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Abstract

This paper develops a theoretical framework to nest many recent dynamic stochastic

general equilibrium economies with financial frictions into one common generic model.

Our goal is to study the macroeconomic and asset pricing properties of this class of

models, identify common features and highlight areas where these models depart from

each other. In order to characterize the asset pricing implications of this family of

models, we study their term structure of risk prices and risk exposures, the natural

extension of impulse response functions in economic environments exhibiting non-linear

behaviors.
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1 Introduction

In this paper, we develop a theoretical framework and diagnostic tools for comparing and con-

trasting dynamic macroeconomic models with financial frictions. The literature studying this

class of models has expanded considerably following the 2008 financial crisis, as researchers

are trying to understand how financial intermediaries facing different types of regulatory and

contractual constraints influence macroeconomic outcomes.1 To what extent do the existing

models differ in their macroeconomic and asset pricing implications? To what extent are

they similar? Those questions are the key drivers motivating our research and prompting us

to undertake a comparison exercise.

To perform comparisons in a systematic way, we pose a theoretical continuous-time dy-

namic stochastic general equilibrium model that nests several benchmark models from the

literature. We focus on a production economy with two types of agents having different

productivities, preferences, and financial constraints. We follow previous research by intro-

ducing a productive role for the financing of investments by one class of agents meant to

capture financial intermediaries and their managers. These agents are more productive and

more risk tolerant than households, but they also face financing restrictions. These restric-

tions include limits on short-sales, equity issuance, and leverage. The occasionally binding

nature of those constraints generate an important source of nonlinearity in our model. We

allow both agent types to hedge aggregate risk exposures in financial markets, but subject

to constraints. Finally, we augment standard productivity shocks with growth-rate shocks,

aggregate volatility shocks, and idiosyncratic volatility shocks.

This set of assumptions results in an economic environment that nests multiple models

within a common setup to support model comparisons. Although this general nesting model

is less analytically tractable and more computationally complex than any of the benchmark

1Beginning from the seminal “financial accelerator” papers of Kiyotaki and Moore (1997) and Bernanke,
Gertler, and Gilchrist (1999), there has been explosive growth in the literature on macroeconomic dynamics
under financial frictions. See Brunnermeier and Sannikov (2014), He and Krishnamurthy (2012, 2013, 2014),
Adrian and Boyarchenko (2012), Moreira and Savov (2017), Phelan (2016), Di Tella (2017), and Klimenko
et al. (2016) for some of the core issues in continuous-time models. An even more developed asset pricing lit-
erature that predates the continous-time macro literature explores similar frictions in endowment economies:
e.g., Basak and Cuoco (1998), Basak and Croitoru (2000), Basak and Shapiro (2001), Gromb and Vayanos
(2002), Kondor (2009), Garleanu and Pedersen (2011). This set of macro-finance models has been extended
to examine conventional monetary theory (Drechsler, Savov, and Schnabl (2018), Brunnermeier and Sannikov
(2016a), Di Tella and Kurlat (2017)), unconventional monetary policy (Silva (2016)), macro-prudential poli-
cies (Di Tella (2016), Caballero and Simsek (2017)), international capital flows (Brunnermeier and Sannikov
(2015)), and the cross-section of asset prices (Dou (2016)). For the recent wave of related discrete-time mod-
els, see Gertler and Karadi (2011), Gertler and Kiyotaki (2010), Mendoza (2010), Bianchi (2011), Gertler and
Kiyotaki (2015), Christiano, Motto, and Rostagno (2014). For empirical work linking financial intermediary
leverage and net worth to asset prices and macroeconomic conditions, see Adrian and Shin (2010), Adrian
and Shin (2013), Adrian, Etula, and Muir (2014), He, Kelly, and Manela (2017), Muir (2017), Siriwardane
(2016).
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models from the literature, our nesting framework offers two important advantages. First,

performing comparisons across models is complicated by the fact that each model has its

own special auxiliary assumptions and its own calibration. By nesting several models, we

can hold fixed auxiliary assumptions and parameters, using only a single parameter to tran-

sition from one model to another. This simplifies the comparison exercise. Second, nesting

different models necessarily introduces interactions between their assumptions. For example,

by nesting models “A” and “B”, our model allows us to solve a version of model “A” with

some of the features from model “B”, say its shock or preference structure. These interac-

tions help us distinguish between various assumptions on financial frictions, and allow us to

uncover new mechanisms not previously explored by previous articles in this literature.

To perform comparisons, we focus our attention on the asset-pricing implications of our

model. Like most of the literature, we characterize asset prices by the model’s stochastic dis-

count factor (SDF). Unlike complete markets’ environments, our model features two SDFs,

arising from the different investment opportunity sets faced by the two investor types. Invest-

ment opportunity sets differ since the two types of agents have different productivities and

face potentially heterogeneous sets of constraints. We contrast these SDFs to understand the

effects of financial frictions onto the compensations for aggregate risks earned by our different

agents.

We characterize the dynamics of the SDFs through their short-run dynamics, but we

supplement these with horizon-dependent diagnostics as well. Short-run dynamics of an

SDF St are summarized by its drift and diffusion (µS, σS), which pin down locally risk-free

investment returns as well as local risk prices. But these short-run diagnostics miss potentially

interesting intermediate- and long-horizon asset return properties. We thus augment the

standard asset-pricing analysis with a computation of term structures of risk prices, which

represent Sharpe ratios for dividend strips with various maturities. Our term structures are

characterized using the recently-developed shock elasticities’ tool kit.2 They provide a useful

joint summary of a model’s state dynamics and asset prices at different horizons. Importantly,

they give us another diagnostic tool to help distinguish various models.

At the same time, shock elasticities can be interpreted as nonlinear impulse response func-

tions.3 For instance, shock exposure elasticities for a given cashflow give us the sensitivity

of such expected future cashflow to a normalized shock occuring today, and in the context

of linear models with a Gaussian shock structure, they are identical to impulse response

functions. Using those shock elasticities to parse the underlying economics of financial fric-

tions’ models can thus bring this literature somewhat closer to the traditional macroeconomic

2See Borovička et al. (2011), Hansen (2012), Hansen (2013). An accessible review treatment is provided
in the handbook chapter Borovička and Hansen (2016).

3See Borovička, Hansen, and Scheinkman (2014).
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DSGE literature. Indeed, the macro-finance literature with frictions has until now mostly

focused on short-run dynamics and long-run averages. In a stationary equilibrium with state

vector Xt, short-run dynamics are described by drift and diffusion coefficients (µX , σX), while

long-run outcomes are characterized by the stationary distribution p(x). Less often studied

are medium-run transition distributions pt(x) and how they vary with time t. Because of

their impulse response interpretation, shock elasticities provide a concise way to summarize

a model’s medium-run dynamics. For example, in nonlinear environments like ours, shock

elasticities can be informative about the term structure of crisis and recovery probabilities,

among other things.

We cast our model in continuous time, consistent with many recent papers in this liter-

ature. Continuous-time models with Brownian information are tractable due to their local

normality and localized transition dynamics. These features often deliver quasi-analytical

expressions for decision rules, allowing numerical procedures to avoid maximization steps.

Such expressions remain available even when optimization problems involve financial con-

straints, as in our model. Even more important, localized transition dynamics imply a sparse

transition matrix for the numerically discretized model, which greatly reduces computational

costs. Finally, global solutions methods can be easier to implement in continuous time be-

cause occasionally-binding constraints and highly nonlinear dynamics in extreme parts of the

state space boil down to an analysis of boundary conditions. Global solutions allow us to

evaluate the importance of various models’ nonlinearities and constraints.

We view part of our contribution as delivering a robust numerical solution method for

a high-dimension non-linear stochastic general equilibrium model with occasionally-binding

financial constraints. The equilibrium of our model reduces to a pair of coupled, nonlinear,

second-order partial differential equations for agents’ value functions, which have dimension

equal to the number of state variables in the model. We solve these equations with an

implicit finite difference scheme. In doing so, we take the standard approach of inserting the

PDE nonlinearities into an iterative step, by augmenting the time-independent PDEs with

a false time-derivative. At each iterative step, the discretized implicit scheme yields a large

linear system to solve. The sparsity offered by continuous time delivers speed gains, but to

speed things up even further, we leverage parallelization techniques and high-performance

computing packages in C++.4 Occasionally-binding constraints partition the state space into

regions where constraints bind and where they are slack. Such partitions are endogenous

hyper-surfaces in our state space, and solving for them numerically is a notoriously hard

problem. We tackle this issue by employing another iterative procedure, embedded within

4For example, we have used Pardiso (https://www.pardiso-project.org/) for fast LU decompositions
of our linear system.
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the time-iterations for the PDEs. In particular, we iterate back and forth between agents’

Euler inequalities and market clearing conditions until both equilibrium prices and these

endogenous hyper-surfaces converge.

2 General Model

The model presented below is set in continuous time, t ∈ [0,∞). It builds on the model of

Brunnermeier and Sannikov (2016b), adding heterogeneous recursive preferences, overlapping

generations of agents, an exogenous TFP growth rate, both aggregate and idiosyncratic

volatility shocks, and additional types of financial frictions.

Technology. There are two types of agents, experts and households, denoted by e and

h, respectively. Each group has a continuum of agents indexed by j; the sets of experts

and households are denoted by Je and Jh, respectively. Because of competition and homo-

geneity assumptions we introduce later, it suffices to consider a representative expert and a

representative household.

Each agent produces output with a constant returns-to-scale technology taking only

quality-adjusted capital as an input. In particular, an agent with kj,t units of capital produces

ajkj,t units of the unique consumption good. Within each group, agents’ productivities aj

are homogeneous, and abusing notation somewhat, we write these productivities as ah and

ae. We assume households are less productive than experts, ah ≤ ae.

Quality-adjusted capital is accumulated via investment net of depreciation, as well as

exogenous productivity gains. In addition, capital is subject to both aggregate and idiosyn-

cratic capital-quality shocks (sometimes interpreted as TFP shocks or stochastic depreciation

shocks). Mathematically, capital owned by agent j between t and t+ dt evolves as follows:

dkj,t = kj,t [(gt + ιj,t − δ) dt+
√
stσ · dZt +

√
ςtdZj,t] , (1)

where gt is exogenous productivity growth, ιj,t denotes the investment rate, δ is depreciation,

{Zt}t≥0 is a d-dimensional standard Brownian motion with independent components, and

{Zj,t}t≥0 is a one-dimensional idiosyncratic Brownian motion, independent of Z and Z−j (i.e.,

the idiosyncratic Brownian shocks hitting all other agents in the economy). Importantly, note

that the law of motion for capital in (1) does not account for purchases and sales of capital,

which also may occur.

Investment is subject to adjustment costs, which are paid out of current period output.

By investing ιj,t, agent j pays Φ(ιj,t)kj,t, where Φ(·) is an increasing and convex function

satisfying Φ(0) = 0, Φ′(0) = 1. In applications, we set Φ(x) = φ−1[exp(φx) − 1], which has
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the aforementioned properties.5

Exogenous States. The expected growth rate gt, aggregate stochastic variance st, and

idiosyncratic stochastic variance ςt all evolve exogenously according to

dgt = λg(g − gt)dt+
√
stσg · dZt (2)

dst = λs(s− st)dt+
√
stσs · dZt (3)

dςt = λς(ς − ςt)dt+
√
ςtσς · dZt (4)

Because Zt is a d× 1 vector, σg, σs, σς are d× 1 vectors. The processes (g, s, ς) are all mean-

reverting processes, so we must keep track of them as state variables. In particular, s and ς

are both Feller square root processes. Notice that g would be an Ornstein-Uhlenbeck process

if st were constant, while s adds stochastic volatility. Together, this setup is reminiscent

of long-run risk models (see for example Bansal and Yaron (2004)), with the inclusion of

production and idiosyncratic shocks.

Financial Markets. Capital is freely traded and has (quality-adjusted) price qt, which

evolves as

dqt = qt[µq,tdt+ σq,t · dZt]. (5)

The coefficient µq and the d×1 vector σq are determined in equilibrium. Adjustment costs on

investment create dynamics for qt. Despite the presence of financial frictions, to be described

shortly, financial markets are dynamically complete in this economy. Thus, define the unique

stochastic discount factor (SDF)

dSt = −St[rtdt+ πt · dZt]. (6)

In (6), r is the short-term interest rate, and π denotes the d×1 vector of risk prices associated

with each shock in Z. To ensure complete markets, we introduce zero-cost insurance contracts

(futures) associated with the aggregate shocks Zt, which have unit exposure and expected

returns π. Idiosyncratic shocks are not traded, but they “wash out” in the aggregate analysis.

5This setup is equivalent to one in which production is made by ajAj,tk̃j,t, where physical capital k̃j,t
satisfies

dk̃j,t = k̃j,t(ιj,t − δ)dt,

where the stochastic portion of agents’ TFPs Aj,t follows

dAj,t = Aj,t (gtdt+
√
stσ · dZt +

√
ςtdZj,t) ,

and where adjustment costs are equal to Aj,tk̃j,tΦ(ιj,t). The efficiency units of capital are then kj,t := Aj,tk̃j,t.

