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1 Introduction

Heterogeneous agent models, or more precisely incomplete-insurance market models, are now

used for in many fields of economics, to study households inequality or firm heterogeneity for

instance. Various algorithms are now used to solve these models with aggregate shocks, what

is still a challenge. In addition, tools are missing to solve for optimal policies without and with

aggregate shocks. Such tools would allow to understand distortions in these economies and

provide normative insight about business cycle management.

In this paper, we present a simple theory of a projection on the space of idiosyncratic histories.

It allows to improve on current algorithm to solve these models with aggregate shocks, such as

Reiter (2009). In addition, this theory provides tools to derive optimal policies both at the

steady state and with aggregate shocks.

The basic idea is the following, in heterogeneous agent models, agents are different because

they have different histories of uninsurable idiosyncratic shocks. One can use a time-invariant

partition of these histories P such that each agent, at each period, belongs to one and exactly

one element of this partition. The key aspect is the proper choice of the partition. An explicit

partition is used in LeGrand and Ragot (2017), based on a truncation of idiosyncratic histories

for the last N periods. Each agent having the history of the idiosyncratic shock for the last N

period are in the same element of P. Implicit partitions can be provided using Reiter (2009)

methodology, which is to use the steady-state distribution of wealth to identify agents: Defining

a partition in the support of the distribution of wealth one implicitly define elements of the

partition P as the histories generating amount of in the same partition of wealth. The Bewley

model can then be approximated following the finite elements of the partition P instead of

infinite support of the distribution of the Bewley model.

The interest of this construction is threefold. First, constructing the projection, we show

that it improves on current algorithm using projection methods to solve model with aggregate

shocks. It indeed allows to use extract more information about the steady-state distribution

of the Bewley model to simulate the economy with aggregate shocks. Heterogeneity in Euler

equations with each elements of the partition P is captured by a new parameter, improving the

algorithm. For instance, we show that a standard economy with uninsurable employment risk

and aggregate technology shock is accurately simulated with only 22 agents. In addition, this

construction provides a simple algorithm to solve models with time-varying idiosyncratic risk,

which is a difficult task with other algorithms.
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Second and more importantly, this construction allows deriving optimal Ramsey program

with aggregate shocks. The basic idea is the following, one can use tools developed in dynamic

contract, namely Marcet and Marimon (2011) applied on elements of the partition P, to derive

first-order conditions for the planner. These conditions are then easy to simulate with aggregate

shocks. In these economies, the difficult part is to find the steady state of the optimal Ramsey

policies (and check that this interior solution is consistent with second order conditions). The

projection techniques provides a simple algorithm using information from a general Bewley

model, to show the convergence of the instrument of the planner. We apply this methodology

to a simple problem, the time-varying provision of public good in a economy with uninsurable

employment risk and aggregate productivity shock, where the public good is financed by a

non-distorting tax on labor. This example is, on purpose, the simplest one to present the

methodology and to discuss the difference between complete and incomplete markets.

A third interest of this construction is to provide a theoretical representation of algorithm

using projections methods. The gain is that equations, such as the first-order conditions of the

planner, are easy to understand economically. This helps to identify the effects in these very

complex models.

This paper is mainly related to two strands of the literature. The first one is one the

computation of incomplete insurance markets with aggregate shocks. The second one, much

smaller, is on optimal Ramsey policies in these models. After the seminal paper of Krusell and

Smith (1998), incomplete insurance market models with aggregate shocks have first been solved

using a fixed point on simple rules to form expectations, moments to introduce at elements used

to approximate rational expectations have generated a literature on approximate aggregation.

After the work of Reiter (2009) and Algan, Allais, and Den Hann (2010) the literature has

moved toward projection methods to first simplify the distribution of wealth and then simulate

the model. These techniques are now used in various setups, to solve discrete time models

Winberry (2016) or models first written in continuous time or Ahn, Kaplan, Moll, Winberry,

and Wolf (2017). In this literature, our contribution is to improve on simple projections methods

by using more information about the steady-state Bewley model, which is the heterogeneity in

the Euler equation among elements n which the Bewley model is projected.

Second, this paper is related to the literature on optimal (Ramsey) policies in heterogeneous

agent models. This literature is very thin and very recent. First, Açikgöz (2015) provides an

algorithm to solve for the steady-state allocation of the Ramsey program, based on assumptions

on functional form. Nuño and Moll (2017) use a continuous-time approach without aggregate
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chocks and then use projections methods to find the steady state allocation. Bhandari, Evans,

Golosov, and Sargent (2016) present a solution method of models with aggregate shocks, which

relies on perturbation methods around time-varying allocations. They solve the model approx-

imating the distribution with a bery large number of agents. LeGrand and Ragot (2017) derive

optimal Ramsey policy using a truncation in the space of idiosyncratic histories. Compared to

these models our contribution is to provide a general representation allowing to simulate models

with optimal policies and aggregate shock, which is much more general than truncation approach

Section 2 presents the simple environment, on which our methodology will be applied. Section

3 presents the projection in the space of idiosyncratic histories in the general case. Section 4

presents solution techniques to derive optimal policies. Section 5 analyses in more detail how

Reiter (2009) can be understood as an implicit partition to provide some improvement on its

algorithm. Section 6 provides two numerical examples, a first one without optimal policies to

benchmark our method with other ones presented in the literature. The second one computes

optimal time-varying fiscal policy.

2 The economy

We consider a discrete-time setup. The economy features a single good and is populated by a

population of size 1 of agents distributed on a segment I according to a measure l (·).

2.1 Preferences

Agents derive utility in each period from private consumption c and from the provision of a

public good G. The period utility function is denoted U(c,G). We assume that the period

utility function is separable in private consumption and public good provision. More precisely,

the function U(c,G) is supposed to have the following functional form:

U (c,G) = u (c) + v (G) ,

where u and v are twice continuously derivable functions from R+ onto R. Functions u and v

are assumed to be strictly increasing and concave, with limc→0+ u
′(c) =∞.

In what follows, we use a CRRA utility function:

u(c) = c1−γ − 1
1− γ + χ

G1−γG − 1
1− γG

, (1)

where 0 < γ, γG 6= 1. When γ = γG = 1, the utility function is simply U (c,G) = log(c) +
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χ log (G) (the two other cases γ = 1 6= γG and γ 6= 1 = γG are straightforward to deduce).

Agents have standard additive intertemporal preferences, with a constant discount factor

β > 0. They therefore rank consumption and public good streams, denoted respectively by

(ct)t≥0 and (Gt)t≥0, using the intertemporal criterion
∑∞
t=0 β

tU(ct, Gt).

2.2 Risks

Aggregate risk. The aggregate risk is represented by a probability space (S∞,F ,P). At a

given date t, the aggregate state is denoted st and takes values in the state space S ⊂ R+. We

assume the aggregate risk to be a first-order Markov process. The history of aggregate shocks up

to time t is denoted st = {s0, . . . ., st} ∈ St+1. Finally, the period-0 probability density function

of any history st is denoted mt(st).

