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parametric assumptions directly to their policy impacts. Its analytic nature overcomes

Bellman’s curse of dimensionality for a wide range of stochastic processes. ACE shows

that uncertainty flips the main drivers of the carbon tax. Uncertainty also makes IAMs

even more sensitive to the discount rate and its composition. Under a recent survey’s

median estimate for pure time preference, uncertainty almost triples the optimal tax.
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1 Introduction

Despite observed changes, the true reason to worry about climate change lies in the

future. It originates in the wide range of possible climatic responses to any given

emission scenario. First, we have a limited understanding of carbon dioxide (CO2)

accumulation in the atmosphere, where it causes the greenhouse effect. Second, a

doubling of the atmospheric carbon dioxide can lead to moderate 1.5◦C (degree Celsius)

warming, intense 4.5◦C warming, or even 7 or 8◦C warming. Integrated assessment

models (IAMs) of climate change analyze interactions of long-run economic growth,

greenhouse gas (GHG) emissions, and global warming. Unsurprisingly, they find that

the optimal carbon tax varies by orders of magnitude for different scientifically possibly

temperature responses. Policy advice remains in the hands of deterministic models that

explore and average large samples of deterministic worlds. The federal social cost of

carbon (SCC) in the US is based on the average of such deterministic model runs (the

technical support document also emphasizes the 95th percentile).

The present analytic climate economy (ACE) is part of an emerging literature that

integrates uncertainty into the model, and explores the optimal policy in the face of an

uncertain future. Aiming at the general audience, ACE develops analytic closed-form

solutions and insights. Quantitatively, ACE competes with (deterministic) numeric

models used to derive the US federal SCC. ACE derives structural insights into the

determinants of the optimal price on carbon: the roles of uncertainty, risk aversion,

discounting, carbon dynamics, temperature response, and their interactions. The so-

lution overcomes the curse of dimensionality, which severely limits the integration of

uncertainty into numeric models currently used in policy advising.

To model and calibrate the various climatic uncertainties, ACE is the first quan-

titative analytic IAM explicitly modeling climate change, i.e., the global temperature

response to carbon dioxide emissions, and damages as a function of temperature in-

crease. It is also the first IAM that breaks down the carbon tax into contributions

from carbon versus climate dynamics. I show that such disentanglement is crucial as

these two climate change drivers have quantitatively and qualitatively different im-

pacts on the optimal carbon tax under both certainty and uncertainty. I find that

under certainty, the carbon cycle dynamics cause a major amplification of the carbon

tax, whereas warming delay and temperature persistence result in a reduction. In con-

trast, the uncertainty about carbon flows hardly matters for the optimal carbon tax,

whereas temperature uncertainty adds a sizable risk premium.

Guided by the long-run risk literature in asset pricing, ACE disentangles risk aver-
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sion from consumption smoothing to calibrate the risk-free discount rate and risk pre-

mia separately. Models lacking this feature either discount the future too highly, or

disregard the risk premia.2 Much of the long-run risk literature is concerned with

asset valuation. In contrast, I focus on climate policy, making it crucial to account

for the endogeneity of climate risk. Preference estimates of disentangled preferences

imply low rates of pure time preference (Bansal et al. 2012), as do normative assess-

ments (Stern 2007). ACE’s analytic nature helps in solving the model easily for low

rates of pure time preference,3 adjusting parameters to reflect individual perspectives,

and translating philosophical differences or different calibration approaches into their

quantitative policy implications.

Analytic approaches to the integrated assessment of climate change date to at least

Heal’s (1984) insightful non-quantitative contribution. Several papers have used the

linear quadratic model for a quantitative analytic discussion of climate policy (Hoel

& Karp 2002, Newell & Pizer 2003, Karp & Zhang 2006, Karp & Zhang 2012). In

linear quadratic models welfare responds to uncertainty. In the widespread additive

noise model, optimal policy remains unaffected by risk (weak certainty equivalence).

In Hoel & Karp’s (2001) multiplicative noise model, the optimal policy responds to

uncertainty. A disadvantage of these linear quadratic approaches is their highly stylized

representation of the economy and the climate system. In particular, these models have

no production or energy sector. Recently, Golosov et al. (2014) broke new ground by

amending the log-utility and full-depreciation version of Brock & Mirman’s (1972)

stochastic growth model with an energy sector and an impulse response of production

to emissions.

Golosov et al.’s (2014) elegant analytic IAM (AIAM) uses two climate change char-

acteristics. First, a decadal time step is neither uncommon in IAMs nor particularly

problematic given the time scales of the climate change problem. Therefore, the full-

depreciation assumption is more reasonable than in other macroeconomic contexts.

The present paper further weakens the full-depreciation assumption. Second, plane-

tary “heating” (radiative forcing) is concave in atmospheric carbon and damages are

convex in temperature. Consequently, the authors argue for a linear relation between

2Alternative explanations include habit formation preferences that result in a closely related mod-
ification of the Bellman equation, or the assumption that fat-tailed risk causes observed risk premia.
Nakamura et al. (2013) suggest that the second explanation also does substantially better together
with the preference disentanglement embraced here.

3In deterministic models, these low discount rates require very long and computationally expensive
time horizons beyond the common model specifications. In stochastic models, a low discount rate
reduces the contraction of the Bellman equation and numeric issues frequently prevent a solution.
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past emissions and present damages. Their argument assumes that temperature re-

sponds immediately to an atmospheric carbon concentrations. However, the oceans

keep cooling us for decades. Gerlagh & Liski (2018b) extend the model by introduc-

ing the empirically important delay between emission accumulation and damages, and

analyze the implications of non-constant rates of time preference.4 The present paper

follows the numeric IAMs used in policy advising and explicitly introduces the log-

arithmic relation between carbon dioxide’s radiative forcing and temperature change

(Nordhaus 2008, Hope 2006, Bosetti et al. 2006, Anthoff & Tol 2014). I then incorpo-

rate a novel model of ocean-atmosphere temperature dynamics that permits an analytic

solution. Explicitly modeling temperature is crucial as I show that the uncertainty’s

policy impact differs substantially between temperature versus carbon.

Golosov et al.’s (2014) framework has sparked a growing AIAM literature, including

applications to a multi-regional setting (Hassler & Krusell 2012, Hassler et al. 2018),

non-constant discounting (Gerlagh & Liski 2018b, Iverson & Karp 2017), intergenera-

tional games (Karp 2017), and regime shifts Gerlagh & Liski (2018a). The framework

imposes strong certainty equivalence: not even welfare responds to uncertainty. I show

that this feature arises from simultaneously setting the intertemporal elasticity of sub-

stitution and Arrow–Pratt risk aversion to unity. Whereas unity is within the esti-

mated range of the intertemporal elasticity of substitution, Arrow–Pratt risk aversion

is ubiquitously estimated higher. I solve ACE for a flexible degree of (disentangled)

Arrow–Pratt risk aversion, accommodating for one of the most prominent criticisms of

the model. Constant relative Arrow–Pratt risk aversion implies a decreasing coefficient

of absolute risk aversion. This stylized fact is widely believed to hold and contrasts

with linear quadratic AIAMs that capture only increasing absolute Arrow–Pratt risk

aversion or risk neutrality.

Karp (2017) points out that Golosov et al.’s (2014) model solves analytically be-

cause it transforms to a linear-in-state model, a fact I use for a simpler presentation and

solution of the more general ACE model. The stochastic extension leaves the class of

linear-in-state dynamical systems and merges the original approach with affine stochas-

tic processes developed for asset pricing (Gourieroux & Jasiak 2006, Le et al. 2010).

4Matthews et al. (2009) and subsequent work including the IPCC (2013) suggest that explicit
models of carbon and temperature dynamics can be approximated by a direct response of temper-
atures to cumulative historic emissions. It is a frequent misunderstanding that these findings make
modeling CO2 concentrations sufficient and ocean cooling negligible. The noted approximation trades
off emission decay with warming delay and merely suggests that the impulse response to emissions
(along particular steady emission scenarios) are fairly flat rather than peaked as suggested e.g. by
Gerlagh & Liski’s (2018b) DICE-based calibration of damage delay.
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Alternatively, Li et al. (2016) and Anderson et al. (2014) leave the world of von Neu-

mann & Morgenstern’s (1944) axioms and introduce a preference for robustness to

escape the strong certainty equivalence of the Golosov et al. (2014) framework.5 The

present paper breaks with both strong and weak certainty equivalence, while maintain-

ing von Neumann & Morgenstern’s (1944) classic axioms for choice under uncertainty,

which are often considered desirable for rational or normative choice. In a similar vein,

Ha-Duong & Treich (2004) and Traeger (2014a) discuss the relevance of disentangling

risk aversion from intertemporal substitutability in climate change evaluation using

simple two period models. More recently, van den Bremer & van der Ploeg (2018),

Hambel et al. (2018b), and Hambel et al. (2018a) follow ACE’s push for AIAMs disen-

tangling risk aversion from intertemporal substitutability. Van den Bremer & van der

Ploeg (2018) derive an approximate analytic perturbation solution to a more stylized

IAM with many uncertainties, and Hambel et al. (2018b) derive exact analytic solu-

tions assuming a simplified emission dynamics. They extend the setting to multiple

regions playing a Nash equilibrium in emissions in Hambel et al. (2018a).

2 The Model

ACE’s structure follows that of most IAMs (Figure 1). Labor, capital, technology, and

energy produce output that is either consumed or invested. “Dirty” energy sectors con-

sume fossil fuels and cause emissions. Emissions accumulate in the atmosphere, cause

radiative forcing (greenhouse effect), and increase global temperature(s), reducing out-

put. This section introduces the basic model of the economy, the climate system, and

risk preferences.

2.1 ACE’s Economy

Production and energy sectors. Final gross output Yt is a function of vectors of

exogenous technologies At, the optimally allocated labor and capital distributions Nt

and Kt, and a flow of potentially scarce resource inputs Et

Yt = F (At,Nt,Kt,Et) with (2)

F (At,Nt, γKt,Et) = γκF (At,Nt,Kt,Et) ∀γ ∈ IR+.

5Anderson et al. (2014) deviate from Golosov et al. (2014) by using a linear relation between the
economic growth rate, temperature increase, and cumulative historic emissions. Both Li et al. (2016)
and Anderson et al. (2014) combine a simpler analytic model with a more complex numeric IAM for
quantitative simulation.
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Figure 1: The structure of ACE and most IAMs. Solid boxes characterize the model’s state
variables, dashed boxes are flows, and dashed arrows mark choice variables.

The production function is homogenous of degree κ in capital and has to be sufficiently

well-behaved to deliver well-defined solutions to the optimization problem. The general

functional form covers explicit production structures with intermediates and a variety

of clean and dirty energy sectors relying on different, possibly time-changing degrees

of substitutability. It generalizes special cases in the earlier literature like the common

Cobb–Douglas final good production with a constant-elasticity-of-substitution energy

sector and, in contrast to earlier papers, allows the energy sectors to utilize capital.

The input vectors are of dimension Ij ∈ N with j ∈ {A,N,K,E}. Aggregate capital

Kt is optimally distributed across sectors such that
∑IK

i=1 Ki,t = Kt and similarly
∑IN

i=1 Ni,t = 1. I denote by Ki,t =
Ki,t

Kt
the share of capital in sector i.

Emissions and resources. The first Id resources E1, ..., EId are fossil fuels and

emit CO2; I collect them in the subvector Ed
t (“dirty”). I measure these fossil fuels in

terms of their carbon content and total emissions from production amount to
∑Id

i=1 Ei,t.

In addition, land conversion, forestry, and agriculture emit smaller quantities of CO2.

Following the DICE model, I treat these additional anthropogenic emissions as exoge-

nous and denote them by Eexo
t .