5



Return-on-Capital. As a result of productivity differences, experts and households earn

different cash flows, hence different returns, from holding capital. In particular, the return is

defined by dRk
j,t :=

ajkj,t−Φ(ιj,t)kj,t
qtkj,t

dt+
d(qtkj,t)

qtkj,t
, so by Itô’s formula,

dRk
j,t =

[aj − Φ(ιj,t)

qt
+ ιj,t − δ + gt + µq,t + σK,t · σq,t

]
︸ ︷︷ ︸

:=µR,j,t

dt+
[
σK,t + σq,t

]
︸ ︷︷ ︸

:=σR,t

·dZt +
√
ςtdZj,t, (7)

where σK,t :=
√
stσ. Thus, expected returns for experts and households might differ due to

different dividend yields
aj−Φ(ιj,t)

qt
, and also potentially due to different investment rates ιj,t.

6

Overlapping Generations. To achieve a stationary wealth distribution in an economy

with a variety of financial frictions, we assume a “perpetual youth” overlapping generations

(OLG) structure, similar to Gârleanu and Panageas (2015). All agents perish independently

at the Poisson rate λd. To keep the population size constant, newborn agents arrive at

the same rate λd. Among newborns, a fraction ν are designated as experts, while 1 − ν are

households. Dying agents’ wealth is pooled and redistributed equally to newborns, regardless

of their occupation designation (“unintended bequests”). To ensure that these bequests are

positive, we assume there are no markets to hedge these idiosyncratic death shocks, although

adding partial insurance markets would not significantly alter the analysis.

Preferences. Experts and households have continuous-time recursive preferences of Duffie

and Epstein (1992),

Uj,t = E
[ ∫ ∞

0

ϕj(cj,t+s, Uj,t+s)ds | Ft
]
, (8)

where the utility aggregator ϕj is defined as

ϕj(c, U) := ρj
1− γj
1− ψj

U
(
c1−ψj [(1− γj)U ]

−
1−ψj
1−γj − 1

)
. (9)

Within each group (households and experts), preferences are assumed identical. Hence,

let (ψe, γe, ρe) and (ψh, γh, ρh) denote the preference parameters of experts and households,

respectively. These parameters have the following interpretation: 1/ψj > 0 denotes the

elasticity of intertemporal substitution; γj > 0 denotes relative risk aversion; and ρj > 0

denotes the subjective discount rate.7 Third, because of the Poisson death rate λd, both ρe

and ρh should be interpreted as discounting inclusive of the death rate.

6In our set-up, since investment decisions are intra-temporal decisions, such decisions will follow a standard
“q”-theory, and thus investment rates of the two types of agents will be identical in equilibrium.

7When ψj = γj , the preferences collapse to CRRA; when ψj = γj = 1, agents have logarithmic preferences.
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Budgets, Constraints, and Optimization. In this subsection, we develop the optimiza-

tion problems of a representative expert and household. To economize on notation, we

subscript all individual-specific variables by their group label only, j ∈ {e, h}. This will

ultimately be justified by the constellation of competition and homogeneity assumptions

we introduce, by which it suffices to consider a representative expert and a representative

household.

Agents manage capital and produce, subject to some financial frictions. To describe the

frictions, it helps to first describe agents’ balance sheets. For a quantity of capital kj,t an

agent wants to purchase and hold between t and t+ dt, they need to raise qtkj,t in financing.

They use their personal net worth nj,t, equity issuances (1 − χj,t)qtkj,t, and risk-free short

term debt χj,tqtkj,t − nj,t. They owe short term creditors rtdt per unit of short term debt

issued, and pay out (rt + σR,t · πt)dt + σR,t · dZt +
√
ςtdZj,t per unit of equity issued. Note

that equity issuance is the only way for experts to reduce their exposure to idiosyncratic

shocks, since such shocks are not traded. Equity investors do not receive any compensation

for taking on idiosyncratic risk Zj,t since such risk is perfectly diversifiable. Finally, note

that there is a natural incentive for experts (i.e. the most productive agents) to hold capital

and sell equity, as opposed to simply holding a lower amount of capital: indeed, the experts

earn a dividend yield – and thus an expected return on their capital – that is greater than

households’, and are effectively engaged into a “carry” trade, since they can afford to pay a

risk price to households (on the equity they are issuing) that will sometimes be lower than

what they earn from holding and operating this productive capital.

Although agents may issue equity to finance capital purchases, they must retain a fraction

χ
j
∈ [0, 1] of exposure to their assets. Hence, each agent faces the constraint

χj,t ≥ χ
j
. (11)

We allow χ
e
6= χ

h
. This type of equity-issuance constraint, sometimes called a “skin-in-

the-game” constraint, can be derived from a primitive moral hazard problem. Alternatively,

such an equity constraint can be thought of as regulatory. Some papers, like He and Krish-

namurthy (2012, 2013), allow partial equity-issuance (i.e., 0 < χ
j
< 1) and study how equi-

librium dynamics are asymmetric around the points where constraints bind. Other papers,

like Brunnermeier and Sannikov (2014), completely disallow equity-issuance (i.e., χ
j

= 1).

Appendix A.1 introduces additional leverage (sometimes referred to as Value-at-Risk) con-

In the case of the unitary elasticity of substitution (ψj = 1), the function ϕ takes the following form:

ϕj(c, U) := ρj(1− γj)U
(

ln c− ln [(1− γj)U ]

1− γj

)
. (10)
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straints that will be analyzed in later sections of our paper.

Finally, agents may hedge their risk exposures through positions θj,tnj,t in derivatives

markets that pay πtdt+ dZt per unit. This hedging is subject to the constraint

θj,t ∈ Θj. (12)

We again allow Θe 6= Θh. In this setup, incomplete hedging partially intertwines experts’

leverage and aggregate risk-taking decisions. Brunnermeier and Sannikov (2014) completely

intertwines these decisions (i.e., Θe = {0}), while Di Tella (2017) completely disentangles

them (i.e., Θe = Θh = Rd). Summarizing this discussion, figure 1 represents agents’ balance

sheets graphically.

  

Physical 
Capital

Risk Free
Short Term

Debt

Net
Worth

External
Equity

Assets Liabilities

Physical 
Capital

Net 
Worth

Assets Liabilities

Risk Free
Short Term

Bonds

Equities

“Experts”

D
er

iv
at

iv
es

“Households”

Dividends

Interest

Figure 1: Balance sheets of experts and households.

The representative expert and household face the following dynamic budget constraints,

for j ∈ {e, h}:

dnj,t
nj,t

=
(
µnj ,t − cj,t/nj,t

)
dt+ σnj ,t · dZt + σ̃nj ,tdZj,t (13)

where

µnj ,t := rt + (qtkj,t/nj,t) (µR,j,t − rt)− (1− χj,t) (qtkj,t/nj,t)σR,t · πt + θj,t · πt (14)

σnj ,t := χj,t(qtkj,t/nj,t)σR,t + θj,t (15)

σ̃nj ,t := χj,t(qtkj,t/nj,t)
√
ςt. (16)

In agents’ net worth evolutions, (qtkj,t/nj,t)(µR,j,t − rt) is the excess return earned on the
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capital, and (1 − χj,t)(qtkj,t/nj,t)σR,t · πt is expected excess return compensation owed to

outside equity investors. Once again, third-party equity investors are not compensated for

the idiosyncratic risk embedded in the equity issued, since such risk is fully diversifiable.

Agents choose (ιj, kj, χj, θj, cj) to maximize utility (8) subject to their budget constraint

(13), equity constraint (11), hedging constraint (12), short-sale constraint kj,t ≥ 0, and

solvency constraint nj,t ≥ 0.

Competitive Equilibrium. A competitive equilibrium is a set of price and allocation

processes, i.e., (rt, πt, qt)t≥0 and (cj,t, nj,t, kj,t, χj,t, θj,t)j∈Je∪ Jh,t≥0, such that agents solve their

optimization problems, taking price processes as given, and the following market clearing

conditions hold.

• Goods market clearing: ∫
Je∪ Jh

cj,tdj =

∫
Je∪ Jh

(aj − Φ(ιj,t))kj,tdj. (17)

• Capital market clearing: ∫
Je∪ Jh

kj,tdj = Kt. (18)

• Equity market clearing:∫
Je∪ Jh

(1− χj,t)qtkj,tσR,tdj =

∫
Je∪ Jh

θj,tnj,tdj. (19)

• Bond market clearing: ∫
Je∪ Jh

(qtkj,t − nj,t)dj = 0. (20)

We will look for a symmetric equilibrium of the model, in which all agents within the same

class use the same strategy.

3 Equilibrium Characterization

Markov Equilibrium. Define experts’ net worth share wt :=
∫
Je nj,tdj/(qtKt).

8 The state

variables in this economy are (Kt, wt, gt, st, ςt). Because of the scaling property of the model,

all growing quantities scale with Kt. Thus, in the de-trended economy Xt := (wt, gt, st, ςt)

8The wealth distribution is a state variable in our model. However, given the homogeneity properties of
our model, it is sufficient to only keep track of the share of aggregate wealth in the hands of experts.
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serves as a state variable. The state space is X := (0, 1) × R × R+ × R+. Conjecture the

following diffusive dynamics for X:

dXt = µX(Xt)dt+ σX(Xt)dZt,

where µX is a 4 × 1 vector, while σX is a 4 × d matrix. Three of the components of X are

specified exogenously, but the dynamics of w need to be determined in equilibrium.

Solution Method. In Appendix A.2, we apply a dynamic programming approach to solve

agents’ optimization problems, which delivers a pair of Hamilton-Jacobi-Bellman (HJB) equa-

tions. Each is a 4-dimensional second-order nonlinear partial differential equation (PDE) for

agents’ value functions. Next, in Appendix A.3, we use the market clearing conditions and

constraints to solve for all equilibrium objects, in terms of the state variables and the value

functions. By reinserting these equilibrium prices and dynamics in the HJB equations, the

entire equilibrium fixed point problem boils down to solving a pair of PDEs for agents’ value

functions. As a baseline numerical method, we implement an implicit finite difference scheme,

which augments the PDE with an artificial time-derivative (“false transient”) in order to it-

erate on the nonlinearities in the PDE system. More details on this procedure, as well as

comparisons with an explicit scheme, are contained in Appendix B.

In equilibrium, the presence of occasionally-binding constraints such as (11) manifest as

endogenous partitions of the state space X . These partitions are identified numerically using

the complementary slackness conditions from agents’ optimization problems. In general, at

parts of the state space where the constraints are slack, equilibrium dictates a first-order

nonlinear differential equation system for (q, χe, χh), which are the capital price and the

endogenous inside equity shares. When any of the constraints bind, the corresponding part of

this system becomes degenerate. Thus, the endogenous partitions are determined by solving

a system of variational inequalities defined by the equilibrium. We solve these variational

inequalities jointly with the value function PDEs. See Appendix B for more details.

Stochastic Discount Factors. The presence of financial frictions implies there are two

SDFs in this economy, one for experts and one for households. In analyzing the model, we

can examine the properties of shadow risk prices πe and πh corresponding to each of these

SDFs. Since households are always marginal in outside equity markets, we have π ≡ πh

always. See Appendix A.5 for details on the the derivations of these shadow risk prices.

Traditional and Non-Traditional Diagnostic Tools. Traditional model diagnostics in

this literature involve local state variable dynamics (µX , σX), local SDF dynamics (r, πe) and
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(r, πh), capital prices q and their dynamics (µq, σq), and the ergodic distribution of Xt.

We also explore several non-traditional diagnostics based on shock elasticities, which are

methods to calculate term structures of risk exposures and risk prices. For example, the

shock-exposure elasticity for some cash flow {Gt}t≥0 answers the question: how risky is the

horizon-t strip Gt? The corresponding shock-price elasticity answers: what risk price is

associated with Gt? In our calculations in section 4, we analyze elasticities where G = C

is aggregate consumption in the economy, but also where G = Ce, Ch denotes experts’ or

households’ consumptions.

Shock elasticities are interesting objects because they incorporate horizon-dependence,

unlike local SDF dynamics, as well as state-dependence, unlike unconditional asset price

moments. Note also that the risk exposures and risk prices depend on what shock is under

consideration. We have multiple sources of risk (i.e., TFP shocks, growth rate shocks, aggre-

gate volatility shocks, idiosyncratic volatility shocks), and we examine shock elasticities to

each of these shocks.

These shock elasticities can also be thought of as counterparts to impulse response func-

tions, an equivalence that can be made precise in continuous-time Brownian environments.

A shock occurring at time 0 results in some expected change in the cash flow Gt and its ex-

pected excess return, which are the exact quantities shock-exposure and shock-price elastici-

ties deliver. This impulse response interpretation can bridge the gap between these financial

frictions models and conventional macroeconomic analysis. See Appendix C for more details

on shock elasticities.

