, specify a unit root process for income shocks, and choose preferences to be

homothetic. In particular, we assume:

u (c, e) =

[

cα (v (T − e))1−α
]1−σ

α (1 − σ)
with 1 > α > 0 and σ ≥ 1,

where v is a concave function, α ∈ (0, 1) and σ > 0.15

Proposition 8. Consider the following family of homothetic models with heterogeneous agents:

max
ci

0,ci
s,ei

0

∑
i

ψi











[

(

ci
0

)α (
v
(

T − ei
0

))1−α
]1−σ

α (1 − σ)
+ β ∑

s

ps

(

ei
0

)

[

(

ci
s

)α
(v (T))1−α

]1−σ

α (1 − σ)











but not necessary condition for monotone consumption. Nevertheless, as expected, our estimated likelihood
ratios will exhibit MLR, that is the estimated probability distributions satisfy: πh

s /πl
s increasing in s.

15Where, obviously, when σ = 1 we assume preferences take a logarithmic form.
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s.t. ∑
i

(

yi
0 − ci

0

)

+ q ∑
i

∑
s

ps

(

ei
0

) [

yi
s − ci

s

]

≥ G;

−
1 − α

α

v′
(

T − ei
0

)

v
(

T − ei
0

)

[

(

ci
0

)α (

v
(

T − ei
0

))1−α
]1−σ

= β ∑
s

p′s

(

ei
0

)

[

(

ci
s

)α
(v (T))1−α

]1−σ

α (1 − σ)
;

q̃

[

(

ci
0

)α (
v
(

T − ei
0

))1−α
]1−σ

ci
0

= β ∑
s

ps

(

ei
0

)

[

(

ci
s

)α
(v (T))1−α

]1−σ

ci
s

;

with β ∈ (0, 1) , and q̃, q > 0. Moreover, assume income follows: yi
s = yi

0ηs. For each given

vector of income levels in period zero
(

yi
0

)

i
> 0 and any scalar κ > 0, let the Pareto weights

(ψi)i be such that the solution to the above problem delivers period zero consumption c∗i
0 = κyi

0

for all i. Then there exists t∗ ∈ R and individual specific transfers ti = t∗yi
0 such that G = ∑i ti

and the solution to the above problem is

c∗i
0 = κyi

0 for all i;

e∗i
0 = e∗0 for all i;

c∗i
s = c∗i

0 ε∗s for all i;

where e∗0 and ε∗s are a solution to the following normalized problem:

max
εs,e0

[

(v (T − e0))
1−α
]1−σ

α (1 − σ)
+ β ∑

s

ps (e0)

[

(εs)
α (v (T))1−α

]1−σ

α (1 − σ)
;

s.t.
1

κ
− 1 + q ∑

s

ps (e0)
[ηs

κ
− εs

]

≥ t∗;

−
(1 − α)

α

v′ (T − e0)

v (T − e0)

[

(v (T − e0))
1−α
]1−σ

= β ∑
s

p′s (e0)

[

(εs)
α (v (T))1−α

]1−σ

α (1 − σ)
;

q̃
[

(v (T − e0))
1−α
]1−σ

= β ∑
s

ps (e0)

[

(εs)
α (v (T))1−α

]1−σ

εs
.

A few remarks are now in order. It should typically be possible to find a vector of Pareto

weights (ψi)i such that the postulated individual specific transfers ti = t∗y0 are indeed op-

timal. However, because of potential non-concavitites in the Pareto frontier, it is difficult to

establish such a result formally. We abstract from this subtlety and simply take the existence
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of such Pareto weights as given for our analysis. Intuitively, the Pareto weights ψi are de-

termined by income at time 0. This dependence can be seen as coming from past incentive

constraints or due to type-dependent participation constraints in period zero.

Proposition 8 is useful for our empirical strategy for at least two main reasons. First,

the proposition suggests that within our empirical model, we are entitled to use the income

and consumption residuals computed above as inputs in our estimation procedure. More

precisely, the proposition suggests that we can use the values ε̂i and η̂i as consumption in-

puts regardless of the actual value of ci and yi. In principle, according this proposition, we

could go even further and use residual income and consumption growth in our analysis to

identify shocks. We have decided not to follow that approach for two reasons. First, it re-

quires imposing further structure on the consumption functions and on the income process.

Second, and more importantly, measurement error is known to be large for both income and

consumption. This would be largely exacerbated by taking growth rates.

The other key advantage of the homothetic model is that we can estimate the probability

distribution and all other parameters assuming that effort does not change across agents,

hence the first-order conditions and expectations are evaluated at the same level of effort

e∗0 .16

Estimation. It will be convenient to reparametrize and simplify our utility function as

u(c, e) =
c1−γ (1 − e)γ−σ

1 − γ
with γ < σ and γ ≥ 1 and 1 − γ = α(1 − σ). (19)

This formulation has the advantage that γ directly measures the coefficient of risk aversion

and the period utility is given by c1−γ

1−γ after the first period.

As a first step, we fix some parameters. First, we set q = .96 to match a yearly real

interest rate of 4%, which is the historical average of return on real assets in the USA. We

then set the coefficient of relative risk aversion for consumption to 3, that is γ = 3, in line

with recent estimation results by Paravisini, Rappoport, and Ravina (2010).17 We normalize

the total time endowment to one (T = 1) and choose v to be the identity function. For

the income process, we set N = 20 and choose the medians of the 20 percentile groups

of cleaned income for the income levels η1, ..., η20. To be consistent with this choice and

16Of course, this also implies that we will partially rely on functional forms for identification.
17We provide a sensitivity analysis with respect to the risk aversion parameter. Our results are qualitatively

the same for the range of risk aversions between one and four, but the differences between the two scenarios
are more pronounced if risk aversion is larger.

23



with Proposition 8 we set y0 = 1. For expositional simplicity, we assume κ = 1 and hence

c∗0 = y0. Note that Proposition 8 implies that for any level of κ we can obtain the optimal

consumption allocation by simply rescaling the consumption allocation of this benchmark.

The only parameter we need to adjust is t∗ or equivalently government consumption G∗.

Given the fixed parameters, we determine the preference parameters (β, σ), the effort

technology parameter ρ, and the probability weights
{

πh
s , πl

s

}N

s=1
that determine the likeli-

hood ratios. We estimate these parameters using a method of moments estimator to match

specific empirical moments for consumption and income in the data. The optimality condi-

tions of the model give us a sufficient number of restrictions to estimate all the parameters.

