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Motivation

I How costly are high levels of government debt?

I Should the gov’t try to reduce its initial high debt? If so, how
quickly?

I How should tax rates, transfers, and government debt respond
to aggregate shocks?



Motivation

Analysis with complete markets is well known:

I Smooth distortionary costs of raising revenue

I Labor taxes are (approximately) constant

I Arrow securities used to finance all expenditure needs

Our focus: Markets less than fully complete and there are limits
to redistribution



Key ingredients

I Heterogeneity: Agents are heterogeneous in productivities
and assets

I Instruments: A tax system that is linear in labor income and
an intercept that is uniform across agents

I Markets: All agents trade a single security whose payoff
might depend on aggregate shocks

Characterize optimal tax rate, transfers and asset purchases



Findings: Theory

I Welfare depends on distribution of asset positions across
agents.

I Gross levels of debt do not matter

I Ergodic distribution and speed of convergence of debts and
taxes depend on:

I Spanning ability: More correlated returns imply faster
convergence and smaller spread in debts and taxes.

I Redistribution concerns: Higher welfare weights on poor
agents imply lower asset accumulation.

Analytical results for quasilinear preferences and some extensions
to more general preferences



Findings: Quantitative

Exercise:

I Calibrate to match U.S. inequality in assets and earnings

I Match two business cycle features:

I Earning drops are larger for poor agents in recessions

I Realized returns on government assets are uncorrelated with
output

Findings:

I Cyclical properties of optimal policies consistent with existing
U.S. policies

I Key difference: Under optimal allocation debt is repaid
much slower
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Environment

I Uncertainty: Markov aggregate shocks st

I Demography: N types of infinitely lived agents (mass ni )

I Technology: Output
∑

i niθi ,t li ,t is linear in labor supplies.

I Preferences (Households)

E0

∞∑
t=0

βtU i (ci ,t , li ,t)

I Preferences (Planner): Given Pareto weights {ωi}

E0

∑
i

ωi

∞∑
t=0

βtU i
t (ci ,t , li ,t)

I Asset markets: A risky bond with payoffs Pt = P(st |st−1)



Environment, II

I Affine Taxes: Agent i ’s tax bill

−Tt + τtθi ,t li ,t

I Budget constraints Let Rt−1,t = Pt
qt−1

I Agent i : ci,t + bi,t = (1− τt) θi,t li,t + Rt−1,tbi,t−1 + Tt

I Government: gt + Bt + Tt = τt
∑

i niθi,t li,t + Rt−1,tBt−1

I Market Clearing

I Goods:
∑

i nici,t + gt =
∑

i niθi,t li,t

I Assets:
∑

i nibi,t + Bt = 0

I Initial conditions: ({bi ,−1,B−1}i , s−1)



Ramsey Problem

Definition
Allocation, price system, government policy: Standard

Definition
Competitive equilibrium: Given ({bi ,−1}i ,B−1, s−1) and
{τt ,Tt}∞t=0, a competitive equilibrium is an allocation and price
system such that households are optimizing and markets clear

Definition
Optimal competitive equilibrium: A welfare-maximizing
competitive equilibrium for a given ({bi ,−1}i ,B−1, s−1)

Recursive Fromulation



Irrelevance of initial debt

Define net assets : b̃i ,t = bi ,t − b1,t

Proposition

For any pair of initial distributions
(
{b′i ,−1}i ,B ′−1

)
and(

{b′′i ,−1}i ,B ′′−1

)
b′i ,−1 − b′1,−1 = b′′i − b′′1,−1

the welfare at the optimal allocations are the same.

Normalize assets of least productive agent to zero.



Optimal policy: Instruments and active channels

I Respond to aggregate shocks using:

1. Fluctuations in asset returns

2. Taxes, transfers

I Main considerations:

1. Degree of market completeness

2. Concerns for redistribution

Use quasi-linear setting to derive analytical results



Quasilinear setting

I Assume:

1. Quasi Linear preferences :u(c , l) = c − l1+γ

1+γ

2. 2 types of agents with θ1 > θ2 = 0

3. IID aggregate shocks to expenditures

4. c2,t ≥ 0

I Disentangles spanning and redistribution concerns:

Lemma
Let (ω, n) be the Pareto weight and mass of the productive agents.

If ω > n
(

1+γ
γ

)
then Tt = 0 ∀t ≥ 0.

Low redistribution concerns, use only fluctuations in assets returns
to hedge the aggregate risk.



Degree of market incompleteness

Decompose the set of payoff vectors: P ≡ P∗ ∪ P∗c where

P∗ =

{
P∗(s) : P∗(s) = 1 +

β

B∗
(g(s)− Eg) for some B∗ ∈ [B,B]

}

Payoffs P∗ ∈ P∗ perfectly hedge fluctuations in net-of interest
deficits at debt level B∗ :

B∗(P) = β
var(g(s))

cov(P∗(s), g(s))
.