4 Model Comparisons

Literature Nested. With this model setup, we are able to approximately nest several

models in the recent literature on macroeconomics with financial frictions. See Table 1. The

parameters β̄e, β̄h are defined by the leverage constraint (21) in the appendix, to be considered

in a later iteration of this paper.

Benchmark Model. We calibrate most parameters of the model to be broadly consistent

with annual calibrations of other papers in the literature. The Brownian shocks Zt have

dimension four. We assume the shocks to exogenous processes (g, s, ς) are independent, and

independent of the capital-quality shock to k. Thus, we set σ, σg, σs, and σς to each have

three zero entries and one non-zero entry. See Table 2 for benchmark values.

In our benchmark economic environment, households cannot produce any capital (ah =

−∞), meaning that all the capital in the economy will always be held and operated by
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Paper Parameters Notes

Basak and Cuoco (1998) ah = −∞, χ
e

= 1, β̄e =∞,
γh = ψh = 1, γe = ψe,
σg = σs = σς = 0

We add production. We also
add OLG for stationarity.

He and Krishnamurthy (2013) ah = −∞, χ
e
< 1, β̄e =∞,

γh = ψh = 1, γe = ψe,
σg = σs = σς = 0

We add production. Their
households also have labor
income.

Brunnermeier and Sannikov (2014) ah > −∞, χ
e

= χ
h

= 1,

β̄e =∞, Θe = {0},
γh = ψh = γe = ψe = 1,
σg = σs = σς = 0

Their main model is
risk-neutral.

Adrian and Boyarchenko (2012) ah > −∞, χ
e

= 1, β̄e <∞,
Θe = {0},
γh = ψh = γe = ψe = 1,
σg = σs = σς = 0

Their households additionally
face liquidity preference shocks.

Di Tella (2017) ah = −∞, β̄e =∞,

Θe = Θh = Rd, γh = γe,
ψh = ψe, σg = σs = 0, σς 6= 0

They assume χe,t = χ
e

always.

Gârleanu and Panageas (2015) ah = ae, χe = χ
h

= 0, β̄e =∞,

Θe = Θh = Rd, γe < γh,
σg = σs = σς = 0

Dynamically complete markets,
but the wealth share of experts
is still a state variable.

Bansal and Yaron (2004) ah = ae, χe = χ
h

= 0, β̄e =∞,

Θe = Θh = Rd, γe = γh, σg 6= 0,
σs 6= 0, σς = 0

Frictionless representative agent
economy with stochastic growth
and volatility.

Table 1: This table documents which parameter configurations from our model can approximate
other models in the literature.

experts. Households and experts have identical preferences, with a risk aversion γe = γh > 1,

and a unitary intertemporal elasticity of substitution (ψh = ψe = 1). Our experts in this

benchmark environment face a partial skin-in-the-game constraint, χ
e

= 0.50, meaning that

experts must bear 50% of the aggregate risk related to the capital they operate. In our

benchmark, we consider not only TFP shocks, but also growth rate shocks (‖σg‖ > 0) and

aggregate stochastic volatility shocks (‖σs‖ > 0), but for the time being ignore idiosyncratic

stochastic volatility shocks (‖σς‖ = 0).

The resulting balance-sheet of agents is the following. Experts will finance their capital

holdings via (a) their net worth, (b) the issuance of outside equity, and (c) the issuance of

short term risk-free debt claims. Households will, in equilibrium, not hold any capital and

will invest their entire net-worth in bonds and equity issued by experts.

In terms of constraints, this economic environment is closest to the intermediary asset

pricing economy of He and Krishnamurthy (2013) (see Table 1), except that it includes a

12



Parameter Value Description

ae 0.14 Experts’ TFP
ah −∞ Households’ TFP
‖σ‖ 0.04 Mean TFP vol.
φ 3 Adjustment cost
δ 0.05 Depreciation rate

ḡ 0 Mean exogenous TFP growth
λg 0.252 Mean-reversion exogenous TFP growth
‖σg‖ 0.0141 Exogenous TFP growth vol.
s̄ 1 Mean “normalized” agg. TFP vol.
λs 0.156 Mean-reversion agg. TFP vol.
‖σs‖ 0.132 Vol. “normalized” agg. TFP vol.
ς̄ 0 Mean idio. TFP vol.
λς 0 Mean-reversion idio. TFP vol.
‖σς‖ 0 Vol. “normalized” idio. TFP vol

ρe 0.05 Expert rate of time preference
ρh 0.05 Household rate of time preference
ψe 1 Expert inverse EIS
ψh 1 Household inverse EIS
γe 3 Expert RRA
γh 3 Household RRA

λd 0.02 Birth/death rate
ν 0.1 Fraction of newborns designated experts

χ
e

0.50 Expert min skin-in-the-game

χ
h

1 Household min skin-in-the-game

β̄e ∞ Expert max VaR
β̄h ∞ Household max VaR
Θe {0} Expert hedging constraint set
Θh R4 Household hedging constraint set

Table 2: Benchmark levels for parameters.

linear production technology, growth rate and aggregate variance shocks, and it generalizes

the particular preference specification assumed in the original paper.

In this environment, due to the fact that both agents have unitary EIS and capital is

always held entirely by experts, the price of capital qt is constant,9 so capital return volatility

only stems from the volatility of the TFP shock. The relative wealth wt is a mean reverting

variable – when experts are relatively poor (i.e. w is low), they earn high expected returns

and thus on average increase their net worth relative to households’.

Interaction of Financial Frictions with Other Shocks. Looking at the expert and

household SDFs can be insightful about the financial frictions in the model. For example,

9This result can be derived from the consumption market clearing equation, and from the fact that unitary
EIS agents keep their consumption-to-wealth ratios constant.
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figure 2 shows expert and household risk prices to the TFP and aggregate volatility shocks,

as a function of experts’ wealth share (w) and stochastic variance (s).

Figure 2: Local risk prices πe and πh for the TFP shock (first row) and volatility shock (second
row). The “single-agent” risk price, from an economy with χ

e
= 0, is plotted alongside πe. Expected

growth g is held fixed at g.

As expected, experts’ TFP risk price (top left panel) is falling in their relative wealth and

rising in aggregate volatility. Households’ TFP risk price (top right panel) is approximately

the same as the risk price from a frictionless “single-agent” long-run risks model (e.g., Bansal

and Yaron (2004)), which corresponds to χ
e

= 0.10

Surprisingly, when their relative wealth is low enough, experts’ volatility risk price (bot-

tom left panel) switches from negative to positive, implying experts can be fond of volatility

shocks. This occurs because the experts’ expected returns on capital are strongly decreasing

and convex in w, inheriting the shape of their TFP risk price (see equation (75) in Appendix

A.5, which shows that TFP risk prices are proportional to w−1). Jensen’s inequality implies

that a positive volatility shock benefits experts. This force outweighs the standard volatility

aversion inherent in these preferences, which shows up in the negative household volatility

risk price (bottom right panel) and the “single-agent” volatility risk price. Importantly, this

insight is only available with the volatility shock introduced in the model: the TFP risk

prices are increasing in volatility for both experts and households, which might suggest a

10In addition, we describe a single-agent long-run risks model, and its analytical solution for the unitary
EIS case, in Appendix D.
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distaste for volatility in the comparative static sense.

Occasionally-Binding Constraints. Given χ
e
< 1, we might expect equity constraints

to be occasionally-binding, as in He and Krishnamurthy (2013). However, it turns out that

these constraints are always-binding unless experts and households differ in their preferences.

See figure 3, which illustrates this point in a one-dimensional model where w is the only state

variable (i.e., σg = σs = 0 so that g and s are non-stochastic). Thus, implicitly embedded in

some of the “auxiliary assumptions” of He and Krishnamurthy (2013) and other models are

assumptions about heterogeneous preferences.

Figure 3: Expert skin-in-the-game χ (top row) and expert risk prices πe (bottom row). Stationary
densities are shaded in the background. We set σg = σs = 0. In the plots in the right column, we
reduce γe from 3 to 1. All other parameters are given in Table 2.

With partial equity issuance (χ
e
< 1), experts’ financing constraint does not bind when

w is sufficiently high. Under symmetric preferences, a non-binding constraint implies local

Sharpe ratios earned by experts and households are equalized. In such an environment, the

wealth share w is locally deterministic, moving purely due to births and deaths, thus exiting

the unconstrained region in finite time. With homogeneous preferences, the ergodic density

of w resides exclusively in the constrained region (top left panel).

On the other hand, with heterogeneous preferences, the ergodic density can include both

the constrained and unconstrained region (top right panel). This results in much more

nonlinearity in experts’ risk prices than in the homogeneous preference case (bottom two
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panels). Such a situation can materialize because the unconstrained region remains stochastic

(in the sense that σw 6= 0), as is standard in heterogeneous preference models.

Volatility Paradox. In Brunnermeier and Sannikov (2014), the authors emphasize a

“volatility paradox” which states that lower fundamental volatility can generate an offsetting

increase in non-fundamental price volatility, in the long run. This feature operates through

an endogenous deterioration of experts’ balance sheets: lower fundamental volatility reduces

experts’ return-on-capital, which drags their relative wealth to a lower long-run level. Here,

we re-examine this mechanism when volatility is truly stochastic, rather than a comparative

static.

First, we study the impulse response of wt to an s-shock. We compute the impulse

response using the concept of shock-exposure elasticities, as described above. To study this

in a relatively clean way, we shut down the growth rate shocks (σg = 0) and specialize

to the case of logarithmic utility (γe = γh = 1) so that volatility shocks are not priced.

Figure 4 shows that a positive volatility shock generates an increase in wt. The dynamic

response of wt is hump-shaped, due to the fact that wt returns to its stationary distribution.

There is no impact response (i.e., w0+ = w0), due to the absence of any forces leading to a

state-dependent capital price (e.g., non-unitary EIS or finite household productivity).

Figure 4: Shock-exposure elasticity of wt to a volatility shock. In all models, experts and households
have the same risk aversion, γe = γh = γ. Growth shocks are shut down, σg = 0. We set
‖σs‖ = 0.132, λs = 0.156, χ = 1, and γ = 1. All other parameters are given in Table 2.

An implication of this volatility IRF is that the equilibrium should feature a positive

ergodic correlation between (wt, st). But an interesting question is how strong this corre-

lation is, and how it depends on the calibration of the model. To study this, we compute

corr(wt, st) as a function of parameters (σs, λs, χ, γ), shown in figure 5. First, notice that all

the correlations are indeed positive.
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Figure 5: Ergodic correlations between
(wt, st) for different values of param-
eters (σs, λs, χ, γ). In all models, ex-
perts and households have the same
risk aversion, γe = γh = γ. Growth
shocks are shut down, σg = 0. With
the exception of the parameter being
varied, we set ‖σs‖ = 0.132, λs =
0.156, χ = 1, and γ = 1. All other
parameters are given in Table 2.

Focusing on the top row shows that, as volatility shocks are larger (higher σs) or more

persistent (lower λs), the ergodic wealth-volatility correlation increases substantially. This

helps explain strength of the comparative static results of Brunnermeier and Sannikov (2014).

The bottom row shows that less equity-issuance (higher χ) or more risk-averse agents (higher

γ) raises the (wt, st) correlation. Intuitively, higher χ or higher γ both scale experts’ risk

compensations, amplifying the effect of a volatility shock.

Are Experts More Productive or Risk-Tolerant? Among many alternatives, we focus

on two competing hypotheses for why subsets of agents (“experts”) take larger amounts of

risk than others. Experts could be more productive managers of capital (ae > ah) or they

could simply be more risk-tolerant (γe < γh). The two models closest to this comparison are

Brunnermeier and Sannikov (2014) versus Gârleanu and Panageas (2015).

Figure 6 shows the endogenous capital distribution κ := Ke,t/(Ke,t+Kh,t) as a function of

state variables (w, s), holding fixed g = g. Both models feature regions where κ ∈ (0, 1), but

the heterogeneous productivity model showcases a large part of the state space where experts

hold the entire capital stock. To understand this, consider the Merton portfolio k∗j =
µR,j−r
γjσR

for agent j. With higher productivity, experts obtain a discretely larger expected return

on capital than households (µR,e > µR,h) than households, so it is possible for households’

desired portfolio to be negative (k∗h < 0), leaving them on their no-shorting constraint. If

experts and households faced the same returns (µR,e = µR,h) but their risk aversions differed

(γe < γh), experts and households would both hold positive quantities of capital but at

different scales (k∗e > k∗h > 0).

In a model with heterogeneous productivity, when households finally do start holding

capital, capital prices fall sharply and risk compensations rise sharply, as seen in figure 7
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Figure 6: Expert capital share κ as a function of wealth share w and stochastic variance s. Expected
growth g is held fixed at g. Left panel has more productive experts (ah = 0.7 < ae = 0.14,
γe = γh = 3, ν = 0.01, λd = 0.04). Right panel has more risk-tolerant experts (ah = ae = 0.14,
γe = 2 < γh = 8, ν = 0.10, λd = 0.02). Parameters (γe, γh, ν, λd) are chosen such that the long-run
mean of wt is approximately the same in the two models. All other parameters are in Table 2.