In particular, we use the planner’s optimality conditions for first and second period con-

sumption, the planner’s optimality condition for effort, and the agent’s optimality condi-

tions for effort and assets. Finally, we obtain the parameter G∗ for government consumption

as a residual of the estimation procedure implied by the government’s budget constraint.

Further details on the estimation strategy are provided in Appendix B.

Constrained efficient allocations. We use the preset and estimated parameters of the above

model (exogenous capital taxes) to determine the optimal allocation for the counterfactual

scenario with perfect capital taxes—assuming full observability/taxability of capital. Fig-

ure 2 displays second-period consumption for this scenario together with the consumption

function of the benchmark. It is obvious from the picture that the level of second-period

consumption is higher in the case with limited/exogenous capital taxes (tax rate on capital

income of 40%). This is not surprising, given that perfect capital taxes in general imply front-

loaded consumption (Rogerson 1985, Golosov et al. 2003). Note that perfect capital taxes are

associated with an Inverse Euler equation, whereas the scenario with limited capital taxes is

characterized by a standard Euler equation. By inspecting the planner’s optimality condi-

tion for consumption (13) we note that the Euler equation generates an additional positive

return on the right-hand side (ξa(·) > 0). Intuitively, holding the other multipliers and pa-

rameters fixed, this term suggests that the marginal consumption utility in the second period

is lower, and consumption thus higher, in the case with limited capital taxes.

We also observe that, since consumption is concave for the two scenarios, optimal la-

bor income taxes are progressive for both allocations. To compare the progressivity across

the two scenarios quantitatively, we use −c′′(y)/c′(y) to measure the progressivity of con-

sumption.18 If the progressivity measure of an allocation is uniformly higher than that of a

18In addition to the obvious analogy to absolute risk aversion, the advantage compared with the concavity
measure c′′(y) is that it makes functions with different slopes c′(y) more comparable.
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Figure 2: Optimal consumption with perfect and limited capital taxation

second allocation, the first allocation is a concave transformation of the second (assuming

that both allocations are monotonically increasing). On Figure 3, we have plotted this mea-

sure of progressivity for the optimal consumption scheme when capital taxes are limited and

when they are perfect. The pattern is clear: the model with perfect capital taxes results in a

uniformly more concave (progressive) consumption scheme compared with the case when

capital taxes are limited. The differences are particularly large for lower levels of income.

We have quantified these graphical observations and have checked the robustness to

alternative levels of risk aversion in Table 1. The results are qualitatively the same for all risk

aversion levels, but there are significant quantitative differences. In particular, the difference

between the two models is increasing in the level of risk aversion. The difference between

the two progressivity measures is negligible for logarithmic utility, but quite large for the

other three cases (ranging between 20 and 100 percent). Note that the change in measured

progressivity is coming from two sources. First, as Figure 2 shows, the concavity of the

optimal consumption function c(y) changes. Second, the distribution of income changes, as

effort is different under perfect capital taxes compared with the benchmark case. For this

reason, we calculate the measure of progressivity both with and without this second effect

(endogenous vs. exogenous weights). Comparing the first and second rows of Table 1, we
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Figure 3: Income tax progressivity with perfect and limited capital taxation

notice that the changing effort mitigates the increase in progressivity in a non-negligible

way only for higher risk aversion levels. This also implies that effort is indeed higher when

perfect capital taxes are levied. In turn, higher effort implies a higher weight on high income

realizations where the progressivity differences are lower (see Figure 3). In any case, this

second indirect effect through effort is small and hence the difference in the progressivity

measure is still increasing in risk aversion.

We obtain a similar message if we consider the welfare losses due to limited capital taxa-

tion in consumption equivalent terms (presented in row 7 of Table 1). The losses are negligi-

ble for the logarithmic case, considerable for the intermediate cases, and very large for high

values of risk aversion.

We have also displayed the implied capital wedges, calculated as τK = 1 − q/q̃, where

q̃ is the after-tax asset price in the perfect taxation scenario. Notice that τK is indeed the

tax rate on the gross return, not on capital income. The 40 percent tax on capital income in

the benchmark model is equivalent to a capital wedge of 1.6 percent. It turns out that the

capital wedges in the perfect taxation scenario are much higher than this number for all risk

aversion levels, including log utility. The wedges are actually implausibly high. Even in the
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log case, they imply a tax rate on capital income of around 90 percent.19 For our benchmark

value of risk aversion, the implied tax rate on capital income is around 1,000 percent.20 It is

difficult to imagine how such distortionary taxes can be ever implemented in a world where

alternative savings opportunities (potentially with lower return) are available that are not

observable and/or not taxable by the government.

Table 1: Quantitative measures of progressivity,

welfare losses and capital wedges

Risk aversion 1 2 3 4

Average measure of progressivity (−c′′(y)/c′(y))

Perfect K tax (endog. weights) 0.670 0.800 0.963 1.102

Perfect K tax (exog. weights) 0.670 0.804 0.978 1.141

Limited K tax (40% on K income) 0.644 0.644 0.644 0.644

Welfare loss from limited capital tax (%)

0.035 0.295 1.309 3.372

Perfect capital wedge (%)

τK = 1 − q/q̃ 3.74 20.10 39.69 55.18

We can get some intuition why the differences are increasing in the coefficient of relative

risk aversion γ by examining the optimality condition for consumption for our specification:

q

β
λ∗(ε∗s )

γ − ξ∗
γ

ε∗s
= 1 + µ∗ρ

exp(−ρe∗0)
(

πh
s − πl

s

)

ps(e∗0)
for i = 1, ..., N.

The direct effect of limited capital taxation is driven by ξ∗a(ε∗s ). Note that the higher is γ,

the higher is the discrepancy between the Euler equation characterizing the limited capital

taxation case and the inverse Euler characterizing the perfect capital taxation case. This will

imply that ξ∗ is increasing with γ. Moreover, absolute risk aversion is given by a(ε∗s ) = γ/ε∗s ,

which is also increasing in γ. Hence the effect of hidden asset accumulation (or limited

capital taxes) is increasing in risk aversion for both of these reasons. The larger discrepancy

between the Euler and inverse Euler equations also explains that the capital taxes must rise

with risk aversion in order to make these two optimality conditions compatible. The same

19Golosov, Troshkin and Tsyvinski (2013) study a dynamic Mirrlees model with logarithmic utility and per-
fect observability of assets. The capital wedges (and the associated capital income taxes) are similar to the
ones we find for the logarithmic case. Farhi and Werning (2013) study a similar Mirrlees model with logarith-
mic utility and obtain tax rates on capital income that are smaller than ours. In their calibration, the private
information friction seems to be less severe.