For the sake of clarity, for any random variable Xt : St → R, we will denote Xt, instead of

Xt(st), its realization in state st,

Employment risk. At the beginning of each period, agents face an uninsurable idiosyncratic

employment risk, denoted et at date t. The employment status et can take two values, 0 and

1, corresponding to employment and unemployment respectively. Employed agents with et = 1

can supply inelastically one unit of labor, and they earn a before-tax real wage, denoted wt at

date t. Unemployed agents with et = 0 cannot work and will receive unemployment benefits,

denoted φwt at date t. The quantity φ > 0 measures the replacement rate.

The employment status et follows a discrete first-order Markov process with transition matrix

Mt ∈ [0, 1]2×2. The job separation rate between periods t − 1 and t is denoted st, while ft is

the job finding rate between t− 1 and t. The time-varying transition matrix across employment

status is therefore:

Mt =

 1− ft ft

st 1− st

 . (2)

The history of idiosyncratic shocks up to date t is denoted et = {e0, . . . , et} ∈ {0, 1}t+1 = E t+1.

2.3 Production

The good is produced by a unique profit-maximizing representative firm. This firm is endowed

with a production technology that transforms, at date t, labor Lt and capitalKt−1 into Yt output

units of the single good. The production function is a Cobb-Douglas function with parameter

α ∈ (0, 1) featuring constant returns-to-scale. The capital must be installed one period before
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production and the total productivity factor At is stochastic. Denoting as δ > 0 the constant

capital depreciation, the output Yt is formally defined as follows:

Yt = AtK
α
t−1L

1−α
t − δKt−1. (3)

The logarithm of the total productivity factor is assumed to be an AR(1) process with auto-

correlation ρA and variance of the innovation σ2
A, such that:

At = exp(at), (4)

with: at = ρAat−1 + εAt and
(
εAt

)
t
∼iid N

(
0, σ2

A

)
.

The two factor prices at date t are the before-tax wage rate w̃t and the capital return rt. As we

explain further below, we assume that while labor is taxed at a linear rate, capital is not taxed.

The profit maximization of the producing firm implies the following factor prices.

w̃t = (1− α)At
(
Kt−1
Lt

)α
, (5)

rt = αAt

(
Kt−1
Lt

)α−1
− δ. (6)

2.4 Social contributions and taxes

The government raises both social contributions and capital taxes, which have two distinct

objectives. Social contributions solely serve to finance unemployment benefits, while capital tax

serves to finance the public good.

Unemployment benefits. Social contributions amount to a constant proportion τt of the

wage of employed agents. The contribution τt is set such that the unemployment insurance

(UI) scheme is balanced at any date t. There is no possible social debt. The formal expression

of the contribution τt depends on the population of employed agents. Since only employed

agents supply labor and since their productivity is equal to one, the population of employed

agents amounts to the aggregate labor supply Lt. Conversely, the total population size being

normalized to one, the population of unemployed agents amounts to 1− Lt. Recalling that the

replacement rate is φ, the balance of the UI scheme therefore implies:

τt = 1− Lt
Lt

φ. (7)
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Fiscal policy. The labor tax τLt finances a quantity Gt of public goods. The government is

prevented from raising public debt, such that the government budget is balanced at any date.

Formally, the government budget constraint can be expressed as:

Gt = τLt w̃tLt. (8)

We follow Chamley (1986) and use the CRS property of the production function to express the

budget constraint of the government in post-tax terms. The post-tax real wage rate, denoted

wt, verifies:

wt =
(
1− τLt

)
w̃t. (9)

Since the production function implies Yt = Kt−1rt + Ltw̃t, the budget constraint of the govern-

ment (8) can be rewritten as follow:

Gt +Kt−1rt + Ltwt = AtK
α
t−1L

1−α
t − δKt−1. (10)

Justification of the fiscal system. We have chosen the above setup, since it features one

of the simplest fiscal system we can think of. It will simplify the comparison between complete

and incomplete-market economies. Indeed, the labor tax is non-distorting as the labor supply is

inelastic. As a consequence, the complete market allocation reproduces the first-best allocation.

The difference between complete and incomplete market economies will only result from the

distributional effect of labor tax.

2.5 Agents’ program and resource constraints

2.5.1 Sequential formulation

We consider an agent i. She can save in a riskless asset that pays off the post-tax gross interest

rate 1 + rt. She is prevented from holding too negative savings and the latter must remain

greater than −ā. At date 0, the agent chooses her consumption (cit)t≥0 and her saving plans

(ait)t≥0 that maximize her intertemporal utility, subject to a budget constraint and the previous

borrowing limit. Formally, her program can be expressed as follows:

max
{ci

t,a
i
t}
∞
t=0

E0

∞∑
t=0

βtU(cit, Gt) (11)

cit + ait = (1 + rt)ait−1 +
(
(1− τt)eit + φ(1− eit)

)
wt, (12)

ait ≥ −ā. (13)
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The budget constraint (12) is very standard and the expression
(
(1− τt)eit + φ(1− eit)

)
wt is

a compact formulation for the net wage of the agent, depending on whether she is employed

(eit = 1) or unemployed (eit = 0). We now turn to the economy-wide constraints. First, the

financial market clearing implies the following relationship:
ˆ
i
aitl(di) = Kt. (14)

The clearing of goods market implies that the total consumption, made of private individual

consumption, private firm consumption and public consumption equals total supply, made of

output and past capital: ˆ
i
citl(di) +Gt +Kt = Yt +Kt−1. (15)

Finally, using the transition matrix Mt in equation (2), we deduce the law of motion for the

labor supply:

Lt = (1− st)Lt−1 + ft (1− Lt−1) . (16)

We can finally formulate our equilibrium definition.

Definition 1 (Sequential equilibrium) A sequential competitive equilibrium is a collection

of individual allocations
(
cit, a

i
t

)
t≥0,i∈I , of aggregate quantities (Gt, Lt,Kt)t≥0, of price processes

(w̃t, wt, rt)t≥0, and of social contributions and capital taxes (τt, τLt )t≥0, such that, for an initial

wealth distribution
(
ai−1

)
i∈I , and for initial values of capital stock K−1 =

´
i∈I a

i
−1l(di), of capital

tax τ0, and of the initial aggregate shock s−1, we have:

1. given prices, individual strategies
(
cit, a

i
t

)
t≥0,i∈I solve the agents’ optimization program in

equations (11)–(13);

2. financial and good markets clear at all dates: for any t ≥ 0, equations (14) and (15) hold;

3. the government budget constraint (10) and the UI scheme balance (7) hold at any date;

4. factor prices (w̃t, wt, rt)t≥0 are consistent with (5), (6), and (9).

2.5.2 Recursive formulation: Bewley model

We now express the previous program (11)–(13) using an equivalent recursive formulation in

absence of aggregate shocks. From Huggett (1993), we know that such a recursive formulation

exists in such a case. We use standard notations of dynamic programming. The value function

is denoted V and it is known to depend on the beginning-of-period wealth, a and the individual
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state e ∈ {0, 1}. With this notation, the recursive formulation of the program can be recursively

written as follows:

V (a, e) = max
c,a∈R

u(c) + v (G) + βE
[
V (a′, e′)

]
, (17)

c+ a′ = w(e) + (1 + r)a, (18)

c ≥ 0, a′ ≥ −ā, (19)

where the prime characterizes next-period values.