Renewable energy production relies on the inputs indexed by Id+1 to IE like water,

wind, or sunlight, which I assume to be abundant. In contrast, fossil fuel use reduces

the resource stock in the ground Rt ∈ IRId

+ :

Rt+1 = Rt −Ed
t , (3)

with initial stock levels R0 given and R0 ∈ IRId

+ .

Damages. The next section explains how the carbon emissions increase the global
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atmospheric temperature T1,t measured as the increase over the preindustrial tempera-

ture level. This temperature increase causes damages, which destroy a fraction Dt(T1,t)

of output. Damages at the preindustrial temperature level are Dt(0) = 0 and Propo-

sition 1 characterizes the class of damage functions Dt(T1,t) that permit an analytic

solution of the model.

Capital accumulation. Weakening Golosov et al.’s (2014) assumption of full

depreciation, I assume the capital stock’s equation of motion

Kt+1 = Yt[1−Dt(T1,t)]
︸ ︷︷ ︸

≡Y net
t

(1− xt)

[
1 + gk,t

δk + gk,t

]

, (4)

where xt =
Ct

Y net
t

is the endogenous consumption rate, δk the rate of capital depreciation,

and gk,t is an exogenous approximation of the growth rate of capital. Appendix A shows

that equation (4) coincides with the standard assumption on capital accumulation

Kt+1 = Yt[1−Dt(T1,t)]− Ct + (1− δk)Kt .

if the exogenous capital growth approximation is correct, gk,t =
Kt+1

Kt
− 1, or if δk = 1

(full depreciation). To the best of my knowledge, turning the full depreciation model

into an approximate model of capital persistence is novel also to the broader literature.

The limited depreciation correction
1+gk,t
δk+gk,t

is larger under slow capital depreciation

and slow capital growth. It makes the decision maker aware of the additional cap-

ital available in the next period and can adjust ACE’s capital-output dynamics to

macroeconomic observation.6 7

2.2 ACE’s Climate System

This section introduces the deterministic baseline specification of ACE’s climate sys-

tem.

6Limited capital persistence changes output growth and, thereby, also affects the SCC. Note,
however, that already the model’s time step of 10 years makes the capital depreciation assumption
more reasonable than it might appear: instead of an annual decay that leaves 30%–40% after 10 years,
the model uses all the capital during 10 years, and none afterwards.

7The limited depreciation factor has no impact on the optimal carbon policy, given current world
output. It is relevant only for the evolution of the model over time. The relevant implication of the
capital accumulation in equation (4), similarly to the full depreciation assumption, is that the invest-
ment rate is independent of the system states. Consequently, climate policy will not operate through
the consumption rate. Appendix A shows that the consumption rate is approximately independent of
the climate states also in an annual time-step version of the widespread numeric IAM DICE (using
non-logarithmic utility and the standard capital equation of motion).
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Carbon cycle. Carbon released into the atmosphere does not decay, it only cycles

through different carbon reservoirs. Let M1,t denote the atmospheric carbon con-

tent and let M2,t, ...,Mm,t, m ∈ N, denote the carbon content of a finite number of

non-atmospheric carbon reservoirs. DICE uses two carbon reservoirs besides the at-

mosphere: M2,t captures the combined carbon content of the upper ocean and the

biosphere (mostly plants and soil) and M3,t captures the carbon content of the deep

ocean. The vector Mt comprises the carbon content of the different reservoirs and the

matrix Φ captures the transfer coefficients. Then

Mt+1 = ΦMt + e1(
∑Id

i=1 Ei,t + Eexo
t ) (5)

captures the carbon dynamics. The first unit vector e1 channels new emissions from

fossil fuel burning
∑Id

i=1 Ei,t and from land use change, forestry, and agriculture Eexo
t

into the atmosphere M1,t. The fact that carbon does not decay but only moves across

reservoirs implies that the columns of the transition matrix Φ sum to unity (mass

conservation of carbon).

Greenhouse effect. An increase in atmospheric carbon causes a change in our

planet’s energy balance. In equilibrium, the planet radiates the same amount of energy

out into space as it receives from the sun. Atmospheric carbon M1,t and other GHGs

“trap” some of this outgoing infrared radiation, which leads to a warming that is

commonly referred to as the greenhouse effect, causing a “heating mechanism” known

as anthropogenic radiative forcing

Ft = η
log M1,t+Gt

Mpre

log 2
. (6)

The exogenous process Gt captures the greenhouse contribution from other non-CO2

GHGs (measured in CO2 equivalents). Anthropogenic radiative forcing was absent in

preindustrial times where Gt = 0 and M1,t was equal to the preindustrial atmospheric

CO2 concentration Mpre. The parameter η captures the strength of the greenhouse

effect: every time CO2 concentrations double, the forcing increases by η. Whereas

radiative forcing is immediate, the planet’s temperature responds with major delay:

warming our planet with its oceans is like warming a big pot of soup on a small

flame. After decades to centuries, the new equilibrium8 temperature of the (lower)

atmosphere caused by a new level of radiative forcing F new will be T new
1,eq = s

η
F new =

8The conventional climate equilibrium incorporates feedback processes that take several centuries,
but excludes feedback processes that operate at even longer time scales, e.g., the full response of the
ice sheets.
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s
log 2

log M1,eq+Geq

Mpre
. The parameter s is known as climate sensitivity. It measures the

medium- to long-term temperature response to a doubling of preindustrial CO2 concen-

trations. Its best estimate is currently around 3◦C, but the true temperature response

to a doubling of CO2 is highly uncertain.

Temperature Dynamics. The next period’s atmospheric temperature depends

on current atmospheric temperature, the current temperature in the upper ocean, and

on radiative forcing. I denote the temperatures of a finite number of ocean layers by

Ti,t, i ∈ {2, ..., l}, l ∈ N. I abbreviate the atmospheric equilibrium temperature resulting

from the radiative forcing level Ft by T0,t =
s
η
Ft. Then, each layer slowly adjusts its

own temperature to the temperatures of the surrounding layers. Numeric IAMs usually

approximate this temperature adjustment as a linear process, which would prevent an

analytic solution of the model. Yet, heat exchange is governed by many nonlinear

processes (radiative, convective, evaporative) in addition to linear diffusion. I model

next period’s temperature in layer i ∈ {1, ..., l} as a generalized (rather than arithmetic)

mean of its current temperature Ti,t and the current temperatures in the adjacent layers

Ti−1,t and Ti+1,t
9

Ti,t+1 = M
σ

i (Ti,t, Ti−1,t, Ti+1,t) for i ∈ {1, ..., l}. (7)

The weight matrix σ characterizes the (generalized) heat flow between adjacent layers,

and σforc = 1 − σ1,1 − σ1,2 characterizes the heat influx response to radiative forcing.

Proposition 1 in the next section characterizes the class of means (weighting functions

f) that permit an analytic solution.

2.3 Uncertainty

I focus on the uncertainty generated by the evolution of carbon and temperature.

This uncertainty turns (all) the equations of motion stochastic. Formally, the state

variables become functions on the probability space (Ω,F , IP), whose filtration F is

generated by the stochastic climate evolution (I suppress this dependence). Scenarios

with persistent shocks or structural learning require additional informational state

variables that I denote by the vector It, itself an endogenous stochastic process with

one-step-ahead uncertainty, and like all processes adapted to the filtration F : we can

learn only from what we already observed.

9A generalized mean is an arithmetic mean enriched by a nonlinear weighting function f . It takes
the form Mi(Ti−1,t , Ti,t , Ti+1,t) = f−1[σi,i−1f(Ti−1,t) + σi,if(Ti,t) + σi,i+1f(Ti+1,t)] with weight
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Different sections will make different assumptions regarding the processes governing

the conditional expectations over the future. They all have in common that they assume

affine stochastic processes. Let Xt denote an n-dimensional vector of one-step-ahead

uncertain state variables.10 The process is affine if its conditional cumulant generating

function is linear in the state

log
[
E
(
exp(z⊤Xt+1)|Xt

)]
= a(z,At,Nt,Kt,Et) + b(z)Xt, (8)

where a(·) ∈ IR and b(·) ∈ IRn. The cumulant-generating function is the logarithm of

the moment-generating function. In the applications, z ∈ IRn will relate closely to the

the state’s shadow values and equation (8) should hold for a domain incorporating the

relevant state space and shadow-value domains. The ⊤ denotes transposition. Both

functions a(·) and b(·) depend on the model’s parametrization.

Equation (8) implies that the cumulant generating function is separable between the

stochastic states and the labor and capital distributions as well as energy inputs and

emissions. The right-hand side of equation (8) resembles the assumptions governing the

equations of motion in linear-in-state models, including the AIAMs building on Golosov

et al. (2014). However, here the condition is imposed on the cumulant generating

function, not the equation of motion. Most of my stochastic specifications will be

non-linear-in-state.

2.4 Objective Function

Utility governing deterministic outcomes is logarithmic in consumption Ct and the

social planner’s time horizon is infinite with discount factor β. I assume a stable pop-

ulation normalized to unity, but the approach generalizes to a population-weighted

sum of logarithmic per capita consumption with population growth. Logarithmic util-

ity provides a reasonable description of intertemporal substitutability. However, the

σi,i = 1−σi,i−1−σi,i+1 > 0. The weight σi,j characterizes the (generalized) heat flow coefficient from
layer j to layer i. Heat flow between any two non-adjacent layers is zero. Note that the weight σi,i

captures the warming persistence (or inertia) in ocean layer i. The weight σforc ≡ σ1,0 = 1−σ1,1−σ1,2

determines the heat influx caused by radiative forcing. I define σl,l+1 = 0: the lowest ocean layer
exchanges heat with only the next upper layer. For notational convenience, equation (7) writes a mean
of three temperature values also for the deepest layer (i = l), with a zero weight on the arbitrary
entry Tl+1. I collect all weights in the l× l matrix σ, which characterizes the heat exchange between
the atmosphere and the different ocean layers.

10For are the states generating the uncertainty as well as informational state variables. Variables
that are stochastic only in response to other states are not one-step-ahead uncertain, e.g., capital
becoming stochastic only because next period temperature will change next period production and
the resulting investment.
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assumption performs poorly in capturing risk attitude. The long-run risk literature

estimates the coefficient of relative risk aversion of a representative household closer to

10 than to unity (Vissing-Jørgensen & Attanasio 2003, Bansal & Yaron 2004, Bansal

et al. 2010, Chen et al. 2013, Bansal et al. 2012, Bansal et al. 2014, Collin-Dufresne

et al. 2016, Nakamura et al. 2017).11 Merely increasing the utility function’s curvature

would result in high risk-free discount rates that cannot be reconciled with market ob-

servation (risk-free rate puzzle) and would unwarrantedly discount away worries about

the future climate. Moreover, the market rejects the assumption that the intertemporal

elasticity of substitution fully determines risk attitude, which is an assumption built

into the intertemporally additive expected utility (standard) model but which is not

implied by the von Neumann & Morgenstern (1944) axioms.

I follow the asset pricing literature, an increasing strand of macroeconomic lit-

erature, and some recent numeric approaches to climate change assessment in using

Epstein–Zin–Weil preferences. This approach accommodates a realistic coefficient of

risk aversion, disentangling it from the unit elasticity of intertemporal substitution.12

Then the Bellman equation is

V (kt, τt,Mt,Rt, It, t) = max
xt,Nt,Kt,Et

logCt (9)

+
β

α
log
(

Et exp
[
α V (kt+1, τt+1,Mt+1,Rt+1, It+1, t)

])

.