20Recall that the capital wedge τK is equivalent to a tax rate on capital income given by t = τK/(1 − q).
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Figure 4: Likelihood ratio function implied by the estimated parameters of the labor income
taxation model

argument explains why the welfare costs of limited capital taxation are increasing in risk

aversion.

As another robustness check, we examine in Appendix C how the results change if we

use nondurable consumption as our measure of consumption. With nondurable consump-

tion, we again have a significant increase in progressivity when we impose perfect capital

taxes. This once more implies a sizeable welfare gain and a highly implausible tax rate

on capital. The only difference is quantitative: all these properties are somewhat less pro-

nounced. For example, the increase in progressivity is 25 percent, whereas it is around 50

percent in the benchmark case. The general message is that whenever the overall level of

insurance is higher (consumption responds less to income shocks), imperfect observabil-

ity/taxability of capital tends to have a smaller effect.

Finally, we examine the role of endogenous effort for the change in progressivity. Figure

4 plots the likelihood ratio function implied by the estimated parameters. We note that the

likelihood ratio function becomes more concave for higher effort levels. Moreover, effort

in the second best allocation (perfect capital taxes) is higher than in the third best (limited

capital taxes). Hence, the change of the likelihood ratio contributes to the lower degree

progressivity in the third best. Note that this effect goes in the same direction as our insights
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on the convex cross-sectional returns of relaxing the Euler equation. Therefore, the change

in effort between the second- and third-best reinforces our theoretical results concerning the

progressivity of the consumption allocations.

4.2 Application II: Human capital accumulation

For this application of the model, we interpret effort e as a human capital investment of

the young (between age 16 and 22). We rely on a broad interpretation of investment which

includes formal education, on-the-job training and learning-by-doing. In line with our the-

oretical model, we assume that these early decisions affect the distribution of life-time in-

come agents face later in their life. Naturally, the shape of the tax system—in particular, its

progressivity—is going to matter for this decision. We use this observation to identify our

parameters.

In 1982 and 1983, the US tax system became significantly less progressive due to Pres-

ident Reagan’s Economic Recovery Tax Act of 1981. This fact is documented in the paper

of Gouveia and Strauss (1994), for instance. Gouveia and Strauss approximate the US tax

system with a flexible functional form for a number of consecutive years using administra-

tive (tax return) data. Their analysis shows a large drop in progressivity for the years of

1982 and 1983 and then a stabilization of the tax system. The parameter estimates of Gou-

veia and Strauss have been used by several studies on tax progressivity (e.g., Conesa, Kitao

and Krueger, 2009). Guner, Kaygusuz and Ventura (2014) used a similar methodology and

obtained that the progressivity of the US tax system roughly remained the same until 2000.

The key assumption for our analysis is that the tax reform was not anticipated. This

implies that those agents who had already made their effort (human capital investment)

decisions (the ‘old’) assumed that the tax system would remain the same throughout their

working life. On the other hand, agents who were still ‘young’ when the reform was intro-

duced, assumed that the new tax system would remain in place for the rest of their working

life. Assuming that no other key element of the environment has changed, the differences in

(realized cross-sectional) gross life-time income distributions identify the effect of effort on

the distribution of life-time income of the individuals.

Below, we first apply our benchmark setup to the human capital investment model.

Then, we present the data and the estimation process. Finally, we perform counterfactual

exercises to quantitatively evaluate the effect of asset observability.
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The human capital model. For this application, we assume agents live for T + 1 periods.

In period 0, they are young, receive an endowment y0, exert human capital effort e0, and

make a borrowing/saving decision. At the beginning of period 1, they learn the realiza-

tion of their life-time income and they determine their optimal consumption path for the

remaining T periods. This assumption can be interpreted as no uncertainty and no binding

constraints after period 1.21 As a consequence, the human capital model is an application of

our general setup and periods 1 to T correspond to period 1 of the original setup. In partic-

ular, we will denote by y the gross life-time income of agents. We assume the same structure

and functional form for the probability weights ps(·) as in the previous subsection for ex-

positional simplicity. We will use the same homothetic preferences as before as well (see

equation (19)).

In the model, agents make optimal human capital accumulation decisions taking as given

the existing capital and labor income taxes. The choice of the optimal path of consumption

from period 1 onwards is the solution of the following simple deterministic problem:22

V
(

ỹ
j
s + bj

)

= max
{ct}

T
t=1

T

∑
t=1

βt−1 c
1−γ
t

1 − γ
s.t.

T

∑
t=1

q̃t−1ct = ỹ
j
s + bj for all 1 ≤ s ≤ N and j = 1, 2.

where q̃ is the after-tax price of savings, ỹ
j
s is the net life-time income associated with gross

life-time income ys and tax system j, and bj is the amount of assets individuals bring into

period 1 given tax system (cohort) j, where j ∈ {1, 2}.

The problem of the agent at time 0 is hence given by:23

max
e,b

(y0 − q̃b)1−γ (1 − e)γ−σ

1 − γ
+ β

N

∑
s=1

ps(e)V
(

ỹ
j
s + b

)

.

Since agents of different cohorts face different mappings from gross to net life-time incomes,

the model induces different effort choices between the two cohorts. This results in different

21Another interpretation is that they will learn only their expected life-time income in period 1, but there are
complete financial markets from period 1 onwards.

22It is easy to see that

V
(

ỹ
j
s + bj

)

= Γ

(

ỹ
j
s + bj

)1−γ

1 − γ
, where Γ =

1 −

(

β
(

β
q̃

)1/γ
)T

1 − β
(

β
q̃

)1/γ











1 − q̃
(

β
q̃

)1/γ

1 −

(

q̃
(

β
q̃

)1/γ
)T











1−γ

.