Invariant distribution: for ω > n
(

1+γ
γ

)
Proposition
The behavior of government assets under a Ramsey plan is characterized
as follows:

1. If P ∈ P∗ then government assets converge to a degenerate steady
state

lim
t
Bt = B∗(P) a.s ∀B−1.

There is τ∗(P) such that limt τt = τ∗(P) a.s ∀B−1.

2. If P(s) 6∈ P∗ there exists an invariant distribution of government
assets with the property,

∀ε > 0, Pr{Bt < B + ε and Bt > B − ε i .o} = 1.

There is a τ(B) such that the tax rate τt = τ̂(Bt) and τ̂ ′ < 0.



Approximation to ergodic distribution

I For P(s) ∈ P∗, we can replicate complete markets perfectly
asymptotically with assets B∗(P)

I Use this to construct an approximation for the ergodic
distribution of debt and taxes of an economy with P(s)
“close” enough to P∗.

I In particular split P(s)

P(s) = P̂(s) + P∗(s)

where P∗(s) ∈ P∗ and P̂(s) is orthogonal to g(s).

Linearize policy rules around P̂ = 0 and study the properties of the
ergodic distribution generated by such rules.

More



Ergodic distribution

Proposition
For an economy with payoffs P(s), the linearized policy rules induce a
ergodic distribution of government debt with

I Mean: The ergodic mean of asset distribution, E(B), satisfies

E(B) = B∗(P∗)

I Variance: The ergodic coefficient of variation of government assets
B is

σ(B)

E(B)
≤

√
var(P̂(s))

var(P∗(s))

I Convergence rate: The rate of convergence to of the mean to its
ergodic value is described by,

Et−1(Bt − B∗) =
1

1 + var(P)corr2(P, g)
(Bt−1 − B∗)



Ergodic Distribution
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Figure: Ergodic distribution for government assets Bt and the labor tax rate τt
in the representative agent quasilinear economy for three different asset payoff
vectors P.



Redistribution concerns: for ω < n
(

1+γ
γ

)
Proposition

If P 6∈ P∗ and mins{P(s)} > β, there exist a B(ω) satisfying
B′(ω) > 0 and we have two cases:

1. If B−1 > B (ω) then

Tt > 0, τt = τ∗(ω), and Bt = B−1 ∀t ≥ 0.

2. If B−1 ≤ B (ω) then

Tt > 0 i.o., lim
t
τt = τ∗(ω) and lim

t
Bt = B(ω) a.s.

More cases when P ∈ P∗ since we have two absorbing points.



Remarks

I Balancing costs of fluctuations in tax rates and transfer

I fluctuations in taxes is costly: deadweight loss

I fluctuations in transfers is costly: deviations from target level
of redistribution

I For large ω transfers are costly as the planner gives resources
to unproductive agents

I For low ω, transfers are used:
I For low initial debt, interior solution: All shocks hedged by

transfers

I For high debt, accumulate assets until costs of transfers are
equalized to costs of collecting labor taxes

I The more redistributory the planner is:

I bigger average tax rates and transfers

I less need to accumulate assets for precautionary reasons



Risk aversion

I Endogenous fluctuations in returns as prices depend on
marginal utility

I However, same general flavor as quasi-linear economy

I cost of fluctuations in transfers comes from cost of fluctuation
in Uc ⇐⇒ similar to multiplier on constraint c ≥ 0 in
quasi-linear case

I Similar spanning considerations if we redefine

P̃(s) = P(s)Uc (s)
EUc (s)P(s)

bit−1

β
Pt = c it − Tt − (1− τt)θi,t li,t + bit

More



Risk aversion

I Endogenous fluctuations in returns as prices depend on
marginal utility

I However, same general flavor as quasi-linear economy

I cost of fluctuations in transfers comes from cost of fluctuation
in Uc ⇐⇒ similar to multiplier on constraint c ≥ 0 in
quasi-linear case

I Similar spanning considerations if we redefine

P̃(s) = P(s)Uc (s)
EUc (s)P(s)

x it−1

β

PtU
i
c,t

Et−1PtU i
c,t

= U i
c,t(c

i
t − Tt) + U i

l,t l
i
t + x it

Where x it = U i
c,tb

i
t

More



Quantitative Exercise

Need to take a quantitative stand on

I Degree of market incompleteness: Payoff structure

I Dynamics of inequality: Skill shocks

Use U.S data on

I Cross sectional distribution of labor earnings, wealth: Levels
and movements over business cycle