(left panel). In contrast, a model with heterogeneous preferences features much smoother

and more gradual risk price dynamics. Importantly, this comparison is made holding the

wealth distribution relatively fixed across the two models (this is accomplished by varying

parameters (γe, γh, ν, λd) to adjust the densities of wt). In future analyses, we would like

to experiment with imposing additional observational constraints in our model comparisons

(e.g., similar average risk prices). Imposing observational constraints can impose strong

discipline on the models in searching for distinguishing features.

These observed differences between experts’ risk prices also show up in the shock-price

elasticities of these models. The bottom row of figure 8 illustrates the term structure of

experts’ TFP risk prices. When experts’ relative wealth is moderate (e.g., wt at its median),

the term structures between the models are similar. When experts are distressed (e.g., wt at

a low percentile), they look different: in the heterogeneous productivity model, the level of

the term structure rises dramatically, and it becomes more negatively-sloped.

The top row shows that risk exposures in the heterogeneous productivity model are also

higher when wt is low, whereas they are invariant to wt in the heterogeneous risk aversion

model. To generate a closer link between the models on this dimension, we would need to

calibrate non-unitary EIS in the heterogeneous risk aversion model, which we leave for a

future iteration.

Another interesting difference between these models is embedded in experts’ perception of
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Figure 7: Experts’ TFP risk prices πe in models with heterogeneous productivity versus hetero-
geneous risk aversion. Stationary densities are shaded in the background. Expected growth g is
held fixed at g. Left panel has more productive experts (ah = 0.7 < ae = 0.14, γe = γh = 3,
ν = 0.01, λd = 0.04). Right panel has more risk-tolerant experts (ah = ae = 0.14, γe = 2 < γh = 8,
ν = 0.10, λd = 0.02). Parameters (γe, γh, ν, λd) are chosen such that the long-run mean of wt is
approximately the same in the two models. All other parameters are in Table 2.

Figure 8: Shock-exposure and -price elasticities of aggregate consumption Ct to the TFP shock.
Expected growth g is held fixed at g. Left column has more productive experts (ah = 0.7 <
ae = 0.14, γe = γh = 3, ν = 0.01, λd = 0.04). Right column has more risk-tolerant experts
(ah = ae = 0.14, γe = 2 < γh = 8, ν = 0.10, λd = 0.02). Parameters (γe, γh, ν, λd) are chosen such
that the long-run mean of wt is approximately the same in the two models. All other parameters
are in Table 2.

volatility shocks. Figure 9 shows shock-exposure and shock-price elasticities to a st-shock. In

normal times (e.g., wt at its median), the two models both produce similar volatility shock-
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exposure and shock-price elasticities. The positive sign and shape of the volatility shock-

exposure elasticity are standard in long-run risk models: higher volatility of log consumption

leads to higher future expected consumption through a Jensen effect. The positive sign of

the volatility shock-price elasticity is due to the possibility of experts’ demanding a positive

volatility risk price, as in the discussion surrounding figure 2.

In bad times (e.g., wt at its 5th percentile), the sign of both the exposure and price

elasticities flip dramatically in the heterogeneous productivity model (left column). In such

times, households are now holding capital, and a positive volatility shock further increases

their desire to hold capital (this can also be seen in the left panel of figure 6). This leads

a strong decline in capital prices, output, and consumption. Without these forces, experts

liked volatility shocks, because their risk prices were strongly convex in wt. With capital

reallocation, πe is less strongly convex in wt, attenuating this force. More importantly, with

an expected decline in aggregate consumption, there is a direct negative impact of a positive

volatility shock.

Figure 9: Shock-exposure and -price elasticities of aggregate consumption to the volatility shock.
Expected growth g is held fixed at g. Left column has more productive experts (ah = 0.7 <
ae = 0.14, γe = γh = 3, ν = 0.01, λd = 0.04). Right column has more risk-tolerant experts
(ah = ae = 0.14, γe = 2 < γh = 8, ν = 0.10, λd = 0.02). Parameters (γe, γh, ν, λd) are chosen such
that the long-run mean of wt is approximately the same in the two models. All other parameters
are in Table 2.
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Differential Consumption Dynamics. Because of financial frictions, the dynamics of

experts’ and households’ consumptions can be very different. Figure 10 plots shock-exposure

elasticities for Ce and Ch in the previous heterogeneous productivity model. Again, these

can be thought of as nonlinear IRFs.

Figure 10: Shock-exposure elasticities for expert consumption Ce (left column) and household
consumption Ch (right column). Expected growth g is held fixed at g. The parameters for this
model coincide with the heterogeneous productivity model (ah = 0.7 < ae = 0.14, γe = γh = 3,
ν = 0.01, λd = 0.04). All other parameters are in Table 2.

Because experts have leverage, their consumption responds much stronger to a positive

TFP shock (top row). As w falls, expert leverage rises, so their consumption is accordingly

more sensitive to a TFP shock. The growth rate shocks are shared perfectly in this economy,

in the sense that Ce and Ch respond identically to a g-shock (middle row). This occurs

because of the unitary EIS assumption of this model, something we plan to relax in the

future. Finally, volatility shocks generate highly asymmetric responses between experts and

households. In normal times (e.g., w at its median), one can see, by comparing the responses

of Ce and Ch, that the response of w := Ne/(Ne+Nh) ≡ Ce/(Ce+Ch) is qualitatively similar
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to the IRFs in figure 4. As before, higher volatility improves experts’ investment opportunities

relative to households, which improves their future consumption. In bad times (e.g., w at

its 5th percentile), an increase in volatility lowers capital prices, which predominantly affects

experts, so their consumption drops in the short run.

5 Conclusion

In this paper, we develop a general macroeconomic model with financial frictions that en-

compasses many recent papers in the literature. By varying parameters in the model, we

compare implications of various financial frictions, preference constellations, and exogenous

state variables. By introducing a model more general than those in the literature, we are

also able to explore interactions between features of disparate models from the macro-finance

literature. So far, we have made a subset of the comparisons we are interested in.

Readers can experiment with some of the parameter constellations we have solved by vis-

iting our website (https://modelcomparisons.shinyapps.io/modelcomparisonssite/).

There, we offer the ability to compare different model parameterizations directly, using some

of the same diagnostic tools explored in this paper.

Going forward, we would make several additional comparisons with our model. How do

equity constraints differ from leverage constraints? If agents can partially share risk by hedg-

ing in derivatives markets, in addition to issuing equity, how attenuated are the effects of

other financial constraints? To what extent do asset price dynamics from a model with un-

hedgeable idiosyncratic uncertainty shocks resemble those from a model with other financial

constraints? How do macro-prudential policies controlling equity and leverage constraints,

among other things, affect asset prices, output growth, and welfare?
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A Equilibrium Derivation and Results

A.1 Portfolio Constraints

Adding leverage constraints within our framework is relatively simple. Assume agents’ bor-

rowing in the bond market χj,tqtkj,t − nj,t is limited by the following,

χj,tqtkj,t
nj,t

σR,t ≤ β̄j, (21)

where β̄e 6= β̄h is allowed. This type of borrowing constraint, sometimes called a “value-

at-risk” (VaR) constraint, can be derived from primitive agency frictions or attributed to

regulatory requirements. Adrian and Boyarchenko (2012) incorporate a VaR constraint on

their intermediaries. (In the current iteration, we have not explored β̄j < ∞, so we are

effectively assuming no borrowing constraints.)

More generally, we can formulate our agents’ optimization problem while encapsulating

our specific constraints (skin-in-the-game, as well as leverage constraints) and clarify the

role of constraints as risk-sharing impediments. Suppose agents choose (cj, kj, σnj , σ̃nj) to

maximize utility (8) subject to their budget constraint (13), shorting constraint kj,t ≥ 0,

solvency constraint nj,t ≥ 0, and the time-varying following risk-bearing constraints:

σnj ,t ∈ Σj,t and σ̃nj ,t ∈ Σ̃j,t. (22)

This formalism captures our constraints in the following way:

• Imposing the equity constraint (11) alone is equivalent to putting

Σj,t = Rd and Σ̃j,t = [χ
j

qtkj,t
nj,t

√
ςt,∞).

• Imposing the leverage constraint (21) alone is equivalent to putting

Σj,t = Rd and Σ̃j,t = (−∞, β̄j
√
ςt

σR,t
].

• Imposing the hedging constraint (12) alone is equivalent to putting

Σj,t = {yσR,t : y ≥ 0}+ Θj and Σ̃j,t = R+.

Constraint combinations simply involve taking the intersection of the Σj,t and Σ̃j,t sets above.
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A.2 HJB equations

The continuation value Uj of any agent j is a function of its wealth, as well as the ag-

gregate state vector X: Uj,t = Uj(nt, Xt). Using the analogue of dynamic programming

results for recursive preferences, developed in Appendix A.4, we thus have the following

Hamilton-Jacobi-Bellman (HJB) equation for any agent j (omitting the subscript j ∈ {e, h}
for notational simplicity):

0 = maxϕ(c, U) + n
[
µn − c/n

]
∂nU + µX · ∂XU

+
1

2
n2
(
‖σn‖2 + σ̃2

n

)
∂nnU + nσn · σ′X∂nXU +

1

2
tr(σ′X∂XX′UσX). (23)

For households, the maximization (23) is over all possible choices of investment rate ι, capital-

to-wealth holdings k̂ ≥ 0, aggregate market hedges θ̂, and consumption-to-wealth ratio ĉ ≥ 0.

For experts, the maximization (23) is over all possible choices of investment rate ι, capital-to-

wealth holdings k̂ ≥ 0, consumption-to-wealth ratio ĉ ≥ 0 and equity retention χ ≥ χ. Since

ϕj in equation (9) is homogeneous of degree 1− γj in (c, U), and since net worth evolutions

in (13) are linear, the continuation utility Uj is also homogeneous of degree 1 − γj in net

worth. In particular, agents’ continuation value takes the form

Uj,t =
(ξj(Xt)nj,t)

1−γj

1− γj
, j ∈ {h, e}, (24)

where ξj is some positive function. By using identities relating U and its partial derivatives

derived in Appendix A.6, we can divide the HJB equation satisfied by experts’ and house-

hold’s value function by (1 − γj)Uj, and omitting the subscript j ∈ {e, h} for notational

simplicity, we obtain:

0 = max
ρ

1− ψ
[
(c/n)1−ψξψ−1 − 1

]
+ µn − c/n+ µX · ∂X ln ξ − γ

2

(
‖σn‖2 + σ̃2

n

)
+ (1− γ)σn · σ′X∂X ln ξ +

1

2

[
tr(σ′X∂XX′ ln ξσX) + (1− γ)‖σ′X∂X ln ξ‖2

]
(25)

For both households and experts, optimal investment only affects the ex-consumption drift

µn of net worth, so it satisfies the first-order condition (dropping j subscripts)

Φ′(ι) = q. (26)
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Define the optimal investment function ι(q) := (Φ′)−1(q), as Φ′ is invertible. When Φ(ι) =

φ−1[exp(φι)− 1], we have the functional forms:

ι(q) = φ−1 log(q) (27)

Φ(ι(q)) = φ−1(q − 1). (28)

Note that experts’ and households’ investment rate are equal, since their investment cost

function is the same. Optimal consumption satisfies the “envelope condition”

∂cϕ(c, U) = ∂nU. (29)

Using the form of the function ϕ, together with the homogeneity of the continuation value

in (24), the envelope condition (29) becomes

cj,t = ρ
1/ψj
j ξ

1−1/ψj
j,t nj,t. (30)

This equation also holds in the particular case ψj = 1, in which case the consumption-wealth

ratio is constant equal to ρj. Next, substitute results (26) and (30) back into the HJB

equation (23) to obtain for both experts and households (without j subscripts)

0 = max
ψ

1− ψ
ρ1/ψξ1−1/ψ − ρ

1− ψ
+ µn −

γ

2

(∥∥σn∥∥2
+ σ̃2

n

)
+
[
µX + (1− γ)σXσn

]
· ∂X ln ξ

+
1

2

[
tr(σ′X∂XX′ ln ξσX) + (1− γ)‖σ′X∂X ln ξ‖2

]
Households maximize over all possible choices of leverage qkh/nh ≥ 0 and market hedges θ,

while experts maximize over all possible choices of leverage qke/ne ≥ 0 and equity retention

χ ≥ χ. Maximizing over the remaining variables involves a basic portfolio choice. For

households, this results in

µR,h − r + (1− γh)(σXσR) · ∂X ln ξh ≤ γh (σnh · σR + σ̃nh
√
ς)

π + (1− γh)σ′X∂X ln ξh = γhσnh .