23Note that we assume that agents have identical initial income y0 at t = 0.
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distributions of gross life-time income, which are given by

ps(e
j) = πh

s + exp(−ρej)
(

πl
s − πh

s

)

for all s. (20)

Notice that

ps(e
2)− ps(e

1) =
(

exp(−ρe1)− exp(−ρe2)
) (

πh
s − πl

s

)

. (21)

Equation (21) provides the main intuition of our identification: given ρ, for any two effort

levels e1 and e2 taken by the individuals of different cohorts, the difference between the

life-time income distributions identifies the difference between the two base probability dis-

tributions πh
s and πl

s for all s. Then, from equation (20) we can recover the actual value of

these probabilities.

Estimation strategy and data. Our estimation strategy has two main elements. Some pa-

rameters we set exogenously. This includes both some normalizations and some parameters

where we can use external information. The remaining parameters are directly estimated

using the structural model described above.

We set exogenously the following parameters. We consider N = 20 levels of life time

income. We consider one period as five years and set T = 8. We set the intertemporal

discount price to q = (1/1.04)5, which corresponds to a pre-tax rate of return of 4 percent

annual. The after-tax asset price is q̃ = 0.885 and corresponds to a 40 percent tax on interest

income.24 The coefficient of relative risk aversion is set at γ = 3 as before. The remaining

parameters are the vectors Θ := (ρ, β, σ, y0) and {πl
s, πh

s }
S
s=1. These parameters are set by

matching the life-time income distributions from the NLSY79 data and the (average) level

of effort given by the American Time Use Surveys 1985.25 Further details on these moments

are provided in Appendix D.

The identification procedure requires data on the dispersion of life-time utilities of two

cohorts. For this, we need to find individuals who made their effort (human capital invest-

ment decisions) before the tax reform has happened. We will label this cohort as the old

group. We also need to find a group of individuals who made their key effort decision after

the reform was implemented. We need to observe these individuals for a long enough time

to be able to compute a relatively reliable measure of life-time income. Luckily, the 1979

wave of the National Longitudinal Survey of the Youth (NLSY79) will satisfy these require-

ments. The sample contains a large set of individuals who are between 14 and 22 in 1979.

24Formally we set q̃ = q
0.6+0.4q . This corresponds to a capital wedge τK = 1 − q/q̃ of 7.1 percent.

25We thank Mark Aguiar for providing us with the data they have compiled for Aguiar and Hurst (2007).
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We consider as the young group those who were between 14 and 18 in 1979 (17 and 21 in

1982) and we consider the old group as the ones who were between 19 and 22 in 1979 (22

and 25 in 1982). This way we maximize the sample size, as we use all cohorts.2627

After having obtained the annual income data for all individuals for every year (when

the agent was alive), we calculate the discounted present value of gross and net life-time in-

come. For discounting, we use the sequence of the nominal interest rates. Note that this also

corrects for inflation. For the calculation of net life-time income, we first compute the ‘hypo-

thetically expected’ net annual income by applying the tax functions estimated by Gouveia

and Strauss (1994). In particular, for the old cohort, we use the 1981 tax parameters for all

years; for the young cohort, we use the 1983 parameters. This choice is in line with our key

identifying assumption: when the old group made their human capital effort decision they

expected the old tax system to remain in place. In contrast, the young group expected the

new tax system to be in place for all their life time. At this point, we compute the inflation-

corrected discounted present value of both gross and net life-time income for all individuals

at the age of 23. To make this comparable across age groups, we do two further adjustments.

We adjust both for inflation and GDP growth using 1980 as the base year. We perform the

growth adjustment to filter out any secular growth in wages, which is supposed to be inde-

pendent of the choice of human capital effort.

In our model, agents are homogenous: given the exerted effort level, they all face the

same income distribution. In the data, however, agents have different ability which can

directly affect their life-time income. One of the attractive features of the NLSY79 data is

that it contains a measure of ability, the AFQT score. It is also known that race may affect

earnings through some form of discrimination. For these reason, we clean the data from

variations due to race and ability.28

Recall that taxes have become less progressive due to the tax reform. This can be seen

graphically by comparing the implied tax rates for the two cohorts on Figure 5. It is clear

from the picture that the younger cohort has faced significantly lower taxes for medium and

high level of incomes. In our environment, this should have created increased incentives to

exert effort. If this is the case, we should see a shift in the distribution of life-time income

towards higher realizations for the second cohort. Figure 6 displays the two distributions.

The distribution of life-time income of the young group is indeed shifted towards higher

incomes and first-order stochastically dominates the distribution of life-time income of the

26The results do not change in a significant way if we use stricter definitions of the two groups.
27We summarize the main steps of the data processing for the NLSY79 data in Appendix D.
28We provide details on the regressions in Appendix D.
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Figure 5: Implied average tax rates on life-time income for the two cohorts

old group.

For our estimation procedure, we define 20 income groups as the percentile groups of

the distribution of gross life-time income of the old cohort. We use the (flat) probability

density function of the old cohort together with a fitted probability density function for the

young group as inputs for the estimation. The means of the 20 percentile groups of the old

cohort provide the support for the discrete representation of life-time income distribution.

This gives us the income vector {ys}
20
s=1. Then we calculate for both groups the associated

net life-time income levels as ỹ
j
s =

∑i ỹ
j
i,s

∑i y
j
i,s

ys, where ỹ
j
i,s is the net life-time income of an agent

i from group j (old or young) whose gross life-time income belongs to the s-th percentile

group of the gross life-time income distribution of the old.

Constrained efficient allocations. Given the estimated parameters, we calculate the op-

timal allocation of consumption and effort for both hidden and observable asset accumu-

lation. As before, for the second best, we assume that the planner can use capital income

taxation without limitations and there are no hidden saving opportunities. For the third

best, we assume that there are hidden storage opportunities, with an implied discount price
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Figure 6: The estimated cumulative distribution of gross life-time income for the two co-
horts. Note: Normalized income is defined as the annuatized (one period is five years)
value of life time income in 10,000$ of 1980.

of qn = q̃.

The optimal allocation in this environment is qualitatively very similar to the benchmark

setup. Note that there is no uncertainty or any friction for periods 1, . . . , T, hence consump-

tion will evolve deterministically depending on the ratio q/β. This implies that we can ex-

press both the life-time utility and the present discounted value of total consumption as a

function of c1. We can write the planner’s problem as:29

max
(c,e0)

c
1−γ
0 (1 − e0)

γ−σ

1 − γ
+ βΓ1 ∑

s

c
1−γ
s

1 − γ
ps (e0)

29Here we have, for i = 1, 2, Γi =
1−Γ̂T

i

1−Γ̂i
where Γ̂1 = β

(

β
q

)(1−γ)/γ
and Γ̂2 = q

(

β
q

)1/γ
.
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subject to y0 − c0 + q ∑
s

(ys − csΓ2) ps (e0)− G ≥ 0

−
γ − σ

1 − γ
c

1−γ
0 (1 − e0)

γ−σ−1 + ρ exp{−ρe0}βΓ1 ∑
s

c
1−γ
s

1 − γ
∆πs ≥ 0

q̃c
−γ
0 (1 − e0)

γ−σ − β ∑
s

c
−γ
s ps (e0) ≥ 0.