I Realized returns on government assets

Key challenge: Earnings, returns etc. are endogenous in the
model



Quantitative Exercise: Strategy

1. Compute a competitive equilibrium with tax-debt policies
fitted to observed US policies

2. Use endogenous outcomes in the competitive equilibrium to
calibrate:

I changes in skill distribution: match changes in distribution
of earnings over the business cycle

I payoff shocks: match how realized returns co move with
output

3. Set Pareto weights such that optimal taxes are similar to
those observed in data

4. Solve for the Ramsey allocation



Competitive equilibrium: Tax-Debt policy rules

I Policy rules for tax and debt:

logDt = (1− ρD,D) log D̄ + ρD,D logDt−1 + ρD,Y logYt ,

τt = (1− ρτ,τ )τ̄ + ρτ,ττt−1 + ρτ,Y logYt ,

I Estimate using market value of U.S. federal debt, average
marginal tax rates from TAXSIM.

I Transfers obtained as a residual from budget constraint

Parameter Value Parameter Value

D̄ 0.6 (.006) τ̄ 0.24 (0.002)
ρD,D 0.411 (0.17) ρτ,τ 0.20 (0.18)
ρD,Y -0.72 (0.45) ρτ,Y 0.02 (0.09)

Table: OLS estimates for tax and debt policy rules. The numbers in
brackets are standard errors.



Quantitative Exercise: Primitives

I Use 9 types of agents: Capture 10th-90th deciles of working
U.S. population

I Initial asset inequality to match net asset distribution [SCF,
1978-2010].

I Shocks:
I Aggregate productivity:

εt = ρεεt−1 + σθεθ,t ,

I Skill distribution:

log θi,t = log θ̄i + εt [1 + (.9−Q(i))m]

I Asset payoffs:
pt = 1 + χεθ,t + σpεp,t

εp,t , εθ,t are i.i.d standard normal
I Pareto weights set to match average optimal tax rate to 24%

ωi = d0 + d1θ̄i .



Solution Method

I In non-stochastic limit: distribution of individual states
constant.

I Approximate policy rules locally using perturbation theory

I Around current distribution of individual states

I Create an approximation to the global solution using a
sequence of local approximations.

I Computation time grows linearly in the number of agents

More



Outcomes under optimal policy: Long run



Long run properties: Comparative statics

Implications from QL theory:

1. Speed of convergence is faster when payoffs are more volatile
or correlated with fundamentals

2. The spread of ergodic distribution debt and taxes increases
with the variance of the orthogonal component in payoffs.

3. More redistributive planners accumulate fewer assets



Long run properties: Speed of convergence

Figure: The dashed, bold and dotted lines plot conditional mean paths for debt to
gdp and tax rates for a common sequence of shocks at different values of χ that
generate Corr [UcP, ε] = {−0.551,−0.394(benchmark),−0.242} and
Corr [R, y ] = {−0.23,−0.051(benchmark), 0.13}respectively.



Speed of convergence: Back-of-the-envelope-calculation

How informative is the QL formula? Use P̃(s) = UcP(s)
EUc (s)P(s)

Half Life(B) =
log(0.5)

log
(

1
1+var[P̃]corr2[P̃,εθ]

)
I Formula predicts a half life of about 2000 years

I Numerical simulations of quantitative model: Half life of debt
is about

I 1000 periods for the benchmark calibration σP = 0.031

I 2000 periods if we shut down the orthogonal component
σP = 0

I Role of second-order terms that are absent in the formula



Long run properties: Spread of debt, taxes

Figure: Ergodic distribution of the debt to gdp ratio and tax rates for
σP = 0 (dashed line), and σP = 0.031 (bold line).



Long run properties: Redistribution and mean assets
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Figure: Long run debt as a function of α: Higher α represent higher
weights on productive agents.



Outcomes under optimal policy: Short run



Impulse Responses - Taxes

Figure: Impulse responses to tax rates to a negative one standard
deviation aggregate productivity shock εθ,t



Impulse Responses - Debt

Figure: Impulse responses to debt-gdp ratio to a negative one standard
deviation aggregate productivity shock εθ,t



Impulse Responses - Transfers

Figure: Impulse responses to transfers-gdp ratio for a negative one
standard deviation aggregate productivity shock εθ,t



Takeaways

I Taxes are essentially smooth, both in data and optimal
allocation

I Debt is repaid much slower under the optimal allocation

I Transfers as a residual adjust faster in data relative to the
optimal allocation and overshoot

I In absence of inequality shocks, model implies correlation of
transfers with output has opposite sign.