A recursive equilibrium in this economy is: (i) a collection of policy rules, gc(a, e) for con-

sumption, ga (a, e) for savings, ν (a, e) for the Lagrange multiplier on the credit limit, (ii) a

distribution function for wealth levels Γ (a, e), (iii) price processes w, r̃, and r, (iv) tax pro-

cesses τ and τK , (v) aggregate quantities K, L, and Y such that: (i) the policy rules solve

the agent problem (17)–(19); (ii) financial and good markets clear: K ′ =
´
a,e ga(a, e)Γ(da, de),

L =
´
a,z eΓ(da, de), Y = F (K,L), and

´
a,e ga(a, e)Γ(da, de) + G + K ′ = Y + K; (iii) prices are

set competitively: r̃ = FK(K,L), r = (1 − τK)r and w = FL(K,L); (iv) government and UI

budget constraints hold: τ = 1−L
L µ and G+K ′r + Lw = Y − δK.

3 Solving the model with history representation

The previous equilibrium representation features idiosyncratic histories of infinite length. We

now show how we represent the previous equilibrium using finite length histories. Loosely

speaking, we will project the previous policy on a finite state space.

3.1 Partitions

A finite history of length N ≥ 1 is a vector h = (h−N+1, . . . , h0) ∈ {0, 1}N of length N rep-

resenting the realizations of idiosyncratic shocks over the N consecutive previous periods. For

instance, h0 is the current idiosyncratic realization, h1 is the realization one period ago, and

h−N+1 the realization N − 1 periods ago. A finite collection of histories of different length,

denoted P, will be called a partition if every element of {0, 1}∞ can be associated to a unique

history of the partition. In other words, the history of every agent in the economy is projected

onto one, and exactly one, history in the set P. The cardinal of P is denoted P . The most

simple example of partition is ({e}, {u}) and corresponds to a case, where the history of every

agent is summarized by her current idiosyncratic status. This partition will be said to be the
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minimal partition.

Even though it has not been formalized in those terms, partitions have already been used

in the literature. First, Challe, Matheron, Ragot, and Rubio-Ramirez (2017) use a three-state

partition, which is ({e} , {eu} , {uu}). In each period, any agent can be in one and only one of

these three states: employed, unemployed now and in the previous period, or unemployed now

and employed before. This three-state partition is shown to be sufficient to capture time-varying

precautionary savings. The transition matrix between these three states is easy to derive from

labor market transitions. For instance Πt,{e},{eu} = st , Πt,{eu},{e} = Πt,{uu},{e} = ft, and finally

Πt,{eu},{uu} = 1 − ft, where we recall that st and ft are the job-transition probabilities –see

equation (2). Second, LeGrand and Ragot (2017) use a more general truncation space. For a

given parameter N , the partition, denoted PN , contains all idiosyncratic histories of length N ,

or more formally all vectors (eN−1, . . . , e0) ∈ {0, 1}N . In this case, the transition matrix between

partition elements can be easily derived from the transition matrix Mt. Note that even though

the transition matrix can be time-varying, the partition remains constant over time.

An history h = (eN−1, . . . , e0) will be said to be a truncation of an history h′ = (e′N ′−1, . . . , e
′
0)

and will be denoted h′ � h if N ′ ≥ N and ei = e′i for all i = 0, . . . , N − 1. Conversely, the

history h′ will be said to be a prolongation of h. It is noteworthy, the binary relation � defines

a preorder on the set of histories. In particular, � is transitive. In words, if h′ � h, the history

h drops the oldest elements of h′ and only keeps the N last ones. A partition PA will said

to be finer than a partition PB if every element of PA is a prolongation of an element of PB.

We will note it PB ⊂ PA. Conversely, we will say that PB is coarser than PA. For instance,

the three-state partition ({e} , {eu} , {uu}) that we have seen above is finer than the minimal

partition ({e} , {u}). In the remainder of the paper, we will only consider partitions, that are

finer than the minimal partition.

3.2 From the Bewley model to an history representation

Projecting the Bewley model on a partition P. Let consider a partition P of histories as

discussed above. We will construct a finite history representation of the Bewley model on P as

follows –we will say that we project the Bewley model on P. The idea will consist in “pooling”

the choices of agents with the same history h. We start with the probability distribution of

agents with history h and asset holding a, denoted ΓP (a, h) defined over A×
⋃∞
t=1{0, 1}t, where

A = [−a,∞) is the saving space. This probability can be defined by iteration of the probability

distribution Γ for the Bewley model. Second, we can deduce the size of the population of agents
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with history h, that we denote Sh:

Sh =
ˆ
A

ΓP (da, h) , (20)

which is simply the measure of agents with history h, independently of their asset holdings.

We now turn to the policy functions and asset choices. The beginning-of-period asset holding,

denoted ãh is:

ãh =
ˆ
A
a

ΓP (da, h)
Sh

,

which is the average asset holding among the population with history h. The asset choice, a′h,

which is the average end-of-period asset holding of agents with history h can be expressed as:

a′h =
ˆ
A
ga(a, e0(h))ΓP (da, h)

Sh
, (21)

where e0 : h ∈ P → e0(h) ∈ {0, 1} returns the current idiosyncratic state for any history h. We

proceed similarly for the average consumption choice –denoted ch– and the average Lagrange

multiplier of the credit constraint –denoted νh. We obtain the following expressions:

ch =
ˆ
A
gc(a, e0(h))dΓP (da, h)

Sh
, (22)

νh =
ˆ
A
ν(a, e0(h))dΓP (da, h)

Sh
. (23)

Note that νh is positive if and only if a positive measure of agents having history h face binding

credit constraints.

Projection on a coarser partition. We will now define a projection from an initial partition

P1 to a coarser partition P2, with P1 ⊂ P2. We will check that projecting on a partition P2 from

a finer partition P1 is similar to projecting directly the Bewley model on P2. In this section,

we will use the superscripts P1 and P2 for characterizing variables in P1 and P2, respectively.

First, the probability distribution ΓP2 can be deduced from ΓP1 . Indeed, by construction of

partitions, any history h2 ∈ P2 that is a truncation of histories h1 ∈ P1 (h1 � h2), we have:

ΓP2(a, h2) =
∑
h1�h2

ΓP1(a, h1).
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The size of the population of agents with history h2 ∈ P2, denoted SP2
h2

is:

SP
2

h2 =
∑
h1�h2

SP
1

h1 .

We can check from equation (20) that
∑
h1�h2 S

P1
h1

=
´
A

∑
h1�h2 dΓP1 (da, h1) =

´
A dΓP2 (a, h2).

This makes it clear that projecting from P1 onto P2 is similarly to directly projecting the Bewley

model onto P2. For the consumption policy function, we have:

cP
2

h2 =
∑
h1�h2

cP
1

h1

SP
1

h1

SP
2

h2

.