Of course, the second best solves the same problem without imposing the last constraint.30

We are now ready to investigate the effect of asset observability on the optimal alloca-

tions. Similar to the previous application, we make these comparisons based on consump-

tion (in period 1) and using the measure of progressivity introduced in the previous subsec-

tion. Figure 7 displays the optimal allocation of period-1 consumption under hidden and

observable assets. We observe the same pattern as before: the allocation under hidden as-

sets is clearly less concave, implying that the associated income taxes are less progressive.

As before, we find that the difference in progressivity is shrinking in (life-time) income.

However, in this application the difference in progressivity is of a smaller magnitude.31 In

Table 2, we provide some quantitative measures for the comparison between these two al-

locations. Note that although the difference in progressivity is smaller, the welfare gains of

asset observability and the capital wedge have a very similar magnitude as in the previous

application.

Table 2: Quantitative measures of progressivity,

welfare loss and capital wedge (risk aversion=3)

Average progressivity (−c′′(y)/c′(y))

Perfect K tax (observable assets) 0.173

Limited K tax (hidden assets) 0.154

Welfare loss (%) 1.478

Perfect capital wedge (%)

τK = 1 − q/q̃ 48.29

30Note that our estimation procedure above delivers the implied value of government consumption as the
discounted expected (average) difference between gross and net life-time income of the young cohort: G =

q ∑
N
s=1 ps(e2) (ys − ỹs).

31The estimated likelihood ratio function for this application exhibits the same qualitative pattern as that
displayed in Figure 4, but the effect of effort on the curvature of the likelihood ratio in y is smaller.
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Figure 7: Optimal period-1 consumption with perfect and limited capital taxation

4.3 Summary of the quantitative results

We have provided two simple quantitative applications to explore the effect of asset observ-

ability on the progressivity of optimal taxes. On the one hand, these two applications were

different in terms of the identification strategy, the data we used and in terms of their eco-

nomic interpretation. On the other hand, they used similar (and standard) functional forms.

Despite all these differences, we got very similar qualitative results. (i) Hidden assets will

lead to an optimal tax scheme which is considerably less progressive. (ii) The welfare costs

of hidden assets are significant. (iii) The model with observable assets requires implausibly

high taxes on capital (or capital income).

We also note that in both applications (and under both asset observability scenarios) the

optimal income taxes are significantly more progressive than actual taxes. This observation

probably indicates that actual governments face additional constraints in addition to moral

hazard and unobserved assets. Potential candidates for these additional frictions could be

income tax evasion and political economy constraints. The potential interaction of these

frictions with moral hazard and hidden assets is left for future research.
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5 Concluding remarks

This paper analyzed how limitations to capital taxation change the optimal tax code on labor

income. Assuming preferences with convex absolute risk aversion, we found that optimal

consumption moves in a more convex way with labor income when asset accumulation can-

not be perfectly controlled by the planner. In terms of our decentralization, this implies

that taxes on labor income become less progressive when limitations to capital income tax-

ation are binding. We complemented our theoretical results with a quantitative analysis

based on two different estimation strategies. The first one used individual level U.S. data

on consumption and income. The second one relied on a U.S. tax reform that affected the

progressivity of labor income taxes.

The model we presented here is one of action moral hazard, similar to Varian (1980) and

Eaton and Rosen (1980). The framework has the important advantage of tractability. Al-

though a more common interpretation of this model is that of insurance, we believe that it

conveys a number of general principles for optimal taxation that also apply to models of

ex-ante redistribution. While the standard Mirrlees model focuses on the intensive margin

(with notable exceptions, e.g., Chone’ and Laroque, 2010), the model we consider here fo-

cuses on the extensive margin. The periodic income y is the result of previously supplied

effort and is subject to some uncertainty. Natural interpretations for the outcome y include

the result of job search activities, the monetary consequences of a promotion or a demotion,

i.e., of a better or worse match (within the same firm or into a new firm), or for self-employed

individuals y can be seen as earnings from the entrepreneurial activity. It would not be dif-

ficult to include an intensive margin into our model in t = 1. Suppose, for simplicity, the

utility function takes an additive separable form u1 (c) − v (n) , where n represents hours

of work. If we now interpret y as productivity, total income becomes I = yn. Clearly, our

analysis would not change a bit if both y and I were observable, while the case where the

government can only observe I is that of Mirrlees (1971).32

32In this case, the intensive-margin incentive-constraints would take the familiar form:
dc(y)

dy u′
1 (c (y)) =

v′(n(y))
y

dI(y)
dy . The analysis of the intensive margin is standard. If we assume no-bunching, the validity of the

FOA for effort, and use the envelope theorem, we obtain the formula for third-best allocations as:

qλ

βu′ (c (y))
= 1 + µl (y; e) + ξa (c (y))−

dφ(y)
dy

β f (y; e)
, (22)

where the multiplier associated to the intensive-margin incentive-constraint φ (y) is related to the Spence-

Mirrlees condition and the labor supply distortion, and it satisfies φ
(

y
)

= φ (y) = 0. The comparison between

the case with restricted and unrestricted capital taxation amounts again to considering the cases with ξ > 0 and
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Appendices

A Proofs omitted from the main text

Proof of Proposition 2. Fix qn. From the Kuhn-Tucker theorem we have ξ ≥ 0. If ξ > 0, we are done. If ξ = 0,

then the first-order conditions of the Lagrangian read

λ

u′
c(c0, e0)

= 1 + µ
u′′

ec(c0, e0)

u′
c(c0, e0)

,

λq

βu′
1(c(y))

= 1 + µ
fe(y, e0)

f (y, e0)
, y ∈ [y, y].

Since f (y, e) is a density, integration of the last line yields

∫ y

y

λq

βu′
1(c(y))

f (y, e0) dy = 1.