Expectations Et are conditional on time t information (Et(·) ≡ E(·| F t)). I note that

also the Bellman equation uses a generalized mean, here with the nonlinear weighting

function exp(α ·). A positive parameter α characterizes intrinsic risk loving, and a

negative parameter characterizes intrinsic risk aversion. I use this sign convention

because the risk attitude parameter will act on negative shadow values ϕ and the

positive terms αϕ > 0 will correspond to risk-aversion-weighted shadow costs.

The parameter α characterizes risk attitude above and beyond the desire to smooth

consumption over time. In the present model, it is mostly this parameter rather than

Arrow–Pratt risk aversion that drives the risk premia. Figure 6 in the Appendix

characterizes the total aversion deriving from the curvature of utility and the intrinsic

attitude to risk α for a simple coin toss consumption lottery. For example, an agent

with log-utility and no intrinsic risk aversion (α = 0) will be indifferent between a

11Nakamura et al. (2013) obtain one of the lowest estimates by combining the long-run risk model
and the Barro–Riesz model, still resulting in a coefficient of relative risk aversion of 6.4.

12The unit elasticity version of the Epstein–Zin–Weil preferences was first employed by Tallarini
(2000), see Traeger (2012a) for an axiomatization of this special case.
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lottery where she loses 5% of consumption if heads comes up, or gains 5.26% in case

tails comes up. Say she consumes the equivalent of USD 1000 over some period. Then a

fifty percent probability loss of USD 50 will be compensated by a fifty percent probably

gain of USD 52.60. A calibration procedure described in Appendix E translates the

asset pricing literature’s estimates of Epstein & Zin’s (1991) Arrow–Pratt risk aversion

measure in the range of [6, 10] into the range α ∈ [−1.2,−0.7]. I pick the baseline value

α = −1 and will present sensitivity variations for the values α = −1.25 and α = −.5.

In the lottery described above, the baseline choice of α increases the compensating gain

to USD 55.60; the high and low sensitivity variations change this compensating gain

to USD 56.30 and 54.10, respectively.

2.5 Deterministic Solution and Calibration

This subsection characterizes the class of damage functions and ocean-atmosphere tem-

perature dynamics that permit an analytic solution (Proposition 1). To make this so-

lution relevant, these functions have to permit a reasonable calibration, which I discuss

subsequently to the proposition. Then, I characterize a class of stochastic models for

which the high-dimensional dynamic programming problem in the state space reduces

to a simple system of simultaneous equations for the shadow values (Theorem 2).

Deterministic solution. The deterministic ACE model is characterized by equa-

tions (1-7) (sections 2.1 and 2.2). The policy maker optimizes energy and labor inputs

as well as consumption and investments to maximize the recursively defined objective

(9) over the infinite time horizon. Appendix B transforms ACE into an equivalent

linear-in-state model (Karp 2017). Such a transformation simplifies solving the model

and fleshes out which changes would maintain (or destroy) analytic tractability. Linear-

in-state models are solved by an affine value function.

Proposition 1 An affine value function of the form

V (kt, τt,Mt,Rt, t) = ϕkkt +ϕ⊤
MMt +ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt

solves the deterministic ACE if and only if13 kt = logKt, τt is a vector composed of

the generalized temperatures τi,t = exp(ξ1Ti,t), i ∈ {1, ..., L}, the damage function takes

the form

D(T1,t) = 1− exp[−ξ0 exp[ξ1T1,t] + ξ0] (10)

13Affine transformations of the (transformed) state variables are also permitted, which essentially
correspond to a change in measurement scale.
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with ξ0 ∈ IR and the mean in the equation of motion (7) for temperature layer i ∈
{1, ..., l} takes the form

M
σ

i (Ti,t, Ti−1,t, Ti+1,t) =
1

ξ1
log
(

(1−σi,i−1−σi,i+1) exp[ξ1Ti,t]

+σi,i−1 exp[ξ1Ti−1,t] + σi,i+1 exp[ξ1Ti+1,t]
)

(11)

with parameter ξ1 =
log 2
s

≈ 1
4
.

Appendix C provides the proof. The coefficients ϕ in the value function are the shadow

values of the respective state variables. The coefficient vector on the resource stock,

ϕ⊤
R,t, must be time dependent: the shadow values of the exhaustible resources in-

crease over time following the endogenously derived Hotelling rule (see Appendix B).

The process ϕt captures the value contribution of the exogenous processes, including

technological progress.

The damage function is of a double-exponential form with a free parameter ξ0,

which scales the severity of damages at a given temperature level. This free parameter

ξ0 is the semi-elasticity of output with respect to a change of transformed atmospheric

temperature τ1,t = exp(ξ1T1,t). I calibrate ACE’s damage coefficient to match DICE

2013’s calibration points of 0 and 2.5◦C exactly, delivering the damage semi-elasticity

ξ0 = 0.0212 (Nordhaus 2008, Nordhaus & Sztorc 2013). Figure 2 compares the re-

sulting damage curve (solid green), variations with plus/minus 50% of the damage

semi-elasticity (dashed), Nordhaus’ original DICE damage function (solid red), and a

damage function by Weitzman (2010) suggesting that little is known about damages at

higher temperature levels and that damages might turn out much more convex.14 As

compared to DICE, the base calibration of ACE’s damage function generates slightly

higher damages below a 2.5◦C warming, slightly lower damages above a 2.5◦C warming

until 12◦C warming, and higher damages at a warming above 12◦C (a hard-to-conceive

change of life on the planet). The plus/minus 50% variations lie almost everywhere

above/below DICE’s damage curve and the analytic solution permits a simple evalua-

tion of such changes in the calibration.

Temperature dynamics. The generalized mean M
σ

i uses the nonlinear weighting

function exp[ξ1 · ]. The calibration of temperature dynamics (equation 11) uses the

representative concentration pathways (RCP) of the latest assessment report by the

Intergovernmental Panel on Climate Change (IPCC 2013). I use the MAGICC6.0

14The functional forms are D(T ) = 1
1+0.00267T 2 for the DICE 2013 model and D(T ) = 1 −

1/
(
(1 + T

20.46 )
2 + ( T

6.081 )
6.754

)
for Weitzman (2010).
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Figure 2: ACE’s damage function compared to that of DICE 2013 and to a highly convex
damage function suggested by Weitzman (2012). All three solid lines coincide for a 2.5◦C
warming, the common calibration point based on Nordhaus & Sztorc (2013). The dashed
curves depict ACE’s damage function for a ±50% variation of the base-case damage coefficient
ξ0 ≈ 0.021.

model by Meinshausen et al. (2011) to simulate the RCP scenarios over a time horizon

of 400 years. MAGICC6.0 emulates the results of the large atmosphere-ocean general

circulation models (AOGCMs) and is employed in the IPCC’s assessment report. DICE

was calibrated to a (single) scenario using an earlier version of MAGICC. My calibration

of ACE uses two ocean layers (upper and deep) compared to MAGICC’s 50 layers and

DICE’s single ocean layer.

Figure 3 shows the calibration results. In addition to the original RCP scenarios, I

include two scenarios available in MAGICC6.0 that initially follow a higher radiative

forcing scenario and then switch over to a lower scenario (RCP 4.5 to 3 and RCP

6 to 4.5). These scenarios would be particularly hard to fit in a model tracing only

atmospheric temperature. The ability to fit temperature dynamics across a peak is

important for optimal policy analysis. ACE’s temperature model does an excellent job

in reproducing MAGICC’s temperature response for the scenarios up to a radiative

forcing of 6W/m2. It performs slightly worse for the high “business as usual” scenario

RCP 8.5, but still well compared to other IAMs.15 Transformed to the vector of

generalized temperatures τt, the temperatures’ equations of motion (11) take the linear

15The fact that all IAMs slightly overestimate the temperature for high carbon concentrations results
from the recent findings that the climate sensitivity is most likely not constant but slowly falling in
the atmospheric carbon dioxide concentration. An extension of ACE can incorporate a falling climate
sensitivity without losing analytic tractability. For ease of exposition, I decided for the simpler climate
system.
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Figure 3: ACE’s temperature response compared to MAGICC6.0 using the color-coded
radiative forcing scenarios of the latest IPCC assessment report. RCP 3 is the strongest
stabilization scenario and RCP 8.5 is a business as usual scenario. The MAGICC model
(solid lines) emulates the large AOGCMs and is used in the IPCC’s assessment reports.
ACE (dashed lines) matches MAGICC’s temperature response very well for the “moderate”
warming scenarios and reasonably well for RCP 8.5. By courtesy of Calel & Stainforth (2017)
the figure presents as well the corresponding temperature response of DICE 2013, PAGE 09,
and FUND 3.9, the numeric IAMs used for the interagency report determining the official
SCC in the US. ACE competes very well in all scenarios.

vector form

τt+1 = στt + σforcM1,t +Gt

Mpre

e1 . (12)

Further characterization and calibration. The optimal consumption rate is

x∗
t = 1− βκ. Society consumes less the higher the discounted shadow value of capital

(x∗
t = 1

1+βϕκ
with ϕk = κ

1−βκ
), resulting in a consumption rate that decreases in the

capital share of output κ. The other controls depend on the precise form of the energy

sector, but they are not needed to determine the optimal carbon tax.

I calibrate the remaining parts of ACE as follows. A capital share of κ = 0.3 and the

International Monetary Fund’s (IMF) 2018 investment rate forecast of 1 − x∗ = 26%

pin down an annual rate of pure time preference of ρ = 1.42%. Present world output

Y is 10 times (time step) the IMF’s global economic output forecast of Y annual
2018 = 135

trillion USD (purchasing power parity). I use the carbon cycle of DICE 2013.
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2.6 General Solution of the Stochastic ACE

The present study focuses on uncertain climate dynamics. The stochastic ACE is

characterized by equations (1-4) and equation (8) withXt = (M⊤
t , τ

⊤
t , I⊤

t )
⊤: the affine

process governs one-step-ahead uncertainty of carbon, temperature, and information.

The carbon and temperature dynamics in equations (5) and (12) are (degenerate)

cases of equation (8). The specific stochastic models introduced later collapse to their

deterministic counter parts in the case of vanishing uncertainty.

Proposition 2 Define kt, τt, and D(T1,t) as in Proposition 1. LetXt = (M⊤
t , τ

⊤
t , I⊤

t )
⊤ ∈

IRn follow an affine stochastic process (equation 8) with b(·) = (bM(·), bτ (·), bI(·)).
Then, an affine value function solves the stochastic ACE if and only if the set of

shadow values ϕM ,ϕτ ,ϕI solve the algebraic equations

ϕM,i =
β

α
bMi (αϕM , αϕτ , αϕI) ∀i = 1, ...,m

ϕτ,i =
β

α
bτi (αϕM , αϕτ , αϕI)− δi,1

ξ0

1− βκ
∀i = 1, ..., l

ϕI,i =
β

α
bIi (αϕM , αϕτ , αϕI) ∀i = 1, ..., n− l −m

where δi,1 denotes the Kronecker delta (one if i = 1 and zero otherwise). The shadow

value ϕM,1 determines the optimal carbon tax.

Appendix F provides the proof. Proposition (8) transforms a high dimensional and

difficult- or — depending on the precise specification — impossible-to-solve stochastic

dynamic optimization problem on the state space into a simple root-finding problem

for the shadow values, which solves either in closed form or easily on any computer.

Most analytic assessments of climate change under uncertainty have focused on the

welfare impact under uncertainty. Proposition 2 points out that even major welfare

losses may not change the optimal carbon tax if the uncertainty operates through the

affine part a(z,At,Nt,Kt,Et) of equation (8). The impact of uncertainty on the optimal

policy depends on its interaction with the state variables. The set of affine stochastic

processes is large and includes the autoregressive shock model with almost arbitrary

distributions, the normal-normal Bayesian learning model, the Gaussian square root

process, and the autoregressive gamma model (Gourieroux & Jasiak 2006, Le et al.