We deduce from the expression of ch in (22) that:

cP
2

h2 =
∑
h1�h2

ˆ
A
gc(a, e0(h1))ΓP1 (da, h1)

SP
1

h1

SP
1

h1

SP
2

h2

,

=
ˆ
A
gc(a, e0(h2))

∑
h1�h2

ΓP1 (da, h1) 1
SP

2
h2

,

=
ˆ
A
gc(a, e0(h2))ΓP2 (da, h2)

SP
2

h2

,

where the second equality comes from the fact that h2 and h1 share the same current state:

e0(h1) = e0(h2). We can proceed similarly for the saving choice aP2
h2

and the Lagrange multiplier

νP
2

h2
.

Projecting on a coarser partition will enable us to to consider different history sizes. In quan-

titative applications – see Section 6 –, it turns out that a fine partition is useful for computing

a precise steady-state, while a coarser partition enables to accurately depict the dynamics. The

projection of the fine partition onto the coarse one enables to have two representations that are

consistent with each other.

Credit-constrained agents. We assume that the partition P contains a set of histories Pcc,

such all credit constrained agents –and only them– have an history that belongs to Pcc. The

existence of this set derives from the assumption that credit constraints are above the natural

borrowing limits. We show below in Section 5 that this set can be easily derived quantitatively

from the steady-state outcomes of the Bewley model.

Assumption A (Credit constrained histories) There exists a subset of histories Pcc ⊂ P

which only gathers the histories of every credit constrained agent.
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Every history in Pccis therefore an history that leads an agent to a binding credit constraint.

As a direct implication, we have νh > 0 if and only of h ∈ Pcc.

Bewley-model representation with the partition P. Consider an agents with a history

h ∈ P and a beginning-of-period wealth a ∈ A. Her budget constraint (18) can be expressed

using policy functions as:

gc (a, e0(h)) + ga (a, e0(h)) = (1 + r)a+ w (e0(h)) .

Integrating this equality over a ∈ A using the probability distribution ΓP (a, h) yields after

dividing by Sh:

ch + a′h = (1 + r) ãh + w (e0(h)) . (24)

Equation (24) can be interpreted as an average budget constraint for agents endowed with

history h.

By construction of ΓP , we have for all a ∈ A, and h′ ∈ P, ΓP(a, h′) =
∑
h∈P Πh,h′ΓP(a, h).

In other words, agent with history h transit at the next date to history h′ with probability

Πh,h′ .Note that transitions between some histories may be impossible and will therefore be

assigned a zero probability. From equation (20), we deduce the following relationship between

population sizes:

Sh′ =
∑
h∈P

Πh,h′Sh. (25)

We can now express the average per-capita beginning-of-period wealth ã′h′ in the next period

for agents with history h′ ∈ P:

ã′h′ =
ˆ
A
a′

ΓP (da′, h′)
Sh′

,

=
∑
h∈P

Πh,h′

ˆ
A
a′

ΓP(da′, h)
Sh′

Sh
S′h
,

=
∑
h∈P

Πh,h′

ˆ
A
ga(a, e0(h))ΓP (da, h)

Sh

Sh
S′h
,

=
∑
h∈P

Πh,h′a
′
h

Sh
S′h
, (26)

In equation (26), the beginning-of-period wealth ã′h′ can be expressed as the weighted average

of the end-of-period (in the previous period) wealth a′h taking into account all possible previous

histories h, the transition probabilities between histories, and the population size of for each
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history.

We can now turn to the expression of Euler equations for each histories h ∈ P. The following

proposition summarizes our result.

Proposition 1 (Allocation) There exists a unique set of positive parameters (ξh)h∈P such

that for all h ∈ P, the following equation holds:

ξhu
′ (ch) = β(1 + r)

∑
h∈P

Πh,h′ξh′u
′(ch′)

+ νh. (27)

Proof. To prove the result, we switch to vectorial notation. We define uξ = (ξhu′ (ch))h∈P ,

Π = (Πh,h′)h,h′∈P , ν = (νh)h∈P , and I the identity matrix of dimension equal to the cardinal of

P. The set of Equations (27) for all h ∈ P is equivalent to uξ (I − β(1 + r)Π) = ν. Assumption

A guarantees that the vector ν is not null. Furthermore, since β(1+r) < 1 and Π is a transition

matrix, I−β(1+r)Π is invertible. We deduce that uξ is uniquely defined as (I − β(1 + r)Π)−1 ν.

We then obtain (ξh)h∈P from (u′ (ch))h∈P and (uξ)h∈P .

We now define the following values for all h ∈ P:

ηh ≡
´∞
−ā u (gc (a, e0(h))) dΓP (a, h)

u (ch)
1
Sh
, (28)

η
(1)
h ≡

´∞
−ā u

′ (gc (a, e0(h))) dΓP (a, h)
u′ (ch)

1
Sh
, (29)

These quantities can be interpreted as measures of dispersion. The value ηh is a measure of the

dispersion of utility of consumption among agents having the same history h. The quantities

(ηh)h∈P and (ξh)h∈P are in general time-varying in presence of aggregate shocks.

Therefore, the intertemporal utilitarian welfare, which isW =
∑
h∈P
´∞
−ā (u (gc (a, e0(h))) + χv(G)) dΓP (a, h)+

βW ′, can be expressed as:

W =
∑
h∈P

Shηhu (ch) + χv (G) + βW ′. (30)

Summary of the Bewley model representation. The history representation of the Bewley

model can be summarized by: (i) the budget constraint (24), (ii) the Euler equation (27), (iii) the

wealth pooling equation (26), (iv) the intertemporal welfare (30), and (v) the financial market

clearing equation
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K =
∑
h∈P

Shah. (31)

This is a way to rewrite the Bewley model with richer information about agents’ histories. This

information is useless in the Bewley model because the current idiosyncratic state is a sufficient

statistics for the behavior of agents (in addition to their beginning-of-period wealth). Writing

the problem in the previous form is the first step for a finite-dimensional representation of the

model in presence of aggregate shocks. Note that in the steady state with no aggregate shocks,

the distributions are constant. As a consequence, the quantities ch, ah, ãh, Sh are also constant.

3.3 Introducing aggregate shocks

An algorithm. We now present an algorithm that enables us to simulate the economy in

presence of aggregate shocks but with exogenous taxes. Of note, there is no Ramsey problem

to solve. The algorithm can be formalized as follows

1. Simulate a Bewley model to find the steady-state allocation (At = 1).

2. Choose a partition P and compute the projection the, ch, ah, ãh, Sh and then ξh for h ∈ P

3. Simulate the model with aggregate shocks, using a standard package like DYNARE.

4. Iterate over the partition P , using a finer partition until second-order moments have

converged, for a given accuracy.

Comparison with other methods. The previous algorithm is a refinement of algorithms

that relies on perturbation techniques (Reiter (2009), Winberry (2016), Bhandari, Evans, Golosov,

and Sargent (2016) or Ahn, Kaplan, Moll, Winberry, and Wolf (2017)). Indeed, as we do not

specify the partition P, it includes the algorithm of Reiter (2009), as will become clear in Sec-

tion 5. The key difference with other methods is that we introduce the coefficients (ξh)h∈P that

enable to properly account for history aggregation in Euler equations. Indeed, the coefficients

(ξh)h∈P are a relevant measure of the heterogeneity in Euler equations for a given history h ∈ P.