Using µ ≥ 0 and the assumption u′′
ec ≥ 0, we obtain

λ

u′
c(c0, e0)

≥ 1 =
∫ y

y

λq

βu′
1(c(y))

f (y, e0) dy ≥
λq

β
∫ y

y u′
1(c(y)) f (y, e0) dy

,

where the last inequality follows from Jensen’s inequality. This inequality is in fact strict, because the agent

cannot be fully insured when effort is interior. Since we have λ > 0 from the previous condition, we conclude

β

∫ y

y
u′

1(c(y)) f (y, e0) dy > qu′
c(c0, e0). (23)

Clearly, exactly the same allocation delivering condition (23) is obtainable for all qn by ignoring the agent’s

Euler equation. If we now define q̄ > q such that

β

∫ y

y
u′

1(c(y)) f (y, e0) dy = q̄u′
c(c0, e0),

it is immediate to see that whenever qn
< q̄ the allocation we obtained above ignoring the agent’s Euler

equation is, in fact, incompatible with (11), hence we must have ξ > 0. Q.E.D.

Proof of Proposition 3. We only show (i), since statement (ii) can be seen analogously. Define

g(c) :=
λq

βu′
1(c)

− ξa(c).

By concavity of u, 1
u′

1(·)
is increasing. Therefore, if 1

u′
1(·)

is convex and ξ = 0 (or ξ > 0 and a(·) decreasing and

concave), then g(·) is increasing and convex. Given the validity of the FOA, equation (8) (or equation (13),

respectively) shows that second best (third best) consumption schemes are characterized as follows:

g (c(y)) = 1 + µ l (y, e0) ,
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where, by assumption, the right-hand side is a positive affine transformation of a concave function. By apply-

ing the inverse function of g(·) to both sides, we see that c (·) is concave since it is an increasing and concave

transformation of a concave function. Q.E.D.

Proof of Proposition 6. The first-order conditions for consumption imply

gsb
(

csb(y)
)

= 1 + µsb l
(

y, esb
0

)

, (24)

gtb
(

ctb(y)
)

= 1 + µtbl
(

y, etb
0

)

, (25)

where the functions gsb and gtb are defined as in (14) and (15), respectively. First, suppose that ctb is a concave

transformation of l (y, e) . Since the right-hand side of (25) is a positive affine transformation of l (y, e), this is

equivalent to the condition that gtb is convex. Now, since a(c) is convex by assumption, convexity of gtb is

sufficient (but not necessary) for gsb (c) =
(

gtb(c) + ξtba(c)
)

λsb/λtb being convex as well. Finally, using (24)

we note that gsb is convex if and only if csb is a concave transformation of l (y, e).

The second part of the proposition follows from similar arguments by exploiting the fact that concavity of

gsb is sufficient (but not necessary) for concavity of gtb if absolute risk aversion is convex. Q.E.D.

Proof of Lemma 1. Simple algebra shows

gλ̂,µ̂,ξ̂(c) =
µλ̂

λµ̂
gλ,µ(c) +

1

µ
−

1

µ̂
−

ξ̂

µ̂
a(c).

If u belongs to the HARA class, we obtain

a(c) =

(

qγλ

β(1 − γ)ρ(1+ µgλ,µ(c))

)1/γ

.

Defining κ := (qγ)1/γ(β(1 − γ)ρ)−1/γ
> 0, this implies

gλ̂,µ̂,ξ̂(c) =
µλ̂

λµ̂
gλ,µ(c) +

1

µ
−

1

µ̂
−

ξ̂

µ̂
λ1/γκ(1 + µgλ,µ(c))

−1/γ.

Equivalently, we have gλ̂,µ̂,ξ̂(c) = h
(

gλ,µ(c)
)

, where the function h is defined as

h (g) =
µλ̂

λµ̂
g +

1

µ
−

1

µ̂
−

ξ̂

µ̂
λ1/γκ(1 + µg)−1/γ.

The second derivative of h with respect to g equals −ξ̂(1 + γ)κλ1/γµ2µ̂−1γ−2(1 + µg)2−1/γ, which is negative

whenever γ ≥ −1. Q.E.D.

Proof of Proposition 8. The linear separability of the planner’s problem implies that, given individual trans-

fers ti, the optimal allocation must solve the following individual contracting problem:

Vi = max
ci

0,ci
s,ei

0

ψi











[

(

ci
0

)α (
v
(

T − ei
0

))1−α
]1−σ

α (1 − σ)
+ β ∑

s

ps

(

ei
0

)

[

(

ci
s

)α
(v (T))1−α

]1−σ

α (1 − σ)
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s.t. yi
0 − ci

0 + q ∑
s

ps

(

ei
0

) [

yi
0ηs − ci

s

]

≥ ti;

−
(1 − α)

α

v′
(

T − ei
0

)

v
(

T − ei
0

)

[

(

ci
0

)α (

v
(

T − ei
0

))1−α
]1−σ

= β ∑
s

p′s

(

ei
0

)

[

(

ci
s

)α
(v (T))1−α

]1−σ

α(1 − σ)
;

q̃

[

(

ci
0

)α (
v
(

T − ei
0

))1−α
]1−σ

ci
0

= β ∑
s

ps

(

ei
0

)

[

(

ci
s

)α
(v (T))1−α

]1−σ

ci
s

,

with ψi
> 0. Because preferences are homothetic, the incentive constraints depend only on εi

s = ci
s/ci

0 and ei
0.

We can hence change the choice variables and rewrite the individual contracting problem as

Vi = max
ci

0,εi
s,ei

0

ψi
(

ci
0

)α(1−σ)











[

(

v
(

T − ei
0

))1−α
]1−σ

α (1 − σ)
+ β ∑

s

ps

(

ei
0

)

[

(

εi
s

)α
(v (T))1−α

]1−σ

α (1 − σ)











s.t. yi
0 − ci

0 + q ∑
s

ps

(

ei
0

) [

yi
0ηs − ci

0εi
s

]

≥ ti;

−
(1 − α)

α

v′
(

T − ei
0

)

v
(

T − ei
0

)

[

(

v
(

T − ei
0

))1−α
]1−σ

= β ∑
s

p′s

(

ei
0

)

[

(

εi
s

)α
(v (T))1−α

]1−σ

α(1 − σ)
;

q̃

[

(

v
(

T − ei
0

))1−α
]1−σ

= β ∑
s

ps

(

ei
0

)

[

(

εi
s

)α
(v (T))1−α

]1−σ

εi
s

.