Combining these equations, we have households’ Euler equation,µR,h − r ≤ π · σR, if kh = 0

µR,h − r = π · σR + γhςqkh/nh, if kh > 0.
(31)
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In other words, when households’ expected capital return is below what they can earn with

exposure to aggregate risk via futures contracts, they do not hold any capital. When they

do hold capital, the expected return on such capital is equal to compensation for aggregate

risk (via π ·σR) plus a compensation for taking idiosyncratic risk (via γhςqkh/nh, which, as is

discussed in Appendix A.4, can be viewed as the product of the risk exposure
√
ςt multiplied

by a shadow risk price γh
√
ςt(1− κt)/(1− wt), where κt will be the fraction of total capital

held by experts). In the absence of idiosyncratic capital quality shocks (i.e. when ς = 0),

the Euler equation is modified to µR,h − r ≤ π · σR, with equality when kh > 0. Households’

optimal risk allocations are given by

σnh =
qkh
nh

σR +
θh
nh

=
π

γh
+

1− γh
γh

σ′X∂X ln ξh (32)

βh =
qkh
nh

=
∆+
h

γhς
, if ς > 0

≥ 0, if ς = 0.
(33)

Equation (32) is the optimal household exposure to aggregate risks, which is a standard

combination of mean-variance efficient portfolio and hedging demands. In the above, we

have introduced:

∆h,t := µR,h,t − rt − πt · σR,t (34)

∆h,t is the gap between the households’ expected return on capital and the risk-premium paid

by the market. As discussed, when ∆h < 0, households decide not to hold any capital. When

∆h > 0, their leverage increase linearly with ∆h. Finally, note that with “log” investors,

the hedging demand disappears and the household’s optimal wealth exposure to aggregate

shocks σnh is simply equal to the risk-price vector π. Experts’ portfolio choice is similar.

Their first-order conditions

µR,e − r − (1− χ)π · σR + χ(1− γe)(σXσR) · ∂X ln ξe = γeχ (σR · σne +
√
ςσ̃ne)

π · σR + (1− γe)(σXσR) · ∂X ln ξe ≤ γe (σR · σne +
√
ςσ̃ne) ,

can be combined to yield an Euler equation:π · σR ≤ µR,e − r, if χ = χ

π · σR = µR,e − r, if χ > χ.
(35)

The interpretation of equation (35) is straightforward: if the risk-premium πt · σR,t required

to be paid to the market for issuing equity is lower than the expected excess return that

experts earn on their capital, they will issue as much equity as they can, and bounce against
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their skin-in-the-game constraint χ. Experts’ optimal leverage is given by

βe :=
χqke
ne

=
1

γe (‖σR‖2 + ς)

[
∆e + π · σR + (1− γe)(σXσR) · ∂X ln ξe

]
, (36)

and because they take all aggregate risks in equal proportions, σne = βeσR. Note that the

hedging motive is absent in the case where γe = 1. In the above, the “wedge” ∆e,t is defined

as follows:

∆e,t := χ−1[µR,e,t − rt − πt · σR,t] (37)

∆e,t represents the incremental risk premium attained by experts, per unit of equity invest-

ment. These are “rents” accruing to experts, due to the presence of financial frictions. In

particular, due to Euler equation (35), ∆e,t > 0 only when the equity-issuance friction is

binding, i.e., χt = χ.

To see that ∆e represents an incremental private risk premium for experts, use the def-

inition of ∆e and the Euler equation (35) to obtain the following equation: µR,e − r =

χ(π · σR + ∆e) + (1 − χ)π · σR. In particular, χ(π · σR + ∆e) represents the experts’ excess

return to “inside equity” whereas (1−χ)π ·σR represents experts’ payout to “outside equity”

held by households. Simply by accounting, these sum to the excess return on assets, and ∆e

can thus be interpreted as the bonus return per unit of inside equity, of which there are χ

units.

Finally, we substitute the optimal choices (32) and (36) back into the HJB equations.

When doing this substitution, we use the fact that µnh = r + σnh · π + βh∆h and that

µne = r + βe (∆e + σR · π). We also use the fact that σ̃nh = βh
√
ς for households, and that

σne = βeσR and that σ̃ne = βe
√
ς for experts. For households, we obtain:

0 =
ψh

1− ψh
ρ
1/ψh

h ξ
1−1/ψh

h − ρh
1− ψh

+ r +
1

2γh

(
‖π‖2 + (γhβh

√
ς)2
)

+
[
µX +

1− γh
γh

σXπ
]
· ∂X ln ξh

+
1

2

[
tr(σ′X∂XX′ ln ξhσX) +

1− γh
γh

‖σ′X∂X ln ξh‖2
]

(38)

Without idiosyncratic capital quality shocks (i.e. when ς = 0), the term γhβh
√
ς disappears

and we obtain the complete market, recursive preference HJB equation. For experts:

0 =
ψe

1− ψe
ρ1/ψe
e ξ1−1/ψe

e − ρe
1− ψe

+ r +
1

2γe

(∆e + π · σR)
2

‖σR‖2 + ς
+
[
µX +

1− γe
γe

(
∆e + π · σR
‖σR‖2 + ς

)
σXσR

]
· ∂X ln ξe

+
1

2

[
tr(σ′X∂XX′ ln ξeσX) +

1− γe
γe

(σ′X∂X ln ξe)
′
[
γeId + (1− γe)

σRσ
′
R

‖σR‖2 + ς

]
σ′X∂X ln ξe

]
(39)

In the above, Id is the d × d identity matrix. Aside from the idiosyncratic risk that house-
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holds are forced to bear, their HJB equation is a standard equation for a complete-markets

investor with recursive preferences. Experts HJB equation additionally has effects of finan-

cial frictions, including the presence of the bonus risk premium ∆e and the inability to hedge

aggregate risks associated with (g, s, ς). Boundary conditions for (38) and (39) will be dis-

cussed below. Note also that the same PDEs hold for unitary IES investors, except that the

term ψ
1−ψρ

1/ψξ1−1/ψ − ρ
1−ψ is replaced by ρ (ln ρ− ln ξ)− ρ.11

A.3 Solving for equilibrium dynamics

To characterize equilibrium, we must determine (i) q and its dynamics as a function of X;

(ii) r, π, ∆e and ∆h as a function of X; and (iii) the dynamics of X. Because of the

constraints χ ≥ χ and kh ≥ 0, the state space must be partitioned into regions in which

various constellations of constraints bind. To do this, define κt := Ke,t
Kt

to be the fraction

of capital managed by experts. There are 3 cases to consider, by considering the Euler

inequalities (31) and (35) for households and experts:12

• κ = 1 and χ > χ – In this case, all the capital is managed by experts, who are wealthy

enough that their skin-in-the-game constraint is not binding. In this region, we have:

µR,e − r = π · σR > µR,h − r

• κ = 1 and χ = χ – In this case, all the capital is managed by experts, but their

skin-in-the-game constraint is now binding. In this region, we have:

µR,e − r > π · σR > µR,h − r

• κ < 1 and χ = χ – In this case, experts’ net worth, compared to the aggregate wealth in

the economy, is too small, experts’ risk-bearing capacity is low and some of the capital

has to be held by household, whose productivity is lower than the experts’. In this

region, we have:

µR,e − r > µR,h − r ≥ π · σR
11Note that this formula can easily be obtained using L’Hôpital’s rule, noticing that:

lim
ψ→1

ψρ1/ψξ1−1/ψ

1− ψ
− ρ

1− ψ
= ρ (ln ρ− ln ξ)− ρ

12This applies when ae > ah holds. If so, the case χ > χ and κ < 1 can be ruled out. Indeed, in such a
case, agents’ Euler equations (31) and (35) imply that µR,e − r = µR,h − r, which contradicts (7). We need
to consider this case when ae = ah, which is treated in subsection A.3.1.
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In the absence of idiosyncratic capital quality shocks (i.e. when ς = 0), the last

inequality is actually an equality – i.e. µR,h − r = π · σR. In other words, since

households have no constraints, their expected return on capital must be equal to the

market compensation for aggregate risk.

Combining these conditions with the definitions of ∆e and ∆h in (37) and (34), we completely

summarize the constraints with the following complementary slackness conditions:

0 = min(1− κ,∆+
h −∆h) (40)

0 = min(χ− χ,∆e) (41)

0 = (1− κ)(χ− χ)(ae − ah). (42)

We will use these conditions to determine where constraints bind.

Before considering the state space partitions coming from constraints, we make use of

some equilibrium conditions that apply across the state space. First, the goods market

clearing condition (17) implies

q(1− w)ρ
1/ψh
h ξ

1−1/ψh
h + qwρ1/ψe

e ξ1−1/ψe
e = (1− κ)ah + κae − Φ(ι(q)). (43)

Equation (43) relates q and κ to the state variables, conditional on ξh and ξe. Notice that

the left-hand-side (as a function of q) is strictly increasing, while the right-hand-side is

strictly decreasing, yielding a unique q that satisfies the goods market clearing condition

above. Notice also that in the unitary IES case, when all the capital in the economy is held

by experts (i.e. κ = 1), the price of capital is constant, simply equal to the ratio of (a)

the dividend yield ae − Φ (ι(q)) divided by (b) a weighted average rate of time preference

wρe + (1 − w)ρh. With Φ(x) = φ−1[exp(φx) − 1], we use (28) in equation (43) to get the

following special case:

q =
(1− κ)ah + κae + 1/φ

(1− w)ρ
1/ψh
h ξ

1−1/ψh
h + wρ

1/ψe
e ξ

1−1/ψe
e + 1/φ

(44)

Next, the dynamics of aggregate capital are derived from time-differentiating the capital

market clearing condition (18), using the laws of motion for individual capital stocks in (1),

the common investment rate defined by (26), and the law of large numbers:

dKt

Kt

= µK,tdt+ σK,t · dZt (45)

µK,t := gt + ι(qt)− δ. (46)
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To determine the dynamics of the wealth share wt, combine agents’ net worth dynamics

with their portfolio choices (i.e., combine (13) with (32) for households and with (36) for

experts), and the law of large numbers, to obtain evolutions for aggregate household and

expert net worths Nh,t :=
∫
Jh
nj,tdj and Ne,t :=

∫
Je nj,tdj:

dNh,t

Nh,t

=
[
rt − ρ1/ψh

h ξ
1−1/ψh
h − λd + σnh,t · πt + βh,t∆h,t +

(1− ν)λd
1− wt

]
dt+ σnh,t · dZt (47)

dNe,t

Ne,t

=
[
rt − ρ1/ψe

e ξ1−1/ψe
e − λd + σne,t · πt + βe,t∆e,t +

νλd
wt

]
dt+ σne,t · dZt. (48)

The terms containing λd represent contributions from OLG. Using risk choices (32) and (36),

combined with equity market clearing (19) and the definitions of w and κ, we have

σnh =
1− χκ
1− w

σR (49)

σne =
χκ

w
σR. (50)

By Itô’s formula, the wealth share w = Ne
Ne+Nh

evolves as

dw = w(1− w)
[dNe

Ne

− dNh

Nh

]
− w(1− w)

[
w
d[Ne]

N2
e

− (1− w)
d[Nh]

N2
h

+ (1− 2w)
d[Ne, Nh]

NeNh

]
.