Our algorithm therefore takes advantage of information about the steady state in the Bewley

model that was previously discarded with other perturbation methods.
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4 Ramsey program

4.1 Optimal policies

We now derive optimal Ramsey policies in the Bewley model. Comparing the Ramsey allocations

in our setup with those of a complete insurance-market economy will enable us to identify the

specific role of redistribution and the lack of insurance. However, solving for Ramsey policies

in the general case is difficult. Indeed, one has to introduce additional state variables, such as

the distribution of Lagrange multipliers for the relevant individual constraint.1 Solving for this

joint distribution is particularly difficult.

The main idea of the current method is to solve for the Ramsey optimal policy for the model

projected on the partition P. In a nutshell, we solve for the exact solution of an approximated

model, whereas other methods provide approximate solutions of the exact model. We first

explain the methodology to solve the model projected on P, we then describe our algorithm for

computing Ramsey policies and we finally discuss the relationships with other methods.

The Ramsey problem consists in determining the fiscal policy –here equivalently, public

spending Gt and post-tax wage rate wt– that corresponds to the “best” competitive equilibrium,

according to an aggregate welfare criterion. In other words, the planner has to select fiscal

policy and individual choices, subject to government and individual budget constraints (33) and

(34), and subject to Euler equations (35) –that guarantee the optimality of individual choices.
1The relevant individual constraint depends on the way the Ramsey problem is written. As we discuss below,

in the Lagrangian approach of Marcet and Marimon (2011), these relevant constraints are the individual Euler
equations. Bhandari, Evans, Golosov, and Sargent (2016) use a primal approach and thus consider the individual
Lagrange multiplier on the budget constraint.
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Formally, the Ramsey problem can be written as follows:

max
(rt,wt,Gt,(ai

t,c
i
t))t≥0

E0

 ∞∑
t=0

βt

∑
h∈P

Sh,tηhu (ch,t) + v (Gt)

 , (32)

Gt +Kt−1rt + Ltwt ≤ Kα
t−1L

1−α
t − δKt−1, (33)

for all h ∈ P:

ch,t + ah,t ≤ (1 + rt) ãh,t + wt (h) , (34)

ξhu
′
(
cbh,t

)
= β(1 + rt)Eh′

(
ξh′u

′ (ch′,t+1
))

+ νh, (35)

ãh,t+1 =
∑
h′�g

Πg,h,ta
′
g,t

Sg,t
Sh,t+1

, (36)

Kt =
∑
h∈P

Sh,tah,t, Lt = (1− st)Lt−1 + ft (1− Lt) , (37)

cih,t, (aih,t + a) ≥ 0. (38)

Other constraints are the pooling equation (36) that comes from history representation, aggre-

gation and positivity constraints (37) and (38).

The key assumption to solve this model is that the quantities (ηh)h∈P and (ξh)h∈P are not

time-varying and set to their steady-state optimal values. As the set of equations is finite,

it is easy to derive first-order conditions. We discuss in Section 4.2 below issues related to

second-order conditions. First, we denote by βtλh,t the discounted Lagrangian multiplier of the

Euler condition (34) for history h, and by βtµt the Lagrangian multiplier on the government

budget constraint (33). The Lagrange multiplier λh,t measures how costly it is for the planner to

internalize the Euler equation. To ease the interpretation of first-order conditions, we introduce

the following notation:

Λh,t ≡
∑
h′∈P Sh′,t−1λh′,t−1Πh′,h,t

Sh,t
, (39)

The variable Λh,t is the average per capita cost of internalizing the previous period Euler equation

for agents with history h today. Roughly speaking, this is the past average of past values of

Lagrange multiplier (λh,t−1)h∈P . We also define the quantity ψt,h as

ψt,h ≡ ηhu′(ct,h) + ξh ((1 + rt)Λt,h − λt,h)u′′(ct,h), (40)

which is the social valuation of liquidity of agents h. Indeed, if all agents h receive one additional

unit of goods today, this additional unit will be valued ηhu′(ct,h). This value only accounts for

private valuation, but should also include the effect on the internalization cost of Euler equations.
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Indeed, this additional unit affects agents’ incentive to save from period t − 1 to period t and

from period t to period t+ 1. This effect is captured by the second term at the right hand side,

proportional to u′′(ct,h).

We now provide the expressions of the first order conditions of the Ramsey program. Of

note, as we discuss in Section 4.2, these conditions are necessary, but not sufficient, to guarantee

the existence of an internal solution.

µt = v′ (Gt) , (41)

ψt,h = βEt

(1 + rt+1)
∑
h′∈P

Πt,h,h′ψt+1,h′

 , for h /∈ Pcc, (42)

µtLt =
∑
h∈P

Sh,t
(
φ1e0(h)=1 + (1− τt)1e0(h)=0

)
ψt,eN , (43)

where we recall that e0(h) denotes the current employment status of agent with history h.

4.2 Remark on the convexity of the program

A traditional problem with Ramsey program is that the set of feasible allocations is not convex

in general. This problem is quite general and also exists in a representative-agent economy.

The nonconvexity is precisely related to constraint associated to Euler equation – which is

neither convex nor linear. Therefore, if first-order conditions are still necessary, they may be

non-sufficient and generate three different types of problems:

1. the first order condition may characterize a local minimum;

2. the steady-state solution may not exist;

3. multiple equilibria may exist.

The first concern can be easily addressed, for instance by checking that small variations around

the solution allocation do not yield a higher aggregate welfare. The second concern has been

raised by Straub and Werning (2014), who show that in some cases the solution of the planner

may not be an interior solution with constant real variables.2 The possibility to solve the model

with perturbation methods helps solve this issue. Indeed, studying the behavior of the model

after perturbing the steady state with small aggregate shocks, provides insight regarding the
2Recent contributions such as Chari, Nicolini, and Teles (2016) show that the behavior of Lagrange multipliers

depends on the set of instruments available to the planner. In addition, Chen, Chien, and Yang (2017) show
theoretically that in an incomplete insurance-market model that the solution is interior.
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subsequence convergence –or not– toward the interior solution. The last concern is more difficult

to properly address. Up to our knowledge, the only imperfect solution consist sin exploring the

convergence for various initial values and checking that the local maximum is indeed a global

one.

4.3 The algorithm

We now present the algorithm for computing the steady-state. The algorithm consists of two

steps. First, we find the interior steady state, and second we rely on perturbation methods to

investigate the dynamic behavior.

Steady state. The steps of the algorithm for the steady state are as follows.

1. Choose a partition P.

2. Assume that an initial element hcc gathers all credit constraints agents.

3. Choose initial values for the interest rate r and the post-tax wage rate w.

(a) Solve the full Bewley model with r and w. Deduce the aggregate quantities K, Y

and G. Project the solution on P to compute the history-dependent variables ch, ah,

ãh, Sh, ηh, and ξh.

(b) Set a value for µ.

i. Choose the values (ψhcc)hcc∈Pcc (for credit-constrained agents). Solve for ψh, for

all h /∈ Pcc (unconstrained histories) using equation (42). Using (39) and (40),

deduce (λh)h∈P . Iterate on (ψhcc)hcc∈Pcc until λhcc = 0 for all hcc ∈ Pcc.

ii. Iterate on µ until equation (41) holds.