Now fix some individual j. By continuity we can find a transfer tj such that the solution (c
j∗
0 , e

j∗
0 , ε

j∗
s ) to the

associated individual problem satisfies c
j∗
0 = κy

j
0. By non-satiation of preferences, tj is given by

tj = y
j
0 − κy

j
0 + qy

j
0 ∑

s

ps

(

e
j∗
0

) [

ηs − ε
j∗
s κ
]

=: y
j
0t∗.

We claim that transfers defined as ti := yi
0t∗ imply that for all i the contract

ci∗
0 = κyi

0,

ei∗
0 = e

j∗
0 , and

εi∗
s = ε

j∗
s ,

solves the individual contracting problem. Suppose the claim is false for some i. By the construction of trans-

fers, the contract (κyi
0, e

j∗
0 , ε

j∗
s ) is incentive-feasible. Hence if the claim is false the value Vi must be strictly

higher than the one generated by (κyi
0, e

j∗
0 , ε

j∗
s ).
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This implies

Vi
> ψi

(

κyi
0

)α(1−σ)



















[

(

v
(

T − e
j∗
0

))1−α
]1−σ

α (1 − σ)
+ β ∑

s

ps

(

e
j∗
0

)

[(

ε
j∗
s

)α
(v (T))1−α

]1−σ

α (1 − σ)



















=
ψi
(

κyi
0

)α(1−σ)

ψj
(

κy
j
0

)α(1−σ)
V j.

On the other hand, the contract (ci∗
0 y

j
0/yi

0, ei∗
0 , εi∗

s ) is incentive-feasible for the individual contracting problem

V j. Hence we get

V j ≥ ψj

(

ci∗
0 y

j
0

yi
0

)α(1−σ)










[

(

v
(

T − ei∗
0

))1−α
]1−σ

α (1 − σ)
+ β ∑

s

ps

(

e
j∗
0

)

[

(

εi∗
s

)α
(v (T))1−α

]1−σ

α (1 − σ)











=
ψj
(

y
j
0

)α(1−σ)

ψi
(

yi
0

)α(1−σ)
Vi.

Taken together, the two inequalities imply Vi
> Vi, a contradiction. Q.E.D.

B Estimation of the labor income taxation model

Given the fixed parameters, the first group of remaining parameters of the model are the effort technology

parameter ρ and the probability weights
{

πh
s , πl

s

}N

s=1
that determine the likelihood ratios. Our target moments

for these parameters are ps(e∗0) = 1/20 for all s, where e∗0 is the optimal effort, and ε∗s = ĉ (ηs) , where ε∗s is the

optimal consumption innovation in the model with an exogenous capital income tax rate of 40 per cent, i.e.,

with q̃ =
q

0.6+0.4q .

Since the probabilities πl
s and πh

s each sum up to one, we have N − 1 parameters each. Moreover, we have

to estimate the parameter ρ. To summarize, we have to estimate 2N − 1 parameters and use the following

2N − 1 model restrictions for these parameters:

ps(e
∗
0) = exp(−ρe∗0)π

l
s + (1 − exp(−ρe∗0))π

h
s for s = 1, ..., N − 1, (26)

q

β
λ∗(ε∗s)

γ = 1 + µ∗ρ
exp(−ρe∗0)

(

πh
s − πl

s

)

ps(e∗0)
+ ξ∗

γ

ε∗s
for s = 1, ..., N, (27)

where (27) is the necessary first-order condition for the optimality of second period consumption. Notice that

these equations also include e∗0 , λ∗, µ∗ and ξ∗. Moreover, we have not yet set the parameters σ and β either.

The parameter α is chosen such that the equilibrium level of effort e∗0 equals 1/3, which is roughly the average

fraction of working time over total disposable time in the United States. Given risk aversion γ, the parameter

α determines a value for σ due to the restriction 1 − γ = α(1 − σ). Also notice that, given ps(e∗0) = 1/20 and
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ε∗s = ĉ (ηs) for all s, if we sum equation (27) across income levels using weights as ps(e∗0) = 1/20 we obtain

q

β
λ∗ 1

20

20

∑
s=1

ĉ (ηs)
γ = 1 +

ξ∗γ

20

20

∑
s=1

1

ĉ (ηs)
. (28)

Consequently, the data implies a further restriction between the parameters and endogenous variables (β, σ, λ∗, ξ∗),

which we impose directly.

For the remaining variables/parameters, we use the following four optimality conditions, which we re-

quire to be satisfied exactly. First, we have the normalized Euler equation (c∗0 = 1 is substituted in all subse-

quent equations):

q̃ (1 − e∗0)
γ−σ = β

N

∑
s=1

ps (e
∗
0) (ε

∗
s )

−γ . (29)

Then, we can use the first-order incentive compatibility constraint for effort,

γ − σ

1 − γ

(1 − e∗0)
γ−σ

1 − e∗0
= βρ exp(−ρe∗0)

N

∑
s=1

(

πh
s − πl

s

) (ε∗s)
1−γ

1 − γ
, (30)

and the normalized first-order conditions for c∗0 ,

λ∗

(

1 − e∗0
)γ−σ = 1 − ξ∗ q̃γ−µ∗ γ − σ

(1 − e∗0)
, (31)

together with the planner’s first-order optimality condition for effort

qλ∗ ∑
s

p′s (e
∗
0) (ηs − ε∗s) +µ∗

(

β ∑
s

p′′s (e
∗
0)
(ε∗s )

1−γ

1 − γ
−

(γ − σ)(γ − σ − 1)

1 − γ
(1 − e∗0)

γ−σ−2

)

+ (32)

+ξ∗

(

−β ∑
i

p′s(e
∗
0)ε

−γ
s − q̃(γ − σ) (1 − e∗0)

γ−σ−1

)

= 0.

Finally we obtain from the government’s budget constraint the implied government consumption as a function

of aggregate income as

G∗ = q

(

∑
i

γyi
0

)

N

∑
s=1

ps(e
∗
0)(ηs − ε∗s ). (33)

Here we have used y0 − c∗0 = 0, the unit root process of income and Proposition 8.