2010).
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3 Policy Results

The SCC is the money-measured present value welfare loss from adding a ton of CO2

to the atmosphere. The economy in section 2.1 decentralizes in the usual way and the

Pigovian carbon tax is the SCC along the optional trajectory of the economy. In the

present model, the SCC is independent of the future path of the economy. Therefore,

this unique SCC is the optimal carbon tax.

3.1 The Carbon Tax under Certainty

Appendix C solves for the shadow values and derives the optimal CO2 tax. It is

proportional to output Yt and increases over time at the rate of economic growth as in

Golosov et al. (2014). In contrast to earlier models, ACE avoids summing over future

periods, emissions’ impulse responses, or reservoirs, giving a simpler and yet richer

description of the dynamic characteristics driving the optimal carbon tax.

Proposition 3 (1) Under certainty and the assumptions of section 2, the SCC in

(USD-2018-) money-measured consumption equivalents is

SCCdet
t =

βY net
t

Mpre

ξ0
︸︷︷︸

2.1%
︸ ︷︷ ︸

11 USD
tCO2

[
(1− βσ)−1

]

1,1
︸ ︷︷ ︸

1.1

σforc

︸︷︷︸

0.54

[
(1− βΦ)−1

]

1,1
︸ ︷︷ ︸

4.3

= 30
USD

tCO2

(13)

where [·]1,1 denotes the first element of the inverted matrix in square brackets, and the

numbers rely on the calibration discussed in section ??.

(2) A carbon cycle (equation 5) satisfying mass conservation of carbon implies a factor

(1− β)−1, approximately proportional to 1
ρ
, in the SCC (equation 13).

The ratio of world output to preindustrial carbon concentrations Mpre sets the units of

the carbon tax. The discount factor β reflects a one-period delay between temperature

increase and production impact. The damage parameter ξ0 represents the constant

semi-elasticity of net output to a transformed temperature increase, i.e., to an increase

of τ1 = exp(ξ1T1). In the absence of any interesting climate dynamics, these terms

would imply a carbon tax of 11USD
tCO2

, or 10 cents per gallon at the pump (≈ 2 e-cents

per liter). The interesting stuff making the carbon tax more serious happens in the

climate dynamics (and in the uncertainty).

Contribution of carbon dynamics. Analytic models of climate change so far

captured carbon dynamics in a decay formulation, whereas numeric IAMs incorporate
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a carbon cycle respecting that CO2 does not decay. ACE integrates a carbon cycle and

a von Neumann series expansion of βΦ interprets the implications for the carbon tax

(1− βΦ)−1 =
∑∞

i=0 β
iΦi .

The element [Φi]1,1 of the transition matrix characterizes how much of the carbon

injected into the atmosphere in the present remains in or returns to the atmospheric

layer in period i, after cycling through the different carbon reservoirs. E.g., [Φ2]1,1 =
∑

j Φ1,jΦj,1 characterizes the fraction of carbon leaving the atmosphere for layers j ∈
{1, ...,m} in the first time step and arriving back to the atmosphere in the second time

step. Thus, the term

carb1 ≡
[
(1− βΦ)−1

]

1,1

characterizes in closed form the discounted sum of CO2 persisting in and returning to

the atmosphere in all future periods. The discount factor accounts for the delay between

the act of emitting CO2 and the resulting temperature forcing over the course of time.

Similarly carb2 ≡ [(1− βΦ)−1]1,2 would characterize the carbon cycle contribution if

our CO2 emissions were pumped into the shallow ocean instead of the atmosphere.

This measure has been suggested as a geoengeneering solution. More importantly, the

difference between the value contributions of atmospheric and shallow ocean carbon

∆carb ≡ carb1 − carb2 (14)

will play an important role when integrating uncertainty. Quantitatively, the persis-

tence of carbon increases the earlier value by a factor of carb1 = 4.3 and the resulting

carbon tax would be almost 50USD
tCO2

or over 40 cents per gallon – ignoring temperature

dynamics.

Contribution of temperature dynamics. The terms [(1− βσ)−1]1,1 σ
forc cap-

ture the atmosphere-ocean temperature dynamics resulting in both delay and persis-

tence: it takes time to warm the atmosphere and oceans, but once they are warm

they conserve some of this warming. Analogously to the case of carbon, the expression

[(1− βσ)−1]1,1 characterizes the generalized heat flow that enters, stays, and returns

to our atmosphere. Thus, the simple closed-form expression for the carbon tax in equa-

tion (13) captures an infinite double sum: an additional ton of carbon emissions today

causes radiative forcing in all future periods, and the resulting radiative forcing in any

given period increases the temperature in all subsequent periods. The parameter σforc

captures the atmospheric adjustment rate to radiative forcing absent ocean cooling.
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Ocean-atmosphere temperature dynamics reduces the carbon tax by approximately

40%, resulting in the optimal carbon tax of 30USD
tCO2

or 26 cents per gallon (≈ 6 e-cents

per liter).16 Appendix D discusses benefits of temperature cooling and geoengeneer-

ing. It also illustrates two-reservoir carbon and temperature models, and compares the

carbon cycle’s impact on the SCC to frequently used models assuming simple carbon

decay.

A conceptual implication for policy making. The SCC in equation (13) is in-

dependent of the atmospheric carbon concentration and of the prevailing temperature

level. A corresponding independence of past emissions prevails already in Golosov et al.

(2014), and it opposes the common perception that slacking on climate policy today

will require more mitigation in the future. This result might sound like good news, but

what the model really states is: if we delay policy today, we will not compensate in our

mitigation effort tomorrow, but will live with the consequences forever. Yet, the result

does contain some good news for policy makers and modelers. Setting the optimal

carbon tax requires minimal assumptions about future emission trajectories and miti-

gation technologies. The policy maker sets an optimal price of carbon and the economy

determines the resulting optimal emission trajectory. The common intuition that the

SCC ought to increase in the CO2 concentration and the prevailing temperature level

results from the convexity of damages in temperature. Yet, what common intuition

overlooks is that CO2 traps (absorbs) energy of only a certain range of wavelengths. As

CO2 accumulates in the atmosphere, more and more of this energy spectrum is already

trapped and most of the equilibrium energy exchange happens through other parts of

the spectrum. As a result, warming is logarithmic in the prevailing atmospheric CO2

concentration (equation C.10), and the marginal ton’s warming impact is proportional

to the inverse of the prevailing concentration.

3.2 Discounting and Time Preference

It is well known that the consumption discount rate plays a crucial role in valuing long-

run impacts. Finding (2) in Proposition 3 is different. It states that the interaction of

pure time preference and carbon cycle dynamics is the main sensitivity when it comes

16Golosov et al. (2014) and Gerlagh & Liski (2018b) use an emission response model similar to
common carbon cycle models that I adopt here. Their models do not explicitly incorporate radiative
forcing, temperature dynamics, and damages as a function of temperature. However, Gerlagh &
Liski (2018b) introduce a delay between peak emissions and peak damages, motivated by the missing
temperature component. This delay multiplier contributes a factor of .45 in their closest scenario
(“Nordhaus”), which cuts the tax a little more than ACE’s factor of 1.4 · 0.42 ≈ .6, derived from an
explicit model of temperature dynamics calibrated to MAGICC6.0.
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to discounting. The proposition ties this sensitivity directly to the fact that carbon

dioxide does not decay but only cycles through the different reservoirs, implying that

a fraction of our current emissions remains in or returns to the atmosphere in the long

run. The growth contribution to the discount rate is less relevant because the damages

from climate change grow approximately proportionally to consumption, offsetting the

reduction in marginal utility caused by economic growth. This extreme sensitivity

weakens as we move away from log utility as van den Bijgaart et al. (2016) and Rezai

& der Ploeg (2016) elaborate with approximate formulas and numeric simulations. As

we start reducing the elasticity of intertemporal substitution, we clean up more of our

historic sins along the optimal trajectory and worry less about the long run (along the

optimal trajectory). ACE normalizes population size to unity. Part (2) of Proposition

3 might be the most interesting change if population grows instead at a constant rate

g. Assuming the common population-weighted average utility objective, the factor 1
ρ

changes to 1
ρ−g

, making the SCC even more sensitive already at higher rates: IAMs

put additional weight on future generations that are more numerous, which acts as a

reduction of pure time preference. The contribution of temperature dynamics is less

sensitive to time preference because heat is not conserved and constantly exchanged

with outer space.17

The high sensitivity to pure time preference coupled with a low sensitivity to the

consumption discount rate has an interesting policy implication. The US Circular A-4

by the Office of Management and Budget prescribes a consumption discount rate of

3%.18 It does not give any direct guidance regarding its composition, leaving a huge

degree of freedom to the modelers of the Interagency Working Group on the US’ federal

SCC. The standard calibration adopted above implied a rate of pure time preference

of ρ = 1.42%. More sophisticated long-run-risk models in asset pricing deliver much

lower rates while matching risk-free rate and risk premia substantially better, e.g.,

Bansal et al. (2012) calibrate a rate of 0.11% closely matching the Stern’s (2007)

Review’s normative choice.19 Similarly, much lower rates of pure time preference arise

17Already Golosov et al.’s (2014) SCC formula shows a related sensitivity to pure time preference,
arising from modeling emissions as a convex combination of decaying and non-decaying carbon. In
their published revision, Gerlagh & Liski (2018b) explain how the non-decaying carbon box results
from a carbon cycle. Finding (2), which was first published in the working paper version of the present
paper (Traeger 2015), is related in spirit, but is the first to directly factor out the sensitivity factor
(1− β)−1 resulting from mass conservation in the carbon cycle formulation.

18More precisely, cost-benefit analysis is undertaken with both a 3% and a 7% discount rate where
the 3% reflects consumption discounting, and the 7% reflects pre-tax capital interest. In addition, a
third rate between 1-3% can be suggested if future generations are affected.

19Traeger (2012a) shows how uncertainty-based discounting by an agent whose risk aversion does
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if observed market equilibria are interpreted as reflecting individual life-cycle choices

(Schneider et al. 2013) and when distinguishing consumption choice from political long-

term decision making and voting (Hepburn 2006).

I illustrate the response of the different carbon tax components to the choice of time

preference using the median response of Drupp et al.’s (2018) recent expert survey for

the rate of pure time preference of ρ = 0.5%

SCCdet
t =

βY net
t

Mpre

ξ0
︸︷︷︸

2.1%
︸ ︷︷ ︸

✚✚11 12
USD
tCO2

[
(1− βσ)−1

]

1,1
︸ ︷︷ ︸

✟✟1.1 1.3

σforc

︸︷︷︸

0.54

[
(1− βΦ)−1

]

1,1
︸ ︷︷ ︸

✟✟4.3 8.4

=✟✟❍❍3072
USD

tCO2

.

The formula emphasizes that, under certainty, the main determinant of the optimal

carbon tax is the interaction of time preference and carbon dynamics, doubling its

contribution to a factor of 8. Overall, the SCC increases almost 2.5 times to 72USD
tCO2

or

63 cents per gallon at the pump (≈ 14 e-cents per liter).

3.3 Optimal Emission Response

The optimal carbon tax (SCC) goes along with an optimal emission response.

Proposition 4 Under the assumptions of section 2, the optimal emissions from a dirty

resource i ∈ {1, ..., Id} satisfy

E∗
i,t =

σY,Ei
(At,N

∗
t ,K

∗
t ,E

∗
t )Y

net
t

HOTi,t + βSCC
(15)

where σY,Ei
(·) = ∂F (·)

∂Ei

Ei

Y
is the production elasticity of the resource, stars denote the

optimal (or decentralized equilibrium) allocation (under the optimal tax), and HOTi,t

is the Hotelling rent of resource i in period t consumption equivalents.