(c) Iterate on r and w until the equation (43) is fulfilled and until financial market clears.

The important step of the algorithm is the step 3. (a). Solving the Bewley model enables us to

extract all relevant steady state information for the Ramsey model. We can do so because the

program of households only depends on post-tax prices.

Dynamics. The steps for computing the dynamics are the following ones.

1. If needed, project the steady-state allocation and equations on a coarser partition.
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2. Gather all non-linear equations (a finite number) and solve the model using perturbation

methods for the aggregate shocks at the desired order. The last part can easily be done

using a standard package, such as Dynare for instance.

Our solution method makes the simulation of the model with aggregate shocks the easy part

when solving the Ramsey program.

4.4 Comparison with other methods

To our knowledge, only three other papers provide general solution method to derive optimal

Ramsey policies in incomplete insurance-market models.

First, Açikgöz (2015) provides an algorithm to solve for the steady-state allocation of the

Ramsey program. He assumes some specific functional forms and show the convergence of the

algorithm. This is a way to find the joint distribution over Lagrange multipliers and initial asset

holdings. At this stage, we are not aware of any application of this algorithm to an economy

with aggregate shocks.

Second, Nuño and Moll (2017) use a continuous-time approach and mean-field games to

characterize optimal steady-state allocations. Their algorithm develops a projection method to

characterize the relevant value functions and Lagrange multipliers. Our solution makes a more

extensive use of the steady-state properties of the Bewley model, that enables us to properly

distort the projection on a relevant grid. Although our model is expressed in discrete time, a

methodology similar to ours can be applied to continuous-time models. An additional gain of

our method in discrete time is that introducing aggregate shocks is straightforward, as we have

seen above.

Third, Bhandari, Evans, Golosov, and Sargent (2016) present a solution method for models

with aggregate shocks. Their solution relies on perturbation methods around time-varying

allocations (and not around the steady-state). They solve the model by approximating the

actual distribution by 100,000 agents. As we use more extensively the steady-state properties

of the Bewley model, we can simulate the economies with a very small number of agents –see

Section 6. As a consequence, our solution allows us to study Ramsey problems with a number

of instruments.
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5 Implicit partitions

We now explain how to apply our framework to an implicit partition. We start with describing

how to derive an implicit partition in the space of history based on the steady-state distribution

of wealth in the Bewley model. We then discuss the relationship with Reiter (2009).

As explained in Section 2.5.2, the resolution of the Bewley model generates a steady-state

wealth distribution, whose cumulated distribution function is denoted (a, e) 7→ Γ (a, e), where

a belongs to the compact set [−ā, amax] and e ∈ {0, 1}. We now consider a finite partition

(Bh)h=1,...,H of the wealth set [−ā, amax] with H > 0. The partition elements must verify the

following properties: 
[−ā, amax] = ∪h=1,...,HBh,

Bh ∩Bh′ = ∅ for all h 6= h′.

We will distinguish agents by their wealth holdings and their current employment status. We

therefore consider 2H agents’ types. A type h = 1, . . . ,H refers to an unemployed agent whose

beginning-of-period wealth belongs to the set Bh. Conversely, a type h = H + 1, . . . , 2H refers

to an employed agent whose beginning-of-period wealth belongs to the set Bh−H . Using the

steady-state distribution of the Bewley model, we can compute for any agent of type h =

1, . . . , 2H, the average steady-state consumption ch, the average beginning-of-period wealth ãh,

the average end-of-period wealth a′h, as well as the measure Sh of agents of the same type

–with
∑2H
h=1 Sh = 1. Furthermore, we can also compute, using the steady-state decision rules,

the measures (Fh,h′)h,h′=1,...,2H of agents transiting from a type h in the previous period to a

type h′ in the current period. From these measures, we can construct the transition matrix

(Πh,h′)h,h′=1,...,2H , where the probability Πh,h′ to transit from state h to state h′ is expressed as:

Πh,h′ = Fh,h′

Sh
.

Importantly, this partition in the space of wealth implicitly implies a partition in the space

of histories. Indeed, a given type h = 1, . . . , 2H implicitly corresponds to all histories that

generate a beginning-of-period wealth Bh if unemployed (and h ≤ H) or Bh−H if employed

(and h > H). Although we do not know these histories explicitly, this partition in the space of

histories implicitly exists. As a consequence, the apparatus of Section 3 can be used to construct

the quantities (ξh)h=1,...,2H and (ηh)h=1,...,2H . Once these quantities have been constructed, we

can follow Section 4.1 to build a reduced-history representation of the model that enables to

compute optimal policies.
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Compared to Reiter (2009) initial algorithm, the main computational difference with our

approach is that we capture heterogeneity in Euler equations using the coefficients (ξh)h=1,...,2H .

As shown below, this allows us to study the dynamics with a small number of agents. This

deviation also permits the simulation of optimal policies with the same techniques. A last gain

compared to Reiter’s algorithm is the easiness to solve the model with time-varying idiosyncratic

risk.3

The model structure implies that transition probabilities Π and the size (Sh)h=1,...,2H of

partition elements are constant, even outside of the steady-state, when idiosyncratic risk is

not time-varying (i.e., the matrix M is constant). This result holds even in presence of other

aggregate shocks, such as aggregate TFP shocks affecting the wealth of agents. This non-

intuitive results is better understood when thinking about the difference between the partition

in the space of wealth and the implicit partition in the space of histories. If the reasoning is solely

based on the partition in the space of wealth, then any aggregate shock affecting wealth (such

as a TFP shock) should affect saving decisions and thus the measure of agents in a given wealth

bracket Bh, even if idiosyncratic risk is constant. This is not the case anymore if the reasoning

is based on the set of idiosyncratic histories. Indeed, this set is not affected by aggregate shocks

–because the transition matrix M is constant– which makes it possible to identify this set in

the steady-state. We provide in Appendix B the sketch of the algorithm to solve models with

time-varying idiosyncratic risk.

6 Numerical examples

We now provide two numerical examples to apply the previous setup: one with exogenous taxes

and another one with optimal fiscal policy. These examples are chosen to be very simple, so

as to present in a very transparent framework the properties of the proposed methodology. In

the first case with exogenous taxes, we compute the dynamics of the model with TFP shocks

and compare the current algorithm with alternative ones, such as Reiter (2009) or Krusell and

Smith (1998). In the second case, we solve for the optimal provision of the public good and

time-varying capital taxes after technology shocks.
3Reiter (2009) considers constant i.i.d. idiosyncratic risk, with a continuous support. Winberry (2016) assumes

an idiosyncratic risk, where the transition matrix M (defined in equation (2)) is not time-varying.
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Parameter Description Value

β Discount Factor 0.96

α Capital share 0.36

δ Depreciation rate 0.1

b UI replacement rate 0.1

π01 U to E probability 0.5

π10 E to U probability 0.038

ρA autocorr. TFP shock 0.859

σA Std dev. innov. TFP 0.014

χ Pref. pub good 0

Table 1: Parameter values

6.1 Parameter values

Table 1 provides the steady-state parameter values which are common in the three economies.