C Robustness exercise for the labor income taxation model: nondurable

consumption data

As another robustness check, we examined how the results would change if we use nondurable consumption

as our measure of consumption. As we have seen in Figure 1, the main difference between the two consump-

tion measures is that nondurable consumption is less dispersed (the average slope is significantly lower). Table

3 contains the average measures of progressivity, capital wedges and the welfare losses of limited capital taxa-
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tion for the benchmark risk aversion case. With nondurable consumption, we again have a significant increase

in progressivity when we impose perfect capital taxes. This once more implies a sizeable welfare gain and an

implausibly high tax rate on capital.

Table 3: Different consumption measures

Risk aversion = 3 nondurable total expenditure

Average measure of progressivity (−c′′(y)/c′(y))

Perfect K tax (endog. weights) 0.849 0.963

Perfect K tax (equal weights) 0.853 0.978

Limited K tax (40% on K income) 0.687 0.644

Welfare loss from limited capital tax (%)

0.434 1.309

Perfect capital wedge (%)

τK = 1 − q/q̃ 27.03 39.69

Hence, we can conclude that the following three main points of our analysis are robust to different mea-

sures of consumption (and to different levels of risk aversion). (i) Limited (as opposed to perfect) capital

taxation leads to less progressive optimal income taxes. (ii) There are significant welfare losses due to limited

capital taxation. (iii) The perfect capital taxes are implausibly high.

D Estimation of the human capital model

Given the preset parameters, we estimate the remaining parameters by matching moments. The set of param-

eters to be estimated is represented by the following two vectors: Θ := (ρ, β, σ, y0) and {πl
s, πh

s }
S
s=1. First of all,

as we explain in the main text, given e1, e2, and ρ, we can recover the baseline probability vectors {πl
s, πh

s }
S
s=1

using (20) and (21) by matching the life-time income distribution of the two cohorts. This is what we do: we

match the two life-time income distributions exactly. However, it is easy to see that conditions (20) and (21)

do not suffice to guarantee that the values for πl
s, πh

s represent probabilities. This will be true only for certain

values of ρ, e1, and e2. We hence look for the values of the parameters Θ such that:

a) The baseline probability vectors {πl
s, πh

s }
S
s=1 match exactly the lifetime income distributions of both

cohorts and satisfy the following set of inequalities: 0 ≤ πh
s ≤ 1 and 0 ≤ πl

s ≤ 1 for all s.

b) Neither cohort saves in period zero, that is c
j
0 = y0 for both cohorts.33

c) The sum of squares of the following five moment restrictions is minimized:

1 & 2) The two effort first-order conditions for j = 1, 2:

0 =
γ − σ

1 − γ
c

1−γ
0

(

1 − ej

)γ−σ−1
− βρ exp(−ρej)

N

∑
s=1

(

πh
s − πl

s

)

V
(

ỹ
j
s + bj

)

(34)

33Note that this implies that neither the value V
(

ỹ
j
s + bj

)

nor the associated consumption plan depend on

the agent’s choice variables (effort, saving), but only on data of life-time after-tax income.
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3 & 4) The Euler equation satisfied with equality for the first, and the Euler equation satisfied possibly

with inequality for the second cohort:34

0 = c
−γ
0 (1 − e1)

γ−σ −
β

q̃

N

∑
s=1

ps(e1)c
−γ
s,1 (35)

0 = min

{

0, c
−γ
0 (1 − e2)

γ−σ −
β

q̃

N

∑
s=1

ps(e2)c
−γ
s,2

}

(36)

5) The distance between effort of 16–22 year old individuals in the data (American Time Use Surveys

1985; see below for further details) and arithmetic average effort in the model.

Next, we summarize the main steps of the data processing for the NLSY79 data. Given that the sample

period is characterized by a large increase in female labor force participation and a large reduction of the

male-female wage gap (which our model abstracts from), we focus on males.

The main step of the procedure is the computation of (realized) individual life-time income in the sample.

This required some imputations of annual income for some years for some individuals. First, the survey was

conducted every year until 1994, but then only biannually between 1996 and 2010, so we need to impute annual

income for the missing years. For these cases, we have used linear interpolations. Second, the individuals

in the sample were between 45 and 53 years in 2010, so we need to impute their income for the remaining

years before retirement. Due to time discounting, income in the period close to retirement has only a modest

quantitative effect on life-time incomes and human capital investments. We assumed that earnings remain at

the same level after the last available data point until the agent reaches age 65. Finally, there is some missing

income data; here we used linear interpolation of available income data.

As we explain in the main text, from the annual income data for every agent for every year (when the agent

was alive), we calculate the discounted present value of gross and net life-time income using the sequence of

the nominal interest rates to discount future values. The net life-time income has been computed using the

‘hypothetically expected’ net annual income by applying the tax functions estimated by Gouveia and Strauss

(1994). In particular, we used the 1981 tax parameters for the old cohort and the 1983 parameters for the young

cohort. We have thus calculated the inflation-corrected discounted present value of both gross and net life-time

income for all individuals at the age of 23. To make this comparable across age groups, we adjusted both for

inflation and GDP growth using 1980 as the base year. Moreover, we performed the growth adjustment to filter

out any secular growth in wages.

One of the attractive features of the NLSY79 data is that it contains a measure of ability, the AFQT score.

We have run regressions of the following form:

log(yi) = α + β′Xi + ε i and log(ỹi) = ν + β̃′Xi + ui, (37)

34This will effectively imply that the first cohort is just indifferent between saving and borrowing but the
second cohort is borrowing constrained in equilibrium. Given the properties of the tax reform, it is easy to see
indeed that the desire to save is always higher for the first cohort.
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where yi (ỹi) is the gross (net) life-time income of individual i. The independent variables include the AFQT

score and dummies for blacks and hispanics. Then the cleaned measures of lifetime income are obtained as

Yi = exp
(

α + β′X̄ + ε̂ i

)

and Ỹi = exp
(

ν + β̃′X̄ + ûi

)

,

where ε̂ i and ûi are the predicted residuals of the regressions in (37) and X̄ contains the mean values of the

independent variables.

Our estimation also uses a data moment on the level of effort exerted by young agents. The NLSY79 does

not provide any direct information on the effort devoted to human capital investment. For this reason, we

used actual time use data from the American Time Use Surveys to calculate average effort. We use core market

work time (this variable excludes work related but not human capital enhancing time use such as commuting

and meal breaks) and education as the measure of human capital effort for the 16–22 age group. The time

use survey closest to the tax reform was conducted in 1985 and we used this survey for our data target. The

average share of time spent on core market work and education in the 1985 survey equals 0.21.
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