Using (47)-(48) and (49)-(50), and making several simplifications, the result is

µw = w(1− w)
[
ρ

1/ψh
h ξ

1−1/ψh
h − ρ1/ψe

e ξ1−1/ψe
e + βe∆e − βh∆h

]
+ (χκ− w)σR · (π − σR) + λd(ν − w) (51)

σw = (χκ− w)σR. (52)

Together with the exogenous dynamics in (2), (3), and (4), the endogenous dynamics in

(51)-(52) fully describe the dynamics of Xt, i.e.,

µX =
(
µw, λg(g − g), λs(s− s), λς(ς − ς)

)′
(53)

σX =
(
σw,
√
sσg,

√
sσs,
√
ςσς

)′
. (54)

By Itô’s formula, the dynamics of qt are

dq(Xt) =
[
µX(Xt) · ∂Xq(Xt) +

1

2
tr(σX(Xt)

′∂XX′q(Xt)σX(Xt))
]
dt

+
[
σX(Xt)

′∂Xq(Xt)
]
· dZt. (55)
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Since µX does not depend directly on µq, the drift term may be obtained simply from the

Itô’s formula expansion:

µq =
1

q

[
µX · ∂Xq +

1

2
tr(σ′X∂XX′qσX)

]
. (56)

On the other hand, σX depends on σq, constituting a two-way feedback loop. We can solve

this loop by substituting (54) into σq in (55), using σR = σK + σq:

σq =
(χκ− w) (∂w ln q)

√
sσ + (∂g ln q)

√
sσg + (∂s ln q)

√
sσs + (∂ς ln q)

√
ςσς

1− (χκ− w)∂w ln q
(57)

This is a d × 1 equation. Conditional on knowing χ and κ, if we know the price function q

across the state space, we know the capital price volatility vector σq, as well as the wealth

share volatility vector σw. Note that this generates capital return volatility equal to

σR =

√
sσ + (∂g ln q)

√
sσg + (∂s ln q)

√
sσs + (∂ς ln q)

√
ςσς

1− (χκ− w)∂w ln q
. (58)

Finally, we solve for the stochastic discount factor coefficients (r, π). Time-differentiate

the bond market clearing condition (20), using the evolutions of Nh and Ne in (47) and (48),

and K in (45). By equating the drift terms:

r + (1− w)
(
σnh · π + βh∆h − ρ1/ψh

h ξ
1−1/ψh
h

)
+ w

(
σne · π + βe∆e − ρ1/ψe

e ξ1−1/ψe
e

)
= µq + µK + σK · σq (59)

By equating the diffusion terms:

(1− w)σnh + wσne = σR. (60)

To solve for r, substitute (60) into (59) and rearrange:

r = µq + µK + σK · σq − σR · π − (1− w)
(
βh∆h − ρ1/ψh

h ξ
1−1/ψh
h

)
− w

(
βe∆e − ρ1/ψe

e ξ1−1/ψe
e

)
. (61)

To solve for π, substitute exposures σnh from (32) and σne from (50) into (60) to obtain:

π = γh
1− χκ
1− w

σR + (γh − 1)σ′X∂X ln ξh. (62)
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Therefore, we have solved for (q, r, π, µq, σq, µX , σX), taking as given χ, κ, ∆e, ∆h, ξh, ξe,

and all derivatives of ξh and ξe. In the next step, we solve for χ, κ, ∆e, and ∆h from the

following conditions. First, combining experts’ risk choice (36) with households’ risk price

(62), we get an equation relating χ, κ, and ∆e:

∆e = γe
χκ

w
(‖σR‖2 + ς)− γh

1− χκ
1− w

‖σR‖2 − σ′Rσ′X∂X ln
(ξγh−1

h

ξγe−1
e

)
. (63)

Second, by taking the difference µR,e − µR,h = µR,e − r − π · σR + π · σR − (µR,h − r), using

the definitions of µR,e and µR,h in (7), along with the definitions of ∆e and ∆h, we obtain

∆h = χ∆e −
ae − ah

q
. (64)

Equations (63) and (64) completely solve for (∆e,∆h) given (κ, χ) and the other equilibrium

objects. It remains to solve for (κ, χ).

To do this, recall the equation for households’ capital holdings (33), which says

∆+
h =

1− κ
1− w

γhς. (65)

Combine (65) with (63)-(64) to solve for ∆+
h −∆h. Substituting the result into the slackness

condition (40) yields

0 = min
{

1− κ, wγh(1− χκ)‖σR‖2 + wγh

(1− κ
χ

)
ς − (1− w)γeχκ(‖σR‖2 + ς)

+ w(1− w)
ae − ah
χq

+ w(1− w)σ′Rσ
′
X∂X ln

(ξγh−1
h

ξγe−1
e

)}
. (66)

We may substitute χ = χ everywhere in this equation, due to (42). Given (ξe, ξh), equation

(66) is actually a standalone variational inequality (differential equation wrapped inside of

a min operator) for κ, since q can be expressed solely as a function of κ through (44), and

since both σX and σR can be expressed solely in terms of χ, κ, q, and ∂Xq through (54) and

(58). By inspection, the boundary condition κ(0, g, s, ς) = 0 will be satisfied automatically.

On the other hand, substituting ∆e from (63) into the slackness condition (41) yields

0 = min
{
χ− χ, (1− w)γeχκ(‖σR‖2 + ς)− wγh(1− χκ)‖σR‖2

− w(1− w)σ′Rσ
′
X∂X ln

(ξγh−1
h

ξγe−1
e

)}
. (67)

We may substitute κ = 1 everywhere in this equation, due to (42). Given ξe, ξh, equation
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(67) is actually an algebraic equation for χ. To solve, substitute σX and σR into the second

term in the minimum, obtaining

0 = min
{
χ− χ, (1− w)γeς(∂w ln q)2(χ− w)3 + (1− w)γeς(∂w ln q)(w∂w ln q − 2)(χ− w)2

+
[
((1− w)γe + wγh)‖DX̃‖

2 + (1− w)γeς(1− 2w∂w ln q) + (∂w ln q)Dξ,X̃ −Dξ,w

]
(χ− w)

+ w(1− w)(γe − γh)‖DX̃‖
2 + w(1− w)γeς −Dξ,X̃

}
. (68)

In (68), X̃ := (g, s, ς) refers to the exogenous state variables in the state vector X and we

have defined13

σX̃ :=
(√

sσg,
√
sσs,
√
ςσς
)′

(69)

DX̃ := σK + σ′
X̃
∂X̃ ln q (70)

Dξ,w := ‖DX̃‖
2∂w
[

ln(ξγh−1
h )− ln(ξγe−1

e )
]

(71)

Dξ,X̃ := (σX̃DX̃) · ∂X̃
[

ln(ξγh−1
h )− ln(ξγe−1

e )
]
. (72)

When, χ > χ, equation (68) is a cubic equation for χ − w. The analysis is simpler in

two special cases. First, when ς = 0, (68) becomes a linear equation which thus has a

unique solution. Second, in the absence of exogenous state variables X̃, one can show that

χ = max(w, χ) if and only if γe = γh.

Thus, equations (66)-(67) are enough to solve for (κ, χ) across the state space. Substi-

tuting these back into (63)-(64) yields (∆e,∆h). This completes the equilibrium derivation,

up to the value functions (ξe, ξh).

A.3.1 Special Case: ae = ah

Under equal productivities, several simplifications can be made. First, q solves equation (44)

without knowledge of the capital distribution κ. Therefore, q and ∂Xq are given explicitly.

Second, if ς = 0, we may set χ = 1, without loss of generality. Indeed, in this case, we can

verify by inspection that χ and κ always enter the equilibrium as the product α := χκ (in

particular, inspect equations (66), (67), (58), (54)). Therefore, we may solve for α = κ from

equation (66) under χ = 1. Notice that equation (67) will then automatically be satisfied.

13The notation above is helpful, since it allows us to write ‖DX̃‖2 = (1− (χκ− w) ∂w ln q)
2 ‖σR‖2, and

simplify the expression for σXσR as follows:

σXσR =
1

1− (χκ− w) ∂w ln q

( χκ−w
1−(χκ−w)∂w ln q‖DX̃‖2

σX̃DX̃

)
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One can also verify that α = w if γe = γh and additionally either ψe = ψh or σs = σg = 0. If

α 6∈ (0, 1), we project it into (0, 1).

If ς > 0, we must solve the equilibrium using equations (66) and (67) both. One simplifi-

cation comes from equation (64), which shows that ∆e = χ−1∆h. Thus, either ∆e = ∆h = 0

(which occurs when χ > χ) or ∆e,∆h > 0 (which occurs when κ < 1).

A.4 Duffie-Epstein-Zin Preferences

For convenience, we introduce the differential operator A, defined for any stochastic process

{Xt}t≥0 (belonging to an appropriate class of stochastic processes) as follows:

AXt := lim
ε→0

E [Xt+ε|Ft]−Xt

ε
(73)

Assume that preferences are given by the following recursion, for ε > 0:

Ũt =

[
(1− e−ρε)c1−ψ

t + exp(−ρε)Rt

(
Ũt+ε

)1−ψ
] 1

1−ψ

In the above, Rt (Xt+ε) := E
[
X1−γ
t+ε |Ft

] 1
1−γ . Some manipulation leads to:

Ũ1−ψ
t − c1−ψ

t = exp(−ρε)
[
Rt

(
Ũt+ε

)1−ψ
− c1−ψ

t

]
Taking limits of this expression when ε→ 0 leads to:

0 = −ρ
(
Ũ1−ψ
t − c1−ψ

t

)
+

1− ψ
1− γ

Ũγ−ψ
t AŨ1−γ

t

The operator A is defined via equation (73). Making the change in variable Ut :=
Ũ1−γ
t

1−γ and

simplifying the above expression leads to:

0 = ρ
1− γ
1− ψ

Ut

(
c1−ψ
t

[(1− γ)Ut]
1−ψ
1−γ
− 1

)
+AUt (74)

The first term in equation (74) corresponds to the utility aggregator ϕ defined in equation

(9).
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A.5 Stochastic Discount Factor

The stochastic discount factor of any agent with such recursive preferences can then be

written:

St = exp

[∫ t

0

∂

∂U
ϕ (cs, Us) ds

]
∂

∂c
ϕ (ct, Ut)

Given the homogeneity properties of our model, agents’ utility will be written Ut = (ntξt)
1−γ

1−γ ,

and their consumption-to-wealth ratio ct/nt = ρ1/ψξ
1−1/ψ
t . Note also that the derivatives of

ϕ are the following:

∂

∂c
ϕ (c, U) = ρc−ψ [(1− γ)U ]

ψ−γ
1−γ

∂

∂U
ϕ (c, U) = ρ

(
ψ − γ
1− ψ

)
c1−ψ [(1− γ)U ]

ψ−1
1−γ − ρ

(
1− γ
1− ψ

)
Thanks to these calculations, it can be showed that:

St = exp

[∫ t

0

((
ψ − γ
1− ψ

)
ρ1/ψξ1−1/ψ

s − ρ
(

1− γ
1− ψ

))
ds

]
n−γt ξ1−γ

t

In the case of time- and state-separability (i.e. when ψ = γ), we obtain the familiar formula

St/S0 = e−ρt (ct/c0)−γ. Remember that we have for households and experts (see (13)):

dnt
nt

= (µn,t − ct/nt) dt+ σn,t · dZt + σ̃n,tdZj,t

dξt
ξt

= µξ,tdt+ σξ,t · dZt

In the above, µξ := µX · ∂X ln ξ+ 1
2

[tr (σ′X∂XX′ ln ξσX) + ‖σ′X∂X ln ξ‖2], and σξ := σ′X∂X ln ξ.

In particular, we can obtain the vector of shadow risk prices faced by investor j via:

dSj,t
Sj,t
− Et

[
dSj,t
Sj,t

]
= −

[
γjσnj ,t + (γj − 1)σξj ,t

]
· dZt − γjσ̃nj ,tdZj,t

:= −πj,t · dZt − π̃j,tdZj,t

In the above, the kth coordinate of πj,t is the expected excess return per unit of risk exposure

to the kth component of Zt that investor j gets paid. Similarly, π̃j,t is the expected excess

return per unit of idiosyncratic risk that investor j gets paid.

We can compute (i) the vector of shadow risk-prices πe and (ii) the idiosyncratic risk-price

π̃e faced by experts, using formula (48) that gives σne,t as a function of other equilibrium

38



objects:

πe = γe
χκ

w
σR + (γe − 1)σ′X∂X ln ξe (75)

π̃e = γe
χκ

w

√
ς (76)

This means that experts’ equilibrium expected excess return compensation is equal to:

πe · σR + π̃e
√
ς = γe

χκ

w

(
‖σR‖2 + ς

)
+ (γe − 1) (σXσR) · ∂X ln ξe

= ∆e + π · σR,

where π = πh is the vector of aggregate risk prices faced by households.

Similarly, we can compute (i) the vector of shadow risk-prices πh and (ii) the idiosyncratic

risk-price π̃h faced by households, using formula (47) that gives σnh,t as a function of other

equilibrium objects:

πh = γh
1− χκ
1− w

σR + (γh − 1)σ′X∂X ln ξh (77)

π̃h = γh
1− κ
1− w

√
ς (78)

Of course formula (77) is identical to equation (32).

A.6 Continuation Value Derivations

Assume the continuation value can be expressed as U(n,X) = (ξ(X)n)1−γ

1−γ . We then have the

following identities:

∂nU = (1− γ)
U

n

∂nnU = −γ(1− γ)
U

n2

∂nXU = (1− γ)2U

n

∂Xξ

ξ
= (1− γ)2U

n
∂X ln ξ

∂XU = (1− γ)U
∂Xξ

ξ
= (1− γ)U∂X ln ξ

∂XX′U = (1− γ)U
∂XX′ξ

ξ
− γ(1− γ)U

∂Xξ∂Xξ
′

ξ2
= (1− γ)U

[
∂XX′ ln ξ + (1− γ) (∂X ln ξ) (∂X ln ξ)′

]
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B Numerical Methods

B.1 Finite Difference Method for PDEs

The PDEs for ξh and ξe in (38)-(39) are nonlinear, and we can use an iterative procedure to

solve them. These PDEs both have the general quasi-linear form

0 = A(x, f, ∂xf) + tr[B(x, f, ∂xf)∂xx′fB(x, f, ∂xf)′]. (79)

To solve, we augment (79) with a false time-derivative ∂tf , known as a “false transient.”

Since the time-derivative appears on the right-hand-side of the PDE, the equation to solve is

0 = ∂tf + A(x, f, ∂xf) + tr[B(x, f, ∂xf)∂xx′fB(x, f, ∂xf)′]. (80)

Thus, the original PDE (79) is the stationary solution to the augmented PDE (80), i.e.,

∂tf = 0 holds in (80). The following method solves (80) iteratively until ∂tf ≈ 0.