Given the Hotelling rent of a resource, its optimal use increases in the production level

and in the production elasticity σY,Ei
, and it decreases in the SCC. Unless the elasticity

is constant, equation (15) is an implicit equation that has to be solved together with

the other optimality conditions (see Appendix C.1).

The Hotelling rent arises from the intertemporal scarcity of a resource. It is zero

if we do not expect to exhaust the resource over time. A higher SCC tends to re-

duce emissions. As a result, demand for fossil fuel decreases in all periods and so

not coincide with her consumption-smoothing preference (falsely) manifests as pure time preference
in the standard economic model.
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does resource scarcity: the Hotelling rent falls, which partly crowds out the emission

reduction resulting from a higher carbon tax. Assuming that the production elasticity

of the resource only depends on exogenous technological progress, I show in the proof

of Proposition 4 that a higher SCC always lowers emissions in the present (it lowers

emissions conditional on the same resource stock). If the resource remains scarce, lower

emissions today imply higher emissions in the future. Equation (15) points out that

optimal emissions from a scarce resource with a high Hotelling rent (e.g. oil) respond

much less to the SCC than those from a sector with a low Hotelling rent (e.g. coal):

for resources with a high scarcity value, the carbon tax largely replaces scarcity value.

The simple equation illustrates the literature’s finding, including in Golosov et al.’s

(2014) simulations, that coal use will respond substantially stronger to optimal emis-

sion policies than oil use. Finally, equation (15) illustrates that technological progress

reduces optimal emissions if (and only if) it reduces the production elasticity of the

resource. For scarce resources, this improvement in the production elasticity will, once

more, be partly crowded out by a reduction in the Hotelling rent.

The present finding relates to, but does not constitute the so-called “green paradox”

(Sinn 2012, van der Ploeg & Withagen 2012, Jensen et al. 2015). In the above setting,

a partial crowding out of the SCC’s effect on emissions merely reflects that the value of

using the resource is high even after adding the tax that replaces a high scarcity rent.

The standard green paradox would arise if the policy maker announces a carbon tax

for the future without taxing the fossil fuel immediately. Then, the future reduction

in scarcity lowers HOTi,t already today when the SCC is not yet in place. Today’s

emissions would increase even further above the optimal trajectory than without the

announcement. Similarly, if a large fraction of countries sets the optimal carbon tax,

the resulting reduction in HOTi,t makes it more attractive for a non-participating

country to emit. Another “green paradox” arises if a new technology is expected to

reduce or replace carbon fuel usage in the medium to long-run future (σY,Ei
(At) lower

for some t > T ). Then, demand and HOTi,t fall with respect to a world in which such

a technology is absent (or not expected), and near-term emissions under the optimal

tax tend to be higher in a world with the cleaner expected technology.

4 Long-Run Risk and Climate Change

The causal origin the greenhouse effect can be measured in the laboratory: carbon

dioxide absorbs the planet’s outgoing radiation. Yet, quantifying the warming result-
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ing from a given CO2 trajectory is difficult and results in a highly uncertain temperature

response. First, over 10% of the annual flow of anthropogenic carbon emissions leave

the atmosphere into an unidentified sink. Our lack of understanding current carbon

flows implies major uncertainties in predicting future carbon dynamics. Second, even

if we knew future atmospheric carbon concentrations, we would remain highly uncer-

tain about the implied warming. The deterministic ACE assumed that a doubling of

the preindustrial CO2 concentration increases medium- to long-run temperature by 3C

(climate sensitivity).20 The value of 3◦C was the best guess in the first four IPCC

assessment reports. The latest report deleted this best guess and only cites a “likely”

range of 1.5-4.5◦C (IPCC 2013), where “likely” characterizes a 66% probability inter-

val, and the distribution is strongly skewed towards higher values. ACE integrate at

least some of the huge uncertainties explicitly into the models’ decision-making and

evaluation process. For this purpose, I borrow heavily from the finance literature.

One of the most popular (and descriptively successful) asset pricing models is the so-

called long-run risk model based on Bansal & Yaron (2004). It combines the aversion

to risk generated by Epstein-Zin-Weil preferences with small but highly persistent

(long-run risk) shocks. In the asset pricing literature, these shocks directly govern the

consumption process. Croce (2014) generates the consumption process from shocks

to factor productivity in a macroeconomic model. Jensen & Traeger (2014) introduce

such a long-run risk model to the integrated assessment of climate change.21 Here,

the long-run risk governs productivity and, thus, growth of the economy. In addition,

the earlier applications accounted only for shocks to the expected mean, whereas the

long-run risk model’s application in finance also relies crucially on stochastic volatility.

ACE applies the long-run risk framework to climate risk, and employs affine pro-

cesses to obtain closed-form solutions. Asset pricing models are generally concerned

with the valuation of assets under exogenous risk. In contrast, optimally controlling

the climate has to acknowledge the endogeneity of climate risk: the more we perturb

the climate system with our CO2 emissions, the higher the uncertainty about the future

climate, and the higher the risk premium for the SCC. The next section explains the

20We are currently over 40% towards such a doubling of CO2, and if we include other GHGs’
CO2 equivalent forcing, we are over 60% of the way. The present warming is still much below the
corresponding equilibrium increase because of the atmosphere-ocean temperature interaction discussed
in sections 2.2 and 3.1 and because of the response time of some feedback processes.

21Jensen & Traeger (2014) use a simplified climate model to derive both an approximate analytic
as well as numeric solutions. Cai & Lontzek (forthcoming) recently redo their numeric analysis with
additional climate states and a more detailed calibration of the resulting consumption process. For
this purpose, Cai & Lontzek (forthcoming) tame the tail-risk in Jensen & Traeger’s (2014) infinite
time horizon stochastic fix-point problem by using a discrete Markov chain (and a finite time horizon).
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standard long-run risk model, applies it to climate, and extends it to endogenous risk.

For this purpose, it is easiest to start with uncertainty about future carbon flows, which

permits extending the canonical long-run risk framework. The second section develops

a novel version of the long-run risk model that permits a reasonable application to the

temperature process, where the canonical model fails.

4.1 Uncertainty about Carbon Flows

The long-run risk model adds two stochastic processes to the equation of motion,

here equation (5) governing carbon flows. The first process xM
t governs the conditional

expectations, i.e., the one-step-ahead expectations given the current state of the system.

The second process σM
t governs the conditional volatility of carbon flows. Importantly,

both are highly persistent and, thus, describe long-run uncertainty. The resulting

equation for the carbon stock becomes

Mt+1 = ΦMt + (
∑Id

i=1 Ei,t + Eexo
t )e1 + xM

t + σM
t µM

t (16)

where µM
t ∼ N(0, 1) is a serially uncorrelated white noise, implying that σM

t char-

acterizes the conditional variance of carbon flows. Because carbon does not decay,

conditional expectation and variance have to be vectors balancing the flow between

the different reservoirs. The vector xM
t = (1,−1, 0)⊤ xM

t redirects xM
t tons of car-

bon from the shallow oceans and biosphere into the atmosphere – where it enhances

the greenhouse effect. A negative realization of xM
t goes along with a better-than-

expected carbon removal from the atmosphere into the other reservoirs. Similarly

σM
t = (1,−1, 0)⊤ σM

t characterizes the one-step ahead stochasticity of the carbon

flows between the atmosphere and its neighboring sink.22 The persistent processes

governing conditional expectations and variance are

xM
t+1 = γxxM

t + δMx
√

M1,t

Mpre
− ηM χM

t + δσx σM
t ωM

t (17)

σM
t+1

2
= γσσM

t

2
+ δMσ

(
M1,t

Mpre
− ηM

)

+ σ̄MνM
t (18)

The γ-parameters characterize the persistence of the shocks to the mean (first equation)

and the volatility process (second equation). As I show in section 4.4, epistemological

uncertainty corresponds to a high persistence. Epistemological uncertainty expresses

22I focus on the exchange of atmospheric carbon, which determines the greenhouse effect, with the
land sinks and sources and the shallow ocean. Using the DICE model’s carbon cycle both of these
adjacent sinks and sources are combined into the second reservoir.
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the “ignorance” of the modeler and, here, the scientific community. In the canonical

long-run risk model, the risk is exogenous to the decision maker. The decision-maker

merely values the risk, but does not control it.

In climate change, the risk is endogenous to our decision problem. The more we

perturb the climate system the higher the uncertainty about its future evolution. To

capture the endogeneity of the risk, I introduce the second terms on the right hand

side. The term M1,t

Mpre
− ηM grows as we deviate further from the pre-industrial level

where the climate was relatively stable; ηM < 1 is a free calibration parameter. The

δ-parameters in these second terms characterize the strength of the endogenous contri-

bution to climate risk. For the stochastic volatility (equation 18), the last term on the

right-hand side specifies the exogenous uncertainty, where νM
t ∼ N(0, 1) implies that

σ̄M characterize the corresponding variance. Finally, the parameter δσx in equation

(17) permits coupling the stochastic volatility to the conditional expectations process,

where ωM
t ∼ N(0, 1) is once again serially uncorrelated white noise. This common

third channel in long-run risk models permits that the long-run uncertainty about the

volatility of carbon flows also affects the movement of conditional expectations.

Proposition 5 The stochastic processes (16-18) governing carbon flows change the

deterministic SCCdet stated in Proposition 3 to

SCCt = SCCdet
t

(

1 + θM(θ∗M)
)

≈ SCCdet

1− θ∗M
(19)

with the uncertainty contributions θM(θ∗M) =
1−
√

1−4θ∗
M

1+
√

1−4θ∗
M

> 0 and

θ∗M =
α

2

βϕdet
M,1

Mpre

[

AM�x2 + AM�σ + AM�σAσ�x2
](∆carb)2

carb1
(20)

where AM�x = δMxβ

1−γxβ
, AM�σ = δMσβ

1−γσβ
and Aσ�x = δσxβ

1−γxβ
characterize the individual risk

channels and ϕdet
M,1 denotes the shadow value of atmospheric carbon under certainty.23

The uncertainty contribution θM(θ∗M) is convex in θ∗M .

Equation (19) expresses the SCC’s premium for carbon flow uncertainty as a propor-

tionality factor to the deterministic SCC. It always increases the SCC and is convex

in the contributions characterized by equation (20) as θ∗M . This contribution is pro-

portional to intrinsic risk aversion α and the discounted shadow value of atmospheric

23That is the SCC expressed in utils: ϕdet
M,1 = − SCCt

(1−βκ)Y net
t

. Recall that α < 0 so that αϕdet
M,1 > 0.
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carbon under certainty. First, it is not merely Arrow–Pratt risk aversion that matters

for the SCC, but by how much Arrow–Pratt risk aversion exceeds the desire to smooth

consumption over time (α measures this difference and characterizes intrinsic aversion

to risk, see section 2.4). Second, the proposition implies that the share of the overall

SCC contributed by uncertainty ( SCCt

SCCdet
t

) increases convexly in its deterministic base

value SCCdet
t because the shadow value of atmospheric carbon is itself proportional

SCCdet. The more serious the climate problem, the larger the relative importance of

uncertainty.

The three risk channels abbreviated AM�x, AM�σ, and Aσ�x disentangle the con-

tributions from the different aspect’s of long-run risk. Each of these channels increases

in the corresponding δ-parameter scaling the endogeneity of climate risk. The propo-

sition shows that only this endogenous uncertainty, which results from changes in the

carbon concentrations, affects the optimal policy.24 In addition, each channel’s contri-

bution increases in its corresponding γ-parameters scaling the shock persistence. We

do not have to worry about serially uncorrelated short-term fluctuations in the mean

or volatility of carbon flows. If uncertainty matters, then it is because of persistent

long-run risk. The conditional expectations channel AM�x contributes quadratically.