These parameters are standard for annual parametrization. Most of the parameters are taken

from Den Haan (2010). They are used by Winberry (2016) to compare model outcome with

different computational methods. We consider here the case where the preference for the public

good is 0, such that Gt = τKt = 0. As a consequence, we solve for the standard model with TFP

shock and without taxes on capital.

6.2 Model with exogenous taxes

6.2.1 Steady-state comparison

We first provide steady-state comparison for different values of H. Note that in each economy

parametrized by H, the capital stock, the real wage and the real interest rate are exactly the

same as in the true Bewley model, by construction.

Table 2 summarizes the comparison between the economies for different values of H. More

precisely, we report in this table for different values of H, the cross-sectional standard deviation

of (ξh)h=1,...,2H , as well as the Gini coefficient in the economy. There is one exception, with is

the last column with H = 17, for which we impose ξh = 1 for all h and that corresponds to a

null standard deviation of ξ by construction. Table 2 includes three lines. The first one provides
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H 4 11 17 32 100 17

Gini(%) 17 19 19 19 19 23

sd (ξ)(%) 5.05 2.43 1.54 0.95 0.79 0

Table 2: Steady-state comparisons

the number H , implying H employed agents and H unemployed ones. For each value of H, we

have chosen a partition with roughly equidistant agents in the wealth distribution. For instance,

in the case where H = 17 (which will be our benchmark case), the partition of the wealth

distribution is [8.10−2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 95] (in percentage points of

the saving space [−ā, amax]). Our partition therefore involves agents with wealth between 0%

and 8.10−2% of the maximal holding value amax (since the lower bound ā has been set to 0),

agents with wealth between 8.10−2% and 5% of amax and so on and so forth. The initial segment

[0%, 8.10−2%] corresponds to credit constrained unemployed households in the Bewley model.

The second line of the Table 2 contains the Gini coefficient of the wealth distribution. We

can observe that the Gini coefficients rapidly converge toward its steady state value 19. In the

last line of Table 2, we report the standard deviation of ξ across agents. One can show that

this standard deviation converges toward 0 when H increases. This convergence means that the

finer the partition, the smaller the inter-element heterogeneity. For our construction, it is not

a problem that some ξh differ from 1, since it is precisely a correction that we introduce in the

Euler equation to account for wealth heterogeneity within partition elements. Finally, in the last

column labeled 17 corresponds to the same economy as the benchmark case (H = 17), except

that we impose ξh = 1 for all agents h. This steady-state distribution of this economy is very

different from the one in the Bewley economy. For instance, the Gini coefficient amount to 23,

well above the actual Bewley value of 19. As a consequence, this shows that the (ξh)h=1,...,2H

are useful to match both the cross-section and the dynamics of the Bewley model, with a small

number of agents.

The fact that a small number of agents allows our model to reproduce the correct wealth

distribution stems from the fact that our construction in fact approximates the Lorenz curve

by H affine functions. As can be seen in Figure 1, four segments (panel 1a) provide a first

approximation, while seventeen segments (H = 17 on panel 1b) do a very good job in reproducing
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(a) Case H = 4 (b) Case H = 17 (benchmark)

Figure 1: Lorenz curve for two economies

the shape of the Lorenz curve. On each panel of Figure 1, we plot the Lorenz curve for the Bewley

model (blue line) and for the approximated model (red line). The dashed red line represents

the 45-degree line. On the panel 1b for H = 17, the Lorenz curves of the Bewley and the

approximated models are almost indistinguishable.

6.2.2 Comparison of business-cycle statistics

We now report the outcomes of the model in terms of second-order moment. We compare the

outcomes of our solution technique to those of two other standard simulation techniques: Krusell

and Smith (1998) and Reiter (2009) with Winberry (2016) refinement. We report second-order

moments in Table 3 for five key variables: output, consumption, investment, real wage, and real

interest rate. For each variable, we report its standard deviation normalized by the standard

deviation of output (except for output). We also report the correlation of the variable with

output.

The moments generated by the three methods are very similar to each other. As a conse-

quence, a small number of agents is sufficient for reproducing the cross-sectional heterogeneity

and the model dynamics when the inter-group heterogeneity is captured with (ξh)h.
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Variable Sd (relative to Sd(Y )) Correlation with Y

Model KS Reiter Model KS Reiter

Output (%, base) 1.32 1.32 1.32 1 1 1

Consumption 0.49 0.49 0.50 0.91 0.91 0.92

Investment 2.64 2.67 2.64 0.98 0.98 0.98

Real wage 1 1 1 1 1 1

Real interest rate 0.15 0.15 0.15 0.90 0.90 0.90

Table 3: Business cycle statistics

H 358 394 976

G 0.088 0.091 0.091

τL 0.0965 0.100 0.100

Sd(ξ) 0.015 0.014 0.014

Sd(η) 0.003 0.003 0.003

Table 4: Steady-state convergence

6.3 The model with optimal policies

6.3.1 Steady-state results

We now consider an economy where agents derive utility from the consumption of the public

good and where labor taxes are adjusted to maximize welfare. The parameters are the same as

in Table 1, except for the the parameter χ which is set to a value χ = 0.082, and the function v

is v (G) = log (G). As discussed below, this value for χ is set to imply a realistic labor tax.

We solve for the optimal steady state provision of public goods G and labor tax τL, for

different partition sizes. We use implicit partitions using the distribution of wealth, as explained

in Section 5. In each partition, there is the same measure of agents in each element of the

partition, except for the initial elements, which gather credit-constrained agents. Results are

gathered in Table 4. These results illustrate how the fiscal system converges when the partition

becomes finner and show that our history representation provides a good approximation of the

initial problem.

The steady-state values for the public good G and the labor tax τL converge to the values
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Variable Sd (relative to Sd(Y )) Correlation with Y

Economy CM H = 4 H = 22 CM H = 4 H = 22

output (%, base) 1.32 1.33 1.33 1 1 1

Consumption 0.50 0.50 0.50 0.91 0.92 0.92

Investment 2.67 2.74 2.79 0.98 0.97 0.97

Public spend. G 0.05 0.05 0.05 0.91 -0.18 -0.12

Real wage 1.05 1.12 1.12 1 1 1

Int. rate (bef. tax) 0.15 0.15 0.15 0.90 0.89 0.89

Labor tax 0.05 0.12 0.12 -0.94 -0.91 -0.91

Table 5: Business cycle statistics of Ramsey allocation

of 9.1% and 10% respectively. These values are almost reached with a partition of 394 ele-

ments, that will be our benchmark. The standard deviations sd (ξ) and sd (η) –corresponding to

(ξh)h=1,...,2H and (ηh)h=1,...,2H– are small and decreasing, while the empirical means Ehξh and

Ehηh almost exactly amount to 1. The partition H = 394 will be used as our benchmark and

we will apply perturbation methods to this partition.

6.3.2 Comparison of business-cycle statistics

We now compute business cycle statistics to quantify the effects of aggregate technology shocks.