Step 0: Initialization. Form a guess for φ0(x) := f(x, T ), which is the terminal condition.

Step k: Discretization, Linearization, Iteration. Generate a grid of time points {T, T −∆t, . . . }
and a grid of space points X . Given a candidate function φk(x) for f(x, T − k∆t)

restricted to X , compute finite difference approximations to all derivatives. The time-

derivative is approximated with the backward difference

φk(x)− φk+1(x)

∆t
≈ ∂tf(x, T − k∆t)

Denote the finite-difference approximations of the spatial derivatives by

∂̂xφk(x) ≈ ∂xf(x, T − k∆t)

∂̂xx′φk(x) ≈ ∂xx′f(x, T − k∆t).

Both ∂̂x and ∂̂xx′ are always computed using central differences, except at the boundaries

of X , where they are computed via central differences at the nearest interior point.

Using these approximations everywhere in (80), we can solve for φk+1 given φk via

φk+1 = φk +
{
A(x, φk, ∂̂xφk) + tr[B(x, φk, ∂̂xφk)∂̂xx′φkB(x, φk, ∂̂xφk)

′]
}

∆t. (81)

Equation (81) solves for φk+1 explicitly, which is why this is termed the explicit method.
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The implicit method applies ∂̂x and ∂̂xx′ to φk+1 rather than φk, leading to

φk+1 − φk =
{
A(x, φk, ∂̂xφk) + tr[B(x, φk, ∂̂xφk)∂̂xx′φk+1B(x, φk, ∂̂xφk)

′]
}

∆t. (82)

Solving for φk+1 in (82) requires solving a linear system on X . Sometimes we use a

mixed method, which applies ∂̂xx′ to φk for the mixed derivatives and applies ∂̂xx′ to

φk+1 for the non-mixed derivatives. Finally, sometimes we utilize the special structure

of HJB equations, whereby A(x, f, ∂xf) = A∗(x, f, ∂xf) + µX(x, f, ∂xf)∂xf , to solve

φk+1 − φk =
{
A∗(x, φk, ∂̂xφk) + µ+

X(x, φk, ∂̂xφk)∂̂
(+)
x φk+1 + µ−X(x, φk, ∂̂xφk)∂̂

(−)
x φk+1

+ tr[B(x, φk, ∂̂xφk)∂̂xx′φk+1B(x, φk, ∂̂xφk)
′]
}

∆t. (83)

In (83), ∂̂
(+)
x and ∂̂

(−)
x are forward and backward differences, respectively, while µ+

X

and µ−X denote the positive and negative parts of µX , respectively. This is known as

“up-winding.” Using any of these methods to get φk+1, calculate

errork+1 := max
x∈X

|φk+1(x)− φk(x)|
∆t

.

Given a tolerance for convergence tol > 0, repeat this step until errork+1 < tol. The

function φk+1(x) is the approximate solution to (79).

B.2 Numerical Procedure

Given ξ
(n)
e and ξ

(n)
h , we would like to update ξ

(n+1)
e and ξ

(n+1)
h by iterating one time-step in

their PDEs. Whenever they appear, use ξe = ξ
(n)
e and ξh = ξ

(n)
h .

1. Inner loop: update equilibrium objects iteratively. For any equilibrium object

y, let the sequence of iterants for this inner loop be {ŷ(l) : l = 0, 1, . . . }.14

(a) If n ≥ 1, initialize ŷ(0) = y(n−1). If n = 0, use the guess κ̂(0) = w, χ̂(0) = 1, q̂(0)

from equation (44), ∆̂
(0)
h = ∆+

h from equation (65), and ∆̂
(0)
e = χ−1[∆̂

(0)
h + ae−ah

q̂(0)
]

from equation (64).

(b) For each l ≥ 0, do the following:

i. Update all other ŷ(l) objects as follows.

A. Set β̂
(l)
e = χ̂(l)κ̂(l)/w and β̂

(l)
h = (1− κ̂(l))/(1− w).

14The list of equilibrium objects is {q, κ, χ, σK , σq, σR, σX , π,∆e,∆h, βe, βh, µK , µq, µX , µR,e, µR,h, r}.
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B. Set σ̂
(l)
K , σ̂

(l)
q , σ̂

(l)
R , σ̂

(l)
X , and π̂(l) (in that order) using equations (1), (57),

(7), (54), and (62).

C. Set µ̂
(l)
K , µ̂

(l)
X , µ̂

(l)
q , and r̂(l) (in that order) using equations (46), (53), (56),

and (61). Get µ̂
(l)
R,e and µ̂

(l)
R,h from equation (7).

ii. Define κ̂(l+1) = κ̂(l) +H(l)×dt, where dt is a small enough time-step, and H(l)

is defined by the right-hand-side of equation (66), computed using χ = χ and

ŷ(l) for all other objects.

iii. Denote the cubic expression in the second argument of the minimum in equa-

tion (68) by

F (w, χ) := A0(w) + A1(w)(χ− w) + A2(w)(χ− w)2 + A3(w)(χ− w)3.

Define q̃ according to equation (44) with κ = 1. Using q̃ and its derivatives

in place of q, as well as κ = 1 and ŷ(l), compute A0, A1, A2, A3. Solve the

equation F (w, χ) = 0 for χ at each w. If ς = 0, then this equation is linear

and has a unique solution; otherwise, use any nonlinear solver with initial

guess χ = χ̂(l). Denote the solution by χ̃. If χ̃ ≥ χ, set χ̂(l+1) = χ̃. Otherwise,

there are two cases:

• If F (w, χ) > 0, then set χ̂(l+1) = χ.

• If F (w, χ) < 0, then set χ̂(l+1) = +∞ (or some very large number).

iv. Use equation (63) to solve for ∆̂
(l+1)
e , then set ∆̂

(l+1)
h by (64). Use κ̂(l+1) and

χ̂(l+1) but ŷ(l) for everything else in this step.

v. Set q̂(l+1) by equation (44), using κ̂(l+1) and (ξ
(n)
e , ξ

(n)
h ).

(c) Iterate on (b). When ‖κ̂(l+1) − κ̂(l)‖+ ‖χ̂(l+1) − χ̂(l)‖ is small, stop iterating.

(d) Put y(n) = ŷ(l).

2. Outer loop: update value functions using PDEs. Update ξ
(n+1)
e , ξ

(n+1)
h by iterat-

ing one time-step in their the PDEs (39) and (38). This involves augmenting the PDEs

with fictitious time derivatives, or “false transients”, as discussed in Appendix B.1. If

ψe = 1 or ψh = 1, replace ψ
1−ψρ

1/ψξ1−1/ψ− ρ
1−ψ by ρ (ln ρ− ln ξ)−ρ. All the coefficients

in the PDEs are computed using step-n objects.

B.3 Solving Linear Systems

The following algorithm summarizes our numerical solution of PDEs (39) and (38) for

ζk∈(e,h) := ln ξk∈(e,h), based on Appendixes B.1 and B.2.
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Initialization: Start with guess functions ζ0
k∈(e,h).

while sup
x
‖ζtk(x)− ζt−1

k (x)‖ > ε or t = 0 do

(0) Update the iterator t = t+ 1;

(1) Refresh equilibrium quantities which are functions of ζt−1
k ;

(2) Update the PDE coefficients, which depend on the updated equilibrium

quantities and ζt−1
k . In this process, treat the non-linear terms of ζk as if

ζk = ζt−1
k . Therefore, the only terms left unknown are linear terms of ζk;

(3) Construct the linear systems Atkζ
t
k = btk as the finite difference representation

of the linear PDEs from (2);

(4) Solve Atkζ
t
k = btk for ζtk using some linear system solver ;

end

When the algorithm finishes, we take the solutions from the final iteration in the while

loop as the solutions to the PDEs.

To do step (4), which involves solving Atkζ
=
k b

t
k, we have taken two distinct approaches. As

a first option, we have leveraged the high-performance computing package Pardiso15 in C++

to perform an LU decomposition of the matrix Atk. In what follows, we call this, including

the use of the Pardiso package, the “LU approach.” This has two drawbacks. First, in each

iteration t, we need to perform LU decomposition for a brand new matrix, as the coefficients

of the PDEs get updated in each iteration. Second, finding the LU decomposition of Atk
is costly, because of its dimensionality (it encodes a 4-dimensional finite difference scheme,

which is large, even considering its sparsity).

As a second option, we have solved Atkζ
=
k b

t
k using the conjugate gradient method, which

is one example of a Krylov subspace method.

Conjugate Gradient Method. For an n × n symmetric positive definite matrix A, the

conjugate gradient (CG) method solves the linear system Ax = b by minimizing the quadratic

form:

min f(x) =
1

2
xTAx− xT b

The first order condition of this minimization problem is

∂xf(x) = Ax− b = 0

Therefore, if A is positive definite, solving the linear system is equivalent to finding the min-

15https://www.pardiso-project.org/
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imum of the quadratic form. The matrix from our finite difference scheme is not symmetric,

but we can do the following transformation: Ã = ATA and b̃ = AT b. Applying the CG

method to Ãx = b̃ yields the same results as long as A is invertible.

The CG method is an iterative method that solves the minimization problem above via

an algorithm of the form:

xk+1 = xk + αkpk

The search directions {pk}k≤n are orthogonal under the scalar product induced by the matrix

A (i.e. they form an “A-conjugate set”), and the step length {αk}k≤n are computed so as to

minimize the quadratic form applied to xk + αkpk. One theoretical result of such iteration

is that the CG method converges in at most n steps, where n is the dimension of the linear

system. Another appealing feature is that CG builds the directions pk iteratively by only

knowing the previous direction pk−1 and the gradient of the quadratic form evaluated at xk.

Incorporating CG into Model Solution. As an iterative method, CG performs better

with a more accurate initial guess for ζtk. Since our model solution method is already iterative

and (hopefully converges), we propose to use ζt−1
k as the starting point, instead of an arbitrary

point. As the sequence {ζtk}{t≥0} converges, its elements become closer together. Intuitively,

using this information allows CG to find the minimizer in a smaller amount of time as the

number of iterations progresses. In what follows, we call this the “smart guess approach.”

Test: CG vs LU Decomposition. For simplicity, we test the case where γ = ψ = 1 for

both agents (logarithmic utility). The model is solved in three dimensions with the grid size

100 × 50 × 50 (100 points in the w direction). We implemented three approaches: LU with

28 cores, CG without the smart guess approach (i.e. with an arbitrary starting point in each

inner loop), and CG with the smart guess approach. We only equip the CG approaches with 1

core, since the sparse matrices do not contain that many non-zeroes to justify parallelization.

If anything, this “unfair” treatment strengthens the case for CG.

As shown in figure 11, CG is faster. Furthermore, the speed gains accruing to the smart

guess method magnify as the iteration number becomes larger, intuitively because the guesses

are becoming more and more accurate as {ζtk} converges. Finally, this is only a naive imple-

mentation of CG. Areas of improvement include:

1. Unlike LU, CG finds an approximate solution, which can be leveraged to make speed

gains. In particular, in each CG call, we need to set a tolerance for CG to stop. We can

use higher tolerance in the beginning and reduce the tolerance gradually as the outer

loop proceeds;

44



2. The package we have currently used is not designed for CG. We can look for dedicated

CG packages;

3. As the dimensions approach 4, we can start using parallel cores.

(a) Time taken per outer loop iteration

Approach Total Time (minutes)

Pardiso (LU Decomposition) 57
CG (Without Smart Guess) 53
CG (With Smart Guess) 25

(b) Total time taken to solve model

Figure 11: Time Performance for CG vs LU Decomposition (implemented by Pardiso)

Test: Role of Time Step. The time step (∆t), used in iterating on the PDEs for ζk,

is an important numerical parameter. With CG, ∆t captures a trade-off between speed of

convergence in the VFI “outer loop” versus the CG “inner loop”. A higher ∆t reduces the

number of value function iterations (VFI) for {ζtk} to converge in the outer loop. On the

other hand, higher ∆t increases the number of CG inner loop iterations, as the initial guesses

for ζkt are less accurate. Figure 12 illustrates this trade-off.

Although the highest ∆t = 0.5 requires significantly more time in the beginning, it quickly

finds the right solution and the number of inner loop iterations decreases very fast (perhaps

aided by the smart guess approach). With ∆t = 0.01, the algorithm requires significantly

more outer loop iterations and the total time taken is longer. This test shows that, in this

case, reducing the number of iterations (higher ∆t) dominates very accurate guesses at all

iterations (lower ∆t).
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(a) Time taken per outer loop iteration (b) Total time taken to solve model

Figure 12: Role of Time Step
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C Shock Elasticities

Some recent papers have characterized shock-exposure and shock-price elasticities, arguing

that they is an alternative and useful way to depict asset prices in dynamic models.16 The

following discussion provides a short overview.