This contribution represents the long-term uncertainty about expected carbon flows.

The stochastic volatility channel AM�σ enters twice. It reflects the harm from an in-

crease in volatility that results from a (further) perturbation of the climate system. Its

first appearance captures the long-run uncertainty about the volatility of carbon flows.

For δσx > 0, stochastic volatility also governs the conditional expectations. Then, the

combined channel AM�σAσ�x2 reflects that an increase in carbon increases stochas-

tic volatility which increases the variance of conditional expectations (in a persistent

manner).

Finally, the uncertainty contribution is convex in its driving force: carbon in the

atmosphere is more harmful than carbon in the adjacent sinks. Defined in equation

(14), ∆carb captures this difference in the value contribution and enters relative to the

value contribution of atmospheric carbon carb1. These two terms interact carbon cycle

characteristics and time preference with the long-run risk.

24The exogenous uncertainties affect welfare and “the climate asset’s value.” Yet, they do not affect
the optimal climate policy.
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4.2 Temperature Uncertainty

The Gaussian model of the previous section cannot adequately represent temperature

uncertainty. Temperature Ti,t =
1
ξi
log(τi,t) is a logarithmic transformation of the state

τi,t and the expected temperature dynamics has to approximately equal the deter-

ministic dynamics. As a result, generalized temperature τ1,t has to be governed by a

positively skewed distribution with a suitable lower bound.25 For this purpose, I use

the autoregressive gamma process introduced by Gourieroux & Jasiak (2006), which

has been applied to the long-run risk literature in asset pricing by Le et al. (2010)

and Creal (2017). Again, I extend the model to capture the endogeneity of climate

risk.26 The one-step-ahead state in the autoregressive gamma process is governed by a

gamma distribution whose shape parameter is modulated by a realization of a Poisson

distribution. I refer to Appendix F.2 for details. The canonical Gaussian long-run risk

model separates the long-run risk between the risks governing conditional expectations

and stochastic volatility. The current model merges these two long-run uncertainties

into a single process.

I model the long-run risk by the autoregressive gamma process yt, which I shift by

a deterministic process yot that adjusts the expectations. Then, the equation of motion

(12) changes to

τt+1 = στt +

(

σforcM1,t +Gt

Mpre

+ h(yt+1 − yot+1
︸ ︷︷ ︸

≡ zt+1

)

)

e1. (21)

The parameter h scales the uncertainty relative to the deterministic contribution and

the first unit vector e1 ensures that the feedbacks are driving atmospheric temperature.

In contrast to the earlier model, I use the long-run risk process in t + 1 on the right

side of equation (21): the process governs both conditional expectations of τt+1 and

25Otherwise, we would discuss the policy impact of changes in expected temperature dynamics
rather than the impact of uncertainty. In addition, negative realization of generalized temperature τi,t
would imply nonsensical realization of real temperature. The long-run risk model in asset pricing gives

rise to some nonsensical negative realizations of the variance σM
t+1

2
. This fact is well known, yet it is

widely used as an approximate model with a closed-form solution, assuming that the actual calibration
of the model makes these realizations of second-order importance. The issue with temperature is
more serious. To keep temperature expectations (log expectations of τi,t) close to the deterministic
evolution, the model has to be de-biased. Yet, any realization of τi,t = 0 would cause an infinitely
negative expectation. Therefore, the Gaussian model cannot be de-biased in a meaningful way.

26In contrast to the mentioned applications, the model below makes both autoregression and the
shape parameter of the underlying gamma distribution state dependent. I thereby use the fact that
the underlying cumulant-generating function is linear not only in last period’s state but also in the
shape parameter.
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the one-step-ahead conditional volatility.

The relevant information about the process is summarized in the conditional ex-

pectation and variance

Et zt+1 = γzzt + ǫ(c)
(

M1,t+Gt

Mpre
− ητ

)

(22)

Vart zt+1 = Vart yt+1 = c
[

2γzyt +
(

M1,t+Gt

Mpre
− ητ

) ]

. (23)

Equation (F.2) governs the conditional volatility of atmospheric temperature. As in

the previous section, it grows in the perturbation of the climate system captured by
M1,t+Gt

Mpre
− ητ and is autoregressive. The calibration parameter c scales the variance.

Equation (22) characterizes the conditional expectations of atmospheric temperature.

It is autoregressive with persistence γz; a high persistence will once again capture

long-run risk mimicking epistemological uncertainty. In contrast to the earlier model,

expectations are biased upwards by a term proportional to ǫ(c) and the deviation from

the pre-industrial equilibrium. This upward bias adjusts the temperature expectations

T1,t =
1
ξ1
log(τ1,t) to their deterministic trajectory.27

In summary, temperature uncertainty is governed by a skewed stochastic long-run

risk process that will deliver a reasonable fit to scientific data about temperature uncer-

tainty. The parameter γz captures the persistence of the uncertainty and the parameter

c scales its variance. Uncertainty increases endogenously with the perturbation of the

climate system. The term ǫ(c) reflects the non-linearity of the temperature process

and adjusts the expected temperature evolution to the deterministic evolution.

Proposition 6 The stochastic processes for carbon and temperature defined in section

4 change the deterministic SCCdet stated in Proposition 3 to

SCCunc = SCCdet
(

1 + θτ

)(

1 + θM

(

θ∗M(1 + θτ )
))

with θτ =
h

σforc

ǫ(c) + θ∗τ
1− βγz

≈ h

σforc

1

1− βγz

(

ǫ(c) +
1

2

1 + βγz

1− βγz
F

)

(24)

and F = αϕdet
τ,1

ch
1−βγz . Here, ϕ

det
τ,1 is the shadow value of τ1,t under certainty

28 and θM(·)
27Temperature is a concave transformation of the state τ . Thus, a mean-zero shock to τ1,t+1 would

reduce the expectation of T1,t+1 below its deterministic value. The higher the uncertainty, the higher

the bias. Therefore, the de-biasing increases proportional to
M1,t+Gt

Mpre
−ητ , which increases the variance

of the process as a consequence of perturbing the climate system. In addition, the exogenous parameter
c scales the variance and I write ǫ(c) to make explicit that a different calibration of c also changes the
calibration of ǫ achieving an approximate de-biasing of the temperature expectations.

28It is ϕdet
τ,1 = − ξ0

1−βκ
[(1− βσ)−1]1,1.in utils. Note that αϕdet

τ,1 > because α < 0.
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and θ∗M are defined in Proposition 5. For the exact solution

θ∗τ =
− log

(
1−F (1+θ

†
τ )
)

F
− 1 with θ†τ = βγz

1+F−
√

(1−F )2−4F βγz

1−βγz

1−F+
√

(1−F )2−4F βγz

1−βγz

.

The long-run risk about the temperature further increases the SSC. The increase θτ > 0

enters the SCC twice. First, it directly increases the SCC by the fraction θτ over its

deterministic value. Second, it increases the contribution resulting from the long-

run risk over carbon flows because the long-run risk about temperature changes the

valuation of the carbon flows that drive the valuation of carbon risk. We know from

Proposition 6 that the overall contribution from carbon flow uncertainty θM increases

convexly in its argument, now the interaction of carbon flow and temperature risk.

In addition, the policy impacts of long-run risk over carbon flows and temperature

reinforce each other because they appear as multiplicative factors: (1+θτ ) (1 + θM(·)) =
1 + θτ + θM(·) + θτθM(·). Thus, a first conclusion is that both risks are mutually

aggravating.

Equation (24) spells out the components driving the policy impact of tempera-

ture risk. The factor h
σforc weighs the stochastic forcing contribution relative to the

deterministic contribution; the higher the stochastic relative to the deterministic con-

tribution, the higher the factor increasing the stochastic over the deterministic SCC.

The first core component of the temperature contribution is ǫ(c). It results directly

from the non-linearity of the temperature dynamics: a high temperature realization is

more painful than a low temperature realization, even in the absence of (intrinsic) risk

aversion. This contribution increases in the uncertainty level c, where both c and ǫ will

be calibrated to scientific data. The second core contribution θ∗τ results from the inter-

actions of risk and risk aversion. Both contributions are amplified by the persistence

γz of the stochastic process, and more so for a more patient decision maker (β large).

Equation (24) also presents an approximation of the risk and risk aversion contri-

bution θ∗τ that captures its essence. First, an additional dependence on the discount

factor weighted persistence emphasizes that this contribution will be highly sensitive

to the combination of the decision maker’s patience and the long-run risk’s persistence.

Second, at the heart of the contribution lies the term F = αϕdet
τ,1

ch
1−βγz , which is once

again driven by the risk aversion weighted shadow value under certainty. The (intrin-

sic) risk aversion parameter α reflects that the excess of Arrow–Pratt risk aversion over

consumption smoothing drives the risk premium. As in the case of carbon risk, when-

ever the shadow cost of a temperature increase is high under certainty (ϕdet
τ,1 large), the

long-run risk contribution to the SCC will grow relatively more relevant than the de-
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Figure 4: left panel shows atmospheric carbon under DICE’s business as usual scenario
given carbon flow uncertainty (δ σx = 1, δMx = δMσ = 25, γx = γσ = 0.95, ηM = 0.8). The
deterministic DICE evolution (5-year time steps, “Data”), the deterministic ACE evolution
(10-year time steps), and the mean and the median of 1000 uncertain trajectories are hardly
distinguishable. The right panel gives the probability distribution of the transient climate
response (TCR) in ACE and compares its mean (“x”) and 66% probability interval to the
IPCC (2013) data. The parameters are γz = 0.95, h = 0.23, η = 0.8, c = 0.21, and ǫ = 0.05,
and the resulting TCR distribution exhibits the typical moderate positive skew.

terministic contribution (
SCCunc

t

SCCdet
t

increases). Furthermore, the contribution increases in

the variance scaling parameter c and the scaling parameter of the stochastic feedbacks

h, making the contribution convex in h which already appears in equation (24). More

generally, the exact solution shows that the contribution θ∗τ is itself convex rather than

linear in F .

4.3 Quantitative Insights

Appendix G calibrates the stochastic processes. The right panel of Figure 4 closely

resembles the probability distributions and statistical information about the transient

climate response (TCR) provided by the IPCC (2013). The TCR better characterizes

the climate response for the coming century than does the climate sensitivity, which

characterizes the medium- to long-term response over a few centuries. It is harder to

find good probabilistic information on carbon flow uncertainty. My calibration uses

the magnitude of the missing sink and Joos et al.’s (2013) study subjecting 18 different

carbon cycle models to a 5000Gt carbon pulse. The approach is rule of thumb. The left

graph in Figure 4 translates the calibration into the resulting uncertainty over atmo-

spheric carbon dioxide concentrations along the DICE 2013 business as usual scenario.

Section 4.4 discusses the choice of autoregressive persistence in view of epistemological

uncertainty.
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Carbon flow uncertainty adds a negligible risk premium (< 1%). Uncertainty

over conditional expectations contributes most of this premium, followed by stochas-

tic volatility of conditional expectations (δσx = 1). The direct channel of stochastic

volatility on carbon flows hardly contributes (< 1% of the already tiny premium). This

result differs from the long-run risk’s application to asset pricing, where the stochastic

volatility channel is generally considered the most important. Here, the most rele-

vant information is the long-run expected carbon flow, not its long-run volatility. In

contrast, temperature uncertainty adds a substantial risk premium of 25%. The non-

linearity of temperature dynamics captured by ǫ(c) accounts for about half of this

premium. The risk-aversion-sensitive contribution θ∗τ contributes the other half.