Conclusion

I Size of government debt alone is not informative =⇒ need to
know the net distribution of assets in the economy

I How payoffs correlate with fundamentals important in
determining long run policies

I Ignoring heterogeneity produces misleading results about size
and direction of the optimal policy response



Bellman Equation: Quasilinear

V (B ) = max
{c1(s),c2(s),l1(s),B(s)}s

∑
s

π(s)

{
ω

(
c1(s)−

l1(s)1+γ

1 + γ

)
+ (1− ω)c2(s) + βV (B(s))

}

where the maximization is subject to

c1(s)− c2(s)− n−1B(s) = l1(s)1+γ − n−1β−1P(s)B ,

nc1(s) + (1− n)c2(s) + g(s) = nθl1(s),

c2(s) ≥ 0,

B ≤ B(s) ≤ B.



Bellman Equation: Risk Aversion

V (x ,ρ, s ) = max
{a(s),x′(s),ρ′(s)}

∑
s

π(s|s )

([∑
i

ωiU
i (s)

]
+ βV (x ′(s),ρ′(s), s)

)

where the maximization is subject to

U I
c (s) [ci (s)− cI (s)]+

(
U i
l (s)li (s)

U i
c (s)

U I
c (s)− lI (s)U I

l (s)

)
+x ′i (s) =

xiU
i
c (s)P(s)

βEU i
cP

for all s, i < I

Es PU i
c

Es PU I
c

= ρi for all i < I

U i
l (s)

θi (s)U i
c (s)

=
U I
l (s)

θI (s)U I
c (s)

for all s, i < I

∑
i

nici (s) + g(s) =
∑
i

niθi (s)li (s) ∀s

ρ′i (s) =
U i
c (s)

U I
c (s)

for all s, i < I

Back



Ergodic distribution: Linear approximation

I For a given P(s), g(s), we can compress the equilibrium
conditions to two functions b(µ ) and a law of motion µ(s|µ )

I Instead of approximating near a deterministic steady state we,

I explicitly recognize that policy rules depend on payoffs:
µ(s|µ , {P(s)}s) and b(µ , {P(s)}s)

I take the first order expansion with respect to both µ and
{P(s)} around the vector (µ̄, {P̄(s)}s) where P̄(s) ∈ P∗:

I The choice of P̄(s) is pinned down by

min
P̃∈P∗

∑
s

π(s)(P(s)− P̃(s))2.

I The law of motion approximated by

µt − µ∗ = (µt−1 − µ∗)B(st) + C (st)

back



Accuracy: Short Run (ρ = 3)
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Accuracy: Short Run (ρ = 3.3)
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Accuracy: Long Run

Back



Ramsey problem: Recursive formulation

Split into two parts

1. t ≥ 1: Ex-ante continuation problem with state variables
(x ,ρ, s )

x = β−1
(
U2
c,t−1b̃2,t−1, ...,U

I
c,t−1b̃I ,t−1

)
ρ =

(
U2
c,t−1/U

1
c,t−1, ...,U

I
c,t−1/U

1
c,t−1

)

2. t = 0: Ex-post initial problem with state variables (b̃−1, s0)



Bellman Equation for t ≥ 1

V (x ,ρ, s ) = max
ci (s),li (s),x′(s),ρ′(s)

∑
s

Pr(s|s )

([∑
i

πiαiU
i (s)

]
+ βV (x ′(s),ρ′(s), s)

)

where the maximization is subject to

U i
c (s) [ci (s)− c1(s)]+U i

c (s)

(
U i
l (s)

U i
c (s)

li (s)−
U1
l (s)

U1
c (s)

l1(s)

)
+βx ′i (s) =

xiP(s|s )U i
c (s)

Es U i
cP

for all s, i ≥ 2

Es PU i
c

Es PU1
c

= ρi for all i ≥ 2

U i
l (s)

θi (s)U i
c (s)

=
U1
l (s)

θ1(s)U1
c (s)

for all s, i ≥ 2

∑
i

nici (s) + g(s) =
∑
i

niθi (s)li (s) ∀s

ρ′i (s) =
U i
c (s)

U1
c (s)

for all s, i ≥ 2

x i (s; x ,ρ, s ) ≤ xi (s) ≤ x̄i (s; x ,ρ, s )



Bellman equation for t = 0

V0

(
{b̃i,−1}Ii=2, s0

)
= max

ci,0,li,0,x0,ρ0

∑
i

πiαiU
i (ci,0, li,0) + βV (x0, ρ0, s0)

where the maximization is subject to

U i
c,0

[
ci,0 − c1,0

]
+ U i

c,0

(
U i
l,0

U i
c,0

li,0 −
U1
l,0

U1
c,0

l1,0

)
+ βxi,0 = U i

c,0b̃i,−1P(s0) for all i ≥ 2

U i
l,0

θi,0U
i
c,0

=
U1
l,0

θ1,0U
1,0
c

for all i ≥ 2

∑
i

nici,0 + g0 =
∑
i

niθi,0li,0

ρi,0 =
U i
c,0

U1
c,0

for all i ≥ 2
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