Setup and Definition. In the class of models we consider, there will always be a n-

dimensional state variable Xt following a diffusion

dXt = µX(Xt)dt+ σX(Xt)dZt (84)

There will also be an equilibrium stochastic discount factor St, which follows

d logSt = µS(Xt)dt+ σS(Xt) · dZt. (85)

Finally, any cash flow process {Gt} can be constructed from the Markov state {Xt} as

d logGt = µG(Xt)dt+ σG(Xt) · dZt. (86)

Assume this cash flow {Gt} is priced by the SDF {St}. Given these processes, we can

construct shock elasticities as follows. Define {Mt} be a logarithmic process analogous to

{Gt} and {St}:
d logMt = µM(Xt)dt+ σM(Xt) · dZt.

Define the exponential martingale Hν
s := exp

( ∫ s
0
ν(Xu)·dZu− 1

2

∫ s
0
|ν(Xu)|2du

)
, where ν(x) ∈

Rd and ‖ν(x)‖ = 1. Then, define the shock elasticity for process M at horizon t to be

εM(t, x) := lim
s↘0

1

s
logE

[(Mt

M0

)
Hν
s | X0 = x

]
, (87)

By Girsanov’s theorem, Hν
s acts to alter the distribution of shocks to which M is exposed

between times [0, s]. By altering the distribution of shocks, εM(t, x) measures a type of

non-linear impulse response, tracing the effect of this altered distribution over a horizon t.17

Interpretation as an Increase in Exposure. Equivalently, Hν
s acts to perturb the shock

16See Borovička et al. (2011), Hansen (2012), Hansen (2013). An accessible review treatment is provided
in the handbook chapter Borovička and Hansen (2016).

17This logic is made precise in Borovička, Hansen, and Scheinkman (2014).
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exposure of M near time 0. To see this equivalence, look at

log
Mt

M0

Hν
s =

∫ s

0

[
µM(Xu)−

1

2
ν(Xu)

]
du+

∫ s

0

[
σM(Xu) + ν(Xu)

]
· dZu

+

∫ t

s

µM(Xu)du+

∫ t

s

σM(Xu) · dZu.

On the interval [0, s], MHν has perturbed exposure σM(Xu) + ν(Xu) to the Brownian shock

dZu. For example, when M = G, we can think of MtH
ν
s as a perturbed cash flow, which has

a vector ν of additional shock exposures near time 0. Then the function εM(t, x) traces out

the expected effect of this instantaneous increase in shock exposure over a horizon t. The

fact that ‖ν(x)‖ = 1 justifies the use of the term “elasticity”. We will typically take ν to be

a coordinate vector to interpret εM as the response of M to a particular shock.

Asset-Pricing. The shock-exposure elasticity is defined by εG and the shock-price elasticity

is defined by εG − εSG. The shock-exposure elasticity answers the question: how sensitive is

the expected cash flow Gt to an increase in its risk exposure at time 0?

The shock-price elasticity is slightly more nuanced. Because E[StGt] is the scaled price of

the cash flow Gt, and GHν is the perturbed cash flow, εSG is the sensitivity of the price to

an increase in the risk exposure of Gt. Since log(E[Gt]E[St]/E[StGt]) is a log expected excess

return, shock-price elasticities answer the question: how much are expected excess returns

required to increase with an increase in the exposure of Gt to a particular shock at time 0?

It is in units of Sharpe ratios, or risk prices, because Hν delivers a unit standard deviation

increase in the risk exposure of Gt. Thus, the shock-price elasticity is often interpreted as a

term structure of risk prices.

Computation. The shock elasticities are computed by applying Malliavin calculus, which

is beyond the scope of this Appendix. The result is (see the papers cited above)

εM(t, x) = ν(x) ·
{
σM(x) + σX(x) · ∂

∂x
logE

[(Mt

M0

)
| X0 = x

]}
. (88)

To compute each of the conditional expectations in (88) numerically, we solve a PDE de-

rived as follows. Define fM(t, x) := E[Mt

M0
fM(0, Xt) | X0 = x]. Then, using the law of iterated

expectations, followed by the definition of fM , we have fM(t, x) = E[Mu

M0
E[Mt

Mu
fM(0, Xt) | Xu] |

X0 = x] = E[Mu

M0
fM(t−u,Xu) | X0 = x]. Hence, {MtfM(T − t,Xt)}t∈[0,T ] is a martingale and

must have zero drift. Applying Itô’s formula gives a PDE for fM in (t, x), i.e.,

0 = −∂fM
∂t

+
(
µM +

1

2
‖σM‖2

)
fM +

(
µX + σM · σX

)∂fM
∂x

+
1

2
‖σX‖2∂

2fM
∂x2

. (89)
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The initial condition is fM(0, x) ≡ 1, which allows us to recover the desired conditional

expectation. We obtain εM(t, x) by numerically differentiating fM(t, x) and substituting it

into (88). Note also that the term structure of interest rates can be obtained by solving PDE

(89) with M = S and taking r(t, x) := −1
t

log fS(t, x).

We solve PDE (89) subject to boundary conditions at the boundaries of the domain of

Xt. These typically depend on the nature of the model, i.e., (µX , σX), as well as the process

(µM , σM). In models we consider, boundaries are inaccessible by Xt, so we impose zero first

derivatives at those boundaries.

Alternative Shock Elasticities. There is also a second type of shock elasticity, which

differs conceptually from the first type. While εM(t, x) measures the expected response of

Mt to a shock at time 0, we could also compute the expected response of Mt to a shock at

the same time t. Denote this elasticity by ε̃M(t, x), which is computed by replacing Hν
s in

(87) by H̃ν
s := exp(

∫ t+s
t

ν(Xu) · dZu − 1
2

∫ t+s
t
|ν(Xu)|2du). Because H̃ν is also a martingale

perturbation, this alternative shock elasticity shares some interpretations with the benchmark

shock elasticities, except the shock is presumed to impact M at some future time.

It turns out that we can compute this alternative shock elasticity via

ε̃M(t, x) = ν(x) ·
E[Mt

M0
σM(Xt) | X0 = x]

E[Mt

M0
| X0 = x]

, (90)

which requires solving the PDE (89) twice with initial conditions fM(0, x) ≡ σM(x) and

fM(0, x) ≡ 1, then taking the ratio to get ε̃M .
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D Long Run Risk Model with Production

In this case, the aggregate state vector Xt is simply (gt, st). Thus, the drift vector µX(X) and

the volatility matrix σX(X) are exogenously specified. We assume complete markets. We

show that if we know π(X), r(X), we can compute the (scaled) value function ξ(X). Indeed,

the PDE that ξ solves is the following:

0 =
ψ

1− ψ
ρ1/ψξ1−1/ψ − ρ

1− ψ
+ r +

‖π‖2

2γ
+
[
µX +

1− γ
γ

σXπ
]
· ∂X ln ξ

+
1

2

[
tr(σ′X∂XX′ ln ξσX) +

1− γ
γ
‖σ′X∂X ln ξ‖2

]
(91)

We then show that if we know ξ(X), we can compute all the equilibrium objects π(X), r(X), q(X).

First, the consumption market clearing gives us q:

ρ1/ψξ1−1/ψ =
a− Φ (ι(q))

q

In the above, ι(q) = (Φ′)−1(q). Using our specification for the adjustment cost function Φ,

we obtain:

q =
a+ 1/φ

ρ1/ψξ1−1/ψ + 1/φ

Second, equalizing the drifts and volatilities of qK = N leads to:

µq + µK + σq · σK = µn − ĉ

σq + σK = σn

Remember that we have:

µn = r + σn · π

σn =
π

γ
+

1− γ
γ

σ′X∂X ln ξ

ĉ = ρ1/ψξ1−1/ψ

Finally, remember that:

µK = ι(q) + g − δ

σK =
√
sσ
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Matching the volatility terms leads to:

σ′X∂X ln q +
√
sσ =

π

γ
+

1− γ
γ

σ′X∂X ln ξ

⇒ π = γσ′X∂X ln q + (γ − 1)σ′X∂X ln ξ + γ
√
sσ

Matching the drift terms leads to the following expression for r:

r = µX · ∂X ln q +
1

2

[
tr (σ′X∂XX′ ln qσX) + |σ′X∂X ln q|2

]
+ ι(q) + g − δ +

√
sσ · (σ′X∂X ln q)

− ‖π‖
2

γ
+
γ − 1

γ
π · (σ′X∂X ln ξ) + ρ1/ψξ1−1/ψ

Reinjecting into (91), it can then be verified that the PDE that ξ satisfies is the following:

0 =
ρ1/ψξ1−1/ψ − ρ

1− ψ
+
[
µX + (1− γ)

√
sσσX

]
· ∂X ln (qξ) +

1

2
tr (σ′X∂XX′ ln (qξ)σX)

+
1− γ

2
‖σ′X∂X ln (qξ) ‖2 + ι(q) + g − δ − γ

2
‖σ‖2s

In the unitary IES case, the capital price is constant, equal to q = a+1/φ
ρ+1/φ

. The risk price and

risk free rates take the familiar form:

π = (γ − 1)σ′X∂X ln ξ + γ
√
sσ

r = ρ+ ι(q) + g − δ −
√
sσ · π

Note that in that case, the PDE satisfied by ξ simplifies to:

ρ ln ρ− ρ ln ξ + ι(q) + g − δ − γ

2
‖σ‖2s+

[
µX + (1− γ)

√
sσXσ

]
· ∂X ln ξ

+
1

2
tr(σ′X∂XX′ ln ξσX) +

1− γ
2
‖σ′X∂X ln ξ‖2 = 0

Remember that the drift vector and volatility matrix take the following form:

µX =

(
λg(g − g)

λs(s− s)

)
(92)

σX =
√
s

(
σ′g

σ′s

)
(93)
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Then guess that ln ξ(g, s) = α0 + αgg + αss, reinject to find 3 equations in 3 unknown

α0, αg, αs:

ρ ln ρ− ρα0 + ι(q)− δ + λgḡαg + λss̄αs = 0

−ραg + 1− λgαg = 0

−ραs −
γ

2
‖σ‖2 + (1− γ)σ · [αgσg + αsσs]− λsαs +

1− γ
2
‖αgσg + αsσs‖2 = 0

When γ 6= 1, αs is the root of a quadratic equation:

1− γ
2
‖σs‖2α2

s + [(1− γ)σs · (αgσg + σ)− (ρ+ λs)]αs +
1− γ

2
‖αgσg + σ‖2 − ‖σ‖

2

2
= 0

We are interested in the root αs of this quadratic equation such that the implied long-run

risk-neutral measure induces stochastic stability. As argued by Hansen and Scheinkman

(2009), this is the right-most zero of the quadratic equation above. We obtain the following:

αg =
1

ρ+ λg
(94)

αs =

[
(γ − 1)σs · (αgσg + σ) + ρ+ λs

(γ − 1)‖σs‖2

][√√√√1−
‖αgσg + σ‖2 − ‖σ‖2

(γ−1)( (γ−1)σs·(αgσg+σ)+ρ+λs
(γ−1)‖σs‖

)2 − 1

]
(95)

α0 =
ρ ln ρ+ ι(q)− δ + λgḡαg + λss̄αs

ρ
(96)

If γ = 1, the coefficient αs is instead equal to αs = −‖σ‖2
2(ρ+λs)

. In this particular model set-up,

risk-prices and risk-free rates take the following form:

π =
√
s [(γ − 1) (αgσg + αsσs) + γσ] (97)

r = ρ+ ι(q) + g − δ − s
[
γ‖σ‖2 + (γ − 1)σ · (αgσg + αsσs)

]
(98)

The expected excess return on capital is then the following:

Et [dRt − rtdt] = σR,t · πt
= st [(γ − 1) (αgσg + αsσs) + γσ] · σ
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With ψ = 1, the consumption-capital ratio is constant, so consumption dynamics d logCt =

µC,tdt+ σC,t · dZt are given by

µC = ι(q)− δ + g − 1

2
s‖σ‖2 := µ̄C0 + µ̄Cg(g − ḡ) + µ̄Cs(s− s̄)

σC =
√
sσ :=

√
sσ̄C

Similarly, if St is the stochastic discount factor, d logSt = µS,tdt+ σS,t · dZt are given by

µS = −r − 1

2
‖π‖2 := µ̄S0 + µ̄Sg(g − ḡ) + µ̄Ss(s− s̄)

σS = −π :=
√
sσ̄S

In the above, we have introduced the constants µ̄S0 , µ̄C0 , µ̄Sg , µ̄Cg , µ̄Ss , µ̄Cs , σ̄S:

µ̄Sg : = −1

µ̄Cg : = 1

µ̄Ss : = −1

2

[
[(γ − 1) (αgσg + αsσs + σ)]2 − ‖σ‖2

]
µ̄Cs : = −1

2
‖σ‖2

µ̄S0 : = −ρ− ι(q) + δ + µ̄Sg ḡ + µ̄Ss s̄

µ̄C0 : = ι(q)− δ + µ̄Cg ḡ + µ̄Cs s̄

σ̄S : = − [(γ − 1) (αgσg + αsσs) + γσ]

σ̄C : = σ
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