Proposition 6 found that the temperature contribution is highly sensitive to the

discount factor weighted persistence of the long-run risk. Drupp et al.’s (2018) expert

survey suggests a rate of pure time preference of ρ = 0.5% (median value) instead of

the 1.42% resulting from the standard calibration. As explained in section 3.2 such a

lower choice is also supported by emprical application of the long-run risk model to

asset pricing (or for normative purposes). This reduction of impatience increases the

risk premium to 180% and the tax to 200USD
tCO2

. Now the risk-aversion-sensitive part,

θ∗τ , contributes the lion’s share of the premium (150%). The carbon flow uncertainty

multiplier θM adds 2% or 4USD
tCO2

. The difference in impact of uncertainty over carbon

versus temperature dynamics is a result of the highly concave transformation of emis-

sions into radiative forcing and warming. The welfare change is strongly convex in

temperature, but hardly convex in changes of CO2. The finding emphasizes the great

importance of distinguish temperature dynamics from carbon dynamics when evalu-

ating the impact of uncertainty. Lowering or increasing risk aversion to α = −0.5 or

α = −1.25 (see section 2.4) decreases the optimal tax to 125USD
tCO2

or increases it to

300USD
tCO2

in the setting with the reduced risk-free rate, and to 35USD
tCO2

or 39USD
tCO2

in the

base case.

Relating these findings to earlier numeric findings, Jensen & Traeger (2013) find

a climate sensitivity risk premium of 25% for a pure rate of time preference of 1.5%,

similar to my base case, and Kelly & Tan (2015) find a risk premium of 24% using a rate

of time preference of 5% in combination with fat tails. Both models use a simplified

climate model including a carbon decay approximation to the carbon cycle to save

numerically expensive state variables. Rudik & Lemoine (2017) find a risk premium of

10% using a Smolyak grid in an implementation without state space reduction.29

29Kelly & Tan (2015) find that, in the presence of fat tails, the ability to learn can matter sub-
stantially for the SCC, and the risk premium can be up to 60% in scenarios without learning. In
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4.4 Welfare, Uncertainty, and Learning

The section discusses the relation between two different conceptualizations of uncer-

tainty. First, nature’s stochastic physical processes lead to an uncertain evolution of

the future climate. Second, epistemological uncertainty reflects the limited understand-

ing of natural processes by the scientific community. The most important difference

is that epistemological uncertainty can potentially be reduced over time as scientists

gain a better understanding. The section will also flesh out an analytic formula for

the welfare loss, showing a discounting sensitivity that increases in the power of the

moments of the uncertainty distribution (variance, skewness, kurtosis,...).

For a simpler closed-form tractability, this section simplifies the stochastic evolution

of the climate variables.

Mt+1 = ΦMt + (
∑Id

i=1 Ei,t + Eexo
t )e1 + ǫMt + νM

t (25)

τt+1 = στt + σforcM1,t +Gt

Mpre

e1 + ǫτt + ντ
t . (26)

The vectors ǫMt and ǫτt reflect uncertainty, the vectors νM
t and ντ

t reflect measurement

error and are non-zero only in the Bayesian learning model, where they determine the

speed of learning. Henceforth, the climate state j will label any of the carbon reservoirs

or temperature layers M1, ..Mm, τ1, ...τl.

I compare the uncertainty dynamics of an autoregressive shock process to that of a

Bayesian learning model. To ease the comparison, I write these processes in a slightly

unusual way. A first-order autoregressive shock introduces one-step-ahead uncertainty

for the random variable ǫjt . The mean of ǫjt , denoted µ
j
t , follows the equation of motion

µ
j
t+1 = γjµ

j
t + χ

j
t , (27)

where 0 ≤ γ ≤ 1 and χ
j
t is a sequence of iid mean-zero shocks. The one-step-ahead

variance of ǫjt is given by the variance of χj
t (and similarly for higher moments).

A Bayesian learning model with normally distributed measurement error ν
j
t ∼

N(0, σ2
ν) (likelihood) and prior ǫ

j
t ∼ N(µj

t , σ
2
ǫ,t) gives rise to the following dynamics

contrast, Jensen & Traeger (2013) find that anticipated learning, in their model without fat tails, has
no impact on the present SCC. Rudik & Lemoine (2017), who also use a time preference of 1.5%, find
that without anticipated learning their uncertainty premium falls to 1%. See section Section 4.4 for
a discussion of learning.
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of the mean30

µ
j
t+1 = µ

j
t + χ

j
t with χ

j
t ∼ N

(

0,
σ4
ǫ,t

σ2
ǫ,t+σ2

ν,t

)

. (28)

Writing the updating equation in the form of equation (28) emphasizes the close sim-

ilarity between learning and a (persistent) AR(1) shock. The important conceptual

difference from the autoregressive model is that the variance of ǫjt does not vanish with

period t information: σ
j
ǫ,t ≡ Var[ǫjt |It] > 0. Yet, what matters to the decision maker

is the one-step-ahead forecast uncertainty, which is similar for both settings. The

only difference between equations (27) and (28) is that the conditional expectation of

the Bayesian model exhibits full persistence and a prescribed evolution of the shock

variance that falls over time, σ2
ǫ,t+1 =

σ2
ν,tσ

2
ǫ,t

σ2
ν,t+σ2

ǫ,t
.31

Proposition 7 Let uncertainty in equations (25-26) affect state j.

(1) A normally distributed first-order autoregressive process ǫt with one-step-ahead vari-

ance σ2 implies the welfare loss

∆WAR
normal =

∑∞

t=0 β
t+1
(

β

1−γjβ

)2

αϕ2
j

σ2

2
= β

1−β

(
β

1−γjβ

)2

αϕ2
j
σ2

2
.

(2) A Bayesian learning model with normally distributed prior ǫt ∼ N(µǫ,t, σ
2
ǫ,t) and

measurement error νt ∼ N(0, σ2
ν,t) implies the welfare loss

∆WBayes =
∑∞

t=0 β
t+1
(

Ωt

1−β

)2

αϕ2
j

σ2
ǫ,t+σ2

ν,t

2

with Ωt ≡ σ2
ǫ,t

σ2
ν,t+σ2

ǫ,t
+ (1−β)

σ2
ν,t

σ2
ν,t+σ2

ǫ,t
.

(3) A first-order autoregressive process ǫt with arbitrarily32 distributed iid shocks χt

implies the welfare loss

∆WAR
general =

β

1−β
1
α
Gχ

(
β

1−γjβ
αϕj

)
= β

1−β
1
α

∑∞

l=1 κl
1
l!

(
β

1−γjβ
αϕj

)l

, (29)

where κl are the cumulants of the iid shock χt.

30The standard way of writing the Bayesian updating equation for the mean is

µj
t+1 =

σ2

ǫ,t

σ2

ǫ,t+σ2

ν,t

µj
t +

σ2

ν,t

σ2

ǫ,t+σ2

ν,t

zt with observation z ∼ N(µǫ,t, σ
2
ǫ,t+σ2

ν,t). Defining χj
1,t =

σ2

ν,t

σ2

ǫ,t+σ2

ν,t

(zt−
µǫ,t) delivers equation (28). Note that the observational variable z is defined in equations (25-
26). For example, in the case of uncertain atmospheric carbon content, the observation z is

Mt+1 −Φ1,·Mt − (
∑Id

i=1 Ei,t + Eexo
t ).

31Kelly & Kolstad (1999) and Karp & Zhang (2006) employ such a simple Bayesian learning model
for the assessment of climate change feedbacks and damages. Kelly & Tan (2015) analyze learning
speed when climate sensitivity is fat tailed.

32I assume that the shock χt has a finite cumulant-generating function.
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In both models (i) and (ii), the welfare loss is proportional to (intrinsic) risk aversion α

and the square of the state’s shadow value under certainty, e.g., ϕj = ϕτ,1 if uncertainty

governs atmospheric temperature. The welfare loss is also proportional to the variance.

Assumed constant in the AR model, this variance falls over time in the Bayesian

learning model, where it is the sum of measurement error and Bayesian prior. In the

AR model, the assumption of constant variance collapses the infinite sum into a factor

(1− β)−1, yielding a sensitivity to time preference similar to the one observed for the

carbon tax under certainty (Proposition 3). In addition, the welfare loss is proportional

to the factor (1− γβ)−2: a high uncertainty persistence γ makes the result even more

sensitive to the choice of pure time preference.

The Bayesian learning model swaps this factor33 against the factor
(

Ωt

1−β

)2

= (1 − β)−2
(

σ2
ǫ,t

σ2
ν,t+σ2

ǫ,t
+ (1−β)

σ2
ν,t

σ2
ν,t+σ2

ǫ,t

)2

. The term Ωt is a weighted mean of unity

(weighted by prior uncertainty) and 1 − β (weighted by the measurement error). Ini-

tially, when the prior uncertainty is large (σǫ,t ≫ σν,t), the time preference sensitivity

is that of a fully persistent AR shock with γ = 1: every update implies a revision of

the long-run future. If the decision maker is patient, this long-term update moves her

welfare substantially. As she becomes more assertive of her environment, uncertainty

reduces to the prior and, once σǫ,t ≪ σν,t, the term Ωt cancels the time sensitivity 1−β:

post-learning the iid error σ2
ν has no more long-term repercussions.

This comparison between an autoregressive uncertainty model and a Bayesian learn-

ing model also informs my choice of the γ−parameters specifying uncertainty persis-

tence in the models of section 4.

(1− γβ)−2 !
=

(
Ωt

1− β

)2

⇔ γ
!
=

(

1 + (1−β)
σ2
ν,t

σ2
ǫ,t

)−1

≈ 1− ρ
σ2
ν,t

σ2
ǫ,t

. (30)

Evaluating this back-of-the-envelope correspondence for early periods suggests γ ≈
0.99: a 10-year time step with a 1% annual discount rate and a (decadal) measurement

error that is 10% of the prior uncertainty. Once the magnitude of the prior uncertainty

approaches that of the measurement error, the corresponding γ drops to 0.9. As a

result, I chose γ = 0.95 as an intermediate value for my quantitative assessments in

section 4.34

33I ignore the term β2 in this comparison as I am interested in the sensitivity for β → 1.
34The relation in equation (30) could suggest that a lower rate of time preference should imply

a higher corresponding γ. This insight would further increase the Bayesian learning model’s time
preference sensitivity. Yet, with a lower rate of pure time preference, the comparison in equation (30)
should also pay increasing attention to later periods where the corresponding γ is smaller than in
earlier periods because of learning.
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The general autoregressive shock model in case (iii) of Proposition 7 shows that

higher-order moments of the uncertainty contribute proportionally to higher orders

of the risk-aversion-weighted shadow value of the state. It also shows that for high

uncertainty persistence, the sensitivity to time preference of the welfare loss increases in

the power of the contributing moment: the contribution of the kurtosis is more sensitive

to time preference and (intrinsic) risk aversion than the contribution of skewness, which

is more sensitive than the contribution of the variance, which is more sensitive than

the contribution of the mean. In the colloquial use of “fat tailedness” prevalent in the

climate change debate, equation (29) suggests that the fatter the tail the more relevant

the calibration of time preference.

Finally, carbon does not decay; it merely travels between different reservoirs. There-

fore, we cannot look at independent individual shocks across states. The stochastic

carbon flow between the atmosphere and a sink is a perfectly negatively correlated

shock to adjacent layers. Such uncertainty gives rise to the formula in Proposition 7

with the shadow value ϕj = ϕM,1−ϕM,2 (see the proof of the proposition for details).

5 Conclusions

ACE is a stochastic analytic IAM closely resembling the core components of numeric

models used in policy advising, in particular, the widespread DICE model. ACE fleshes

out the quantitative policy contributions of the different parts of IAMs in a simple

formula, and it complements current studies with a careful uncertainty analysis.