We reports the results for three economies. The first one is the complete market economy

(henceforth, CM). This complete market economy can be seen as corresponding to a partition

with H = 1 –there is no idiosyncratic risk. As taxes are non-distorting, the complete-market

allocation is also the first best-allocation. The second economy corresponds to a partition with a

small number of elements, H = 4. The third economy is an economy with a partition involving

H = 22 elements. Note that for the last two economies, we project the previous steady-state

partition with H = 394 on two coarser partitions. The coarser partition is indeed sufficient for

generating an acceptable approximate dynamics. This interesting result does not come from the

fact that the CM and incomplete market economies generate similar outcomes, as will be shown

in Figure 2 plotting impulse response functions. We report the second-order moments of the

three economies in Table 5.

First, second-order moments are very similar in incomplete market economies with H = 4

and H = 22. Second, the moments are also roughly similar in the CM economy and in the other
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Figure 2: Impulse response functions

two incomplete-market economies, except for the correlation of public spending with output.

The latter is positive and close to one in the CM economy, while it is negative for both H = 4

and H = 22. The difference in this correlation comes from the redistributive effects of labor tax

in the incomplete market economy.

To better understand this difference, we also plot the IRFs after a technology shock in

Figure 2. All variables are reported as relative deviations from steady state values, except for

the interest rate r and the labor tax τL which are reported in absolute deviations from steady

state values. In Figure 2, the first panel reports the TFP, while other panels plot the IRFs for

key variables. For each variable, we plot the results of the CM economy in plain line, while

those of the incomplete-market economy (with H = 22, IM henceforth) are plotted with dashed

line. Similarly to second-order moments, all IRFs, but the one of public spending (1st column,

2nd row) and the labor tax (1st column, last row) are very similar. After a positive TFP shock,

labor taxes decrease in both economies, but the decrease is steeper in the incomplete-market
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economy, because decreasing labor tax enables the planner to transfer resources to employed

agents. Due to these lower resources, the provision of public goods diminishes on impact in

the IM economy. This explains the different signs of the correlation between output and public

spending in CM and IM economies.

To sum it up, while a relatively fine partition is needed to compute the steady-state with

optimal taxes, the dynamics can be simulated on coarser grid. Even though the setup is relatively

simple, CM and IM economies generate significant differences in optimal public policies.
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Appendix

A Derivation of the History-Representation of the First-Order

conditions

max
(rt,wt,Gt,(ai

t,c
i
t))t≥0

E0

 ∞∑
t=0

βt

∑
h∈P

Shηhu (ch) + v (Gt)

 , (44)

Gt +Kt−1rt + Ltwt ≤ Kα
t−1L

1−α
t − δKt−1 (45)

for all h ∈ P:

ch,t + ah,t ≤ (1 + rt) ãh,t + wt (h) (46)

ξhu
′
(
cbh,t

)
= β(1 + rt)Eh′

(
ξh′u

′ (ch′,t+1
))

+ νh (47)

ãh,t+1 =
∑
h′�g

Πg,h,ta
′
g,t

Sg,t
Sh,t+1

(48)

Kt =
∑
h∈P

Sh,tah,tΛt, Lt = (1− st)Lt−1 + ft (1− Lt) , (49)

cih,t, (aih,t + a) ≥ 0, (50)

The Lagrangian can be written as

J = E0

∞∑
t=0

βt
∑
h∈P

Sh,tηhu(ch,t)− E0

∞∑
t=0

βt
∑
h∈P

Sh,tλh,t (51)

×

ξhuc(ch,t)− νh,t − βEt
∑
h′∈P

Πh,h′,t+1ξh′uc(ch′,t+1)(1 + rt+1)


Define

Λh,t =
∑
h′∈P Sh′,t−1λh′,t−1Πh′,h,t

Sh,t
, (52)

Hence

L = E0

∞∑
t=0

βt
∑
h∈P

Sh,t (ηhu(ch,t) + ξhuc(ch,t) (Λh,t(1 + rt)− λh,t)) (53)

− E0

∞∑
t=0

µtβ
t
(
Kα
t−1L

1−α
t − δKt−1 −Gt −Kt−1rt − Ltwt

)
,
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with

ch,t + ah,t ≤ (1 + rt) ãh,t + wt (h)

ãh,t+1 =
∑
h′�g

Πg,h,ta
′
g,t

Sg,t
Sh,t+1

Derivative with respect to wt.

We obtain:

µtLt =
∑
h∈P

Sh,t
wh,t
wt

ψt,eN . (54)

Then the first-order conditions of the Ramsey program can be written as

µt = v′ (Gt)

ψt,h = βEt

(1 + rt+1)
∑
h′∈P

Πt,h,h′ψt+1,h′

 , for h 6= hcc

µtLt =
∑
h∈P

Sh,t
wh,t
wt

ψt,eN .

Note that wh,t

wt
= φ if the agents is unemployed and wh,t

wt
= 1− τt is the agent is employed.

B Algorithm for time-varying idiosyncratic risk

We provide an algorithm to introduce time-varying idiosyncratic shocks. To simplify the ex-

position, we assume that in the steady-state, any agent’s type h moves to either the previous,

the same or the next set of histories, i.e. any type h agent becomes either h − 1, h, h + 1, or

h− 1±H, h±H, h+ 1±H.4 We write this assumption more formally.

Assumption B We assume that: Fh,h′ > 0 only if h′ = h− 1, h, h+ 1 modulo H.

From the knowledge of saving policies in the Bewley economies (Huggett 1993 for instance),

we know that unemployed agents dis-save (hence they go from h to either h or h − 1 modulo

H) and employed agents save (they go from h to either h or h + 1 modulo H). We denote φh
the fraction of agents of a given type h, who remain of type h (modulo H) in the next period

. Correspondingly, a fraction 1 − φh of type-h agents become of another type, either h − 1 or

h+ 1 (modulo H). We therefore deduce
4We have to consider the results modulo H because unemployed agents an become employed and vice et versa.
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Ft,h,h = φhSt,hMt (0, 0) if h = 1, . . . ,H

Ft,h,h−1 = (1− φh)St,hMt (0, 0) if h = 2, . . . ,H

Ft,h,h+H = φhSt,hMt (0, 1) if h = 1, . . . ,H

Ft,h,h−1+H = (1− φh)St,hMt (0, 1) if h = 1, . . . ,H

Ft,h,h = φhSt,hMt (1, 1) if h = H + 1, . . . , 2H

Ft,h,h+1 = (1− φh)St,hMt (1, 1) if h = H + 1, . . . , 2H − 1

Ft,h,h−H = φhSt,hMt (1, 0) if h = H + 1, . . . , 2H

Ft,h,h+1−H = (1− φh)St,hMt (1, 0) if h = H + 1, . . . , 2H − 1

with φ1 = φ2H = 1. The values for φh (h = 1, . . . , 2H) can be derived from the steady-state

model, for which all Fh,h′ are known. We can then deduce the time-varying fractions (Ft,h,h′)

from the matrix Mt, and finally the time-varying transition probabilities: Πt,h,h′ = Ft,h,h′/St,h.

This then enables us to solve the model with time-varying idiosyncratic risk.
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