Under certainty, a standard calibration delivers an optimal carbon tax of 30USD
tCO2

or 63 cents per gallon. Here, carbon dynamics contribute a factor of 4 and tempera-

ture dynamics contribute a reduction of 40%. The standard calibration overestimates

the risk-free discount rate. The median response of Drupp et al.’s (2018) expert sur-

vey suggests a pure time preference of 0.5%, almost 1% lower than in the standard

calibration. The long-run risk literature finds that even lower rates explain observed

asset prices well once risk aversion is disentangled from intertemporal consumption

smoothing. Such a reduction in time preference increases the optimal carbon tax un-

der certainty to over 70USD
tCO2

, with carbon dynamics contributing a factor of 8. I show

that the high sensitivity to pure time preference derives from the fact that carbon does

not decay but instead cycles through different reservoirs. This sensitivity increases

further under population growth with population-weighted average consumption, but

it decreases when moving away from ACE’s assumptions of a unit elasticity for the
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intertemporal elasticity of substitution and for the elasticity of damages to output.

The stochastic ACE merges the linear-in-state systems of recent analytic IAMs

with affine stochastic (nonlinear-in-state) processes used in asset pricing. In contrast

to much of the asset pricing literature, climate change policy must be concerned with

the endogeneity of the risk, i.e., the implications of our current policies on future uncer-

tainty. ACE shows that the huge uncertainties surrounding future atmospheric carbon

accumulation hardly affect the optimal policy. The marginal effect of a ton of car-

bon on temperature increase is inversely proportional to the amount of carbon already

present. Together with decreasing marginal utility, this marginal decrease of carbon-

induced warming balances the convexity of temperature damages. Risk aversion still

contributes a premium, but it is small. The uncertainty over conditional expecta-

tions of carbon buildup contributes more than does the uncertainty over carbon flow

fluctuations (stochastic volatility).

The main quantitative concern is the uncertain temperature response to a given

carbon concentration. In the standard calibration of time preference, uncertainty con-

tributes an additional 25% to the deterministic carbon tax. A little more than half of

the effect derives from the decision maker’s risk aversion. The remainder derives from

the mere nonlinearity of welfare in temperature and would prevail even without risk

aversion. The applicable measure of risk aversion is not the Arrow–Pratt measure, but

a measure of intertemporal or intrinsic risk aversion. This measure characterizes how

much more averse a decision maker is to risk than to deterministic consumption fluctu-

ations. The risk premium increases convexly in this risk aversion and in the magnitude

and persistence of uncertainty. The relative risk premium also increases convexly in all

the contributions to the deterministic carbon tax: the risk premium makes up a larger

share of the optimal tax when climate change is judged as more severe to start with.

Reducing the risk-free discount rate by applying the 0.5% pure rate of time preference

increases the risk premium to 180%. That is 180% of the already higher SCC under

certainty, delivering an overall optimal tax of 200USD
tCO2

. Varying risk aversion within

reasonable bounds varies this tax between 125USD
tCO2

and 300USD
tCO2

.

Taking the structure and delays of IAMs seriously, ACE finds that the risk pre-

mium is even more sensitive to time preference than the deterministic tax is, and this

sensitivity seems to increase with the fatness of the tail. Unfortunately, this result

contradicts more stylized assessments that suggested we could leave the difficult field

of discounting sensitivities behind by focusing on the dominant importance of climate

change uncertainty. ACE also points out that the US government’s prescription of

the consumption discount rate in deriving the federal SCC leaves a flexibility in pick-
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ing pure time preference that easily changes the optimal carbon tax by an order of

magnitude.

Finally, ACE delivers a simple formula for the emission response to a carbon tax

under general assumptions about the production sectors. It shows how a carbon tax

trades off against the Hotelling rent of a scarce resource in a full-fledged IAM. Tech-

nological progress will only reduce emissions if it reduces the production elasticity of

emissions, and the formula shows that also such an innovation will be partly crowded

out by changes in the Hotelling rent. Thus, innovations reducing resource dependence

will be most effective in low scarcity resource sectors like coal, especially if we do not

implement taxes in the magnitude implied by a low risk-free rate calibration.

ACE is a quantitative analytic model. As such, it has limitations in the choice

of functional forms. I have shown that the chosen functional forms fit the real-world

climate change problem sufficiently well to have a serious quantitative discussion of the

implications of model assumptions and sensitivities, and to enable a broad audience to

familiarize itself with a full-fledged IAM of climate change. ACE permits uncertainty

analysis in closed form and, more generally, by reducing the curse of dimensionality

in dynamic programming to a simple system of simultaneous equations. Extensions

of ACE can deal with regional production and temperature and, thus, can integrate

uncertainty and solve games in complex regional settings of geoengineering and climate

negotiations. ACE’s major virtue is to combine quantitative analysis with analytic

insight, and to enable stochastic modeling in complex dynamic environments. Any

quantitative analytic approach has its limitations in the nonlinearities and interactions

it can handle.
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Appendix

Part I - Deterministic ACE

A Capital Depreciation

This section derives the capital equation of motion (4) and discusses the implied result

that the consumption rate is unaffected by climate states. The usual capital accumu-

lation equation, enriched by climage damages, is

Kt+1 = Yt[1−Dt(T1,t)]− Ct + (1− δk)Kt .

Defining the consumption rate xt =
Ct

Yt[1−Dt(T1,t)]
and recognizing that Yt[1−Dt(T1,t)]−

Ct = Kt+1 − (1− δk)Kt implies35

Kt+1 = Yt[1−Dt(T1,t)](1− xt)

[

1 +
1− δk

Kt+1

Kt
− (1− δk)

]

.

Defining the capital growth rate gk,t =
Kt+1

Kt
− 1, I obtain the equation of motion for

capital (4) stated in the main text.

Treating the growth and depreciation correction in squared brackets as exogenous

remains an approximation. The extension shows that the model is robust against the

immediate criticism of not being able to represent the correct capital evolution and

capital output ratio, and against the agent’s neglecting of capital value beyond the

time step. The crucial result from the assumptions underlying equation (4) is that

the investment rate is independent of the climate states. It is the price to pay for an

analytic solution. The remainder of this section shows that this price seems small.

Figure 5 tests ACE’s result (and implicit assumption) that the optimal consumption

rate is independent of the climate states. The figure depicts the optimal consumption

rate generated by a recursive DICE implementation with an annual time step and, thus,

an annual capital decay structure of the usual form (Traeger 2012b).36 It also aban-

dons the assumption of logarithmic utility, further stacking the cards against ACE’s

35The step usesKt+1 = Yt[1−Dt(T1,t)]−Yt[1−Dt(T1,t)]xt+(Yt[1−Dt(T1,t)]− Ct)
(1−δk)Kt

Yt[1−Dt(T1,t)]−Ct
.

36The recursive implementation based on the Bellman equation solves for the optimal control rule
as a function of the states. Thus, solving the model once immediately delivers the full control surface
depicted here. This recursive implementation has a slightly simplified climate change model compared
to the original DICE model, but matches the Maggic6.0 model, used also as the DICE benchmark,
similarly well.
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assumptions. The first two graphs in the figure depict the control rules for DICE-

2013’s η = 1.45 (inverse of the intertemporal elasticity of substitution). These two

graphs state the optimal consumption rate for the years 2025 and 2205. The third

graph in the figure depicts the optimal consumption rate for the lower value η = 0.66

calibrated by the long-run risk literature (see section 2.4).

The qualitative behavior is the same for all graphs in Figure 5. Overall, the figure

shows that the optimal consumption rate is largely independent of the climate states

(if the vertical axis started at zero the variation of the control rule would be invisible).

At current temperature levels, the optimal consumption rate does not depend on the

CO2 concentrations. This result is in accordance with the theoretical result under

ACE’s assumption set. However, the optimal consumption rate increases slightly for

higher temperatures. It increases by less than a percentage point from no warming

to a 3C warming at low CO2 concentrations. The increase is lower at higher CO2

concentrations.

The graphs confirm that also in DICE, and in a model with regular annual capital

decay structure and not exactly log-utility, the investment rate is not used as a measure

of climate change policy. The rate does not respond to the CO2 concentration, which

is a measure of expected warming. Only once the temperature dependent damages set

in, the consumption rate slightly increases and the investment rate goes down. Instead

of reflecting climate policy, this (minor) climate dependence of the consumption rate

reflects a response to the damages incurred: these damages reduce the cake to be split

into investment and consumption, then, a slightly higher fraction goes to consumption.

This response is lower when CO2 concentrations are high: then the social planner

expects high temperatures and damages also in the future and is more hesitant to

reduce investment.

B Transformation to Linear-in-State Model

(helpful for insight & preparation for proofs)

For notational convenience, I introduce the normalized vector Kt ≡ Kt

Kt
characterizing

the distribution of capital over sectors whose components satisfy
∑IK

i=1 Ki,t = 1. To

obtain the equivalent linear-in-state-system, I replace aggregate capital Kt =
∑IK

i=1 Ki,t

by logarithmic capital kt ≡ logKt. I replace temperature levels in the atmosphere and

the different ocean layers by the transformed exponential temperature states τi,t ≡
exp(ξiTi,t), i ∈ {1, ..., L}. I collect these transformed temperature states in the vector
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Figure 5: The graphs analyze the climate (in-)dependence of the optimal consumption rate x∗

in the wide-spread DICE model, relying on the control rules of the recursive implementation
by Traeger (2012b). The first two graphs assume the DICE-2013 value η = 1.45, the third
graph follows the long-run risk literature with η = 2

3 . The blue dot in each graph indicates
the expected optimal control and prevailing temperature-CO2 combination along the optimal
policy path in the given year.
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τt ∈ IRL. Finally, I use the consumption rate xt =
Ct

Yt[1−Dt(T1,t)]
, rather than absolute

consumption, as the consumption-investment control. Only the rate will be separable

from the system’s states. Homogeneity of the production function implies that

Yt = F (At,Nt,Kt,Et) = Kκ
t F (At,Nt,Kt,Et)

Then welfare as a function of the consumption rate is

u(xt) ≡ logCt = log xt + log Yt + log[1−Dt(T1,t)]

= log xt + κ logKt + logF (At,Nt,Kt,Et)− ξ0τ1,t + ξ0.

The Bellman equation in terms of the transformed state variables is

V (kt, τt,Mt,Rt, t) = max
xt,Nt,Kt,Et

log xt + κkt + logF (At,Nt,Kt,Et)

−ξ0τ1,t + ξ0 + βV (kt+1, τt+1,Mt+1,Rt+1, t+1) , (B.1)

and is subject to the following linear equations of motion and constraints. The equa-

tions of motion for the effective capital stock and the carbon cycle are

kt+1 = at + κkt + logF (At,Nt,Kt,Et)− ξ0τ1,t + ξ0 + log(1−xt)

+ log[1 + gk,t]− log[δk + gk,t] (B.2)

Mt+1 = ΦMt +
(
∑Id

i=1 Ei,t + Eexo
t

)

e1 . (B.3)

Using equation (11), I transform the temperature’s equation of motion (7) for layer

layer i ∈ {1, ..., l} to

Ti,t+1 =
1

ξ1
log
(

(1−σi,i−1−σi,i+1) exp[ξ1Ti,t]

+σi,i−1 exp[ξ1Ti−1,t] + σi,i+1 exp[ξ1Ti+1,t]
)

.

Using the definitions σii = 1−σi,i−1−σi,i+1 and τi,t = exp(ξ1Ti,t) I find

exp(ξ1Ti,t+1) = σi,i−1 exp[ξ1Ti,t] + σi,i−1 exp[ξ1Ti−1,t] + σi,i+1 exp[ξ1Ti+1,t]∀i ∈ {1, ..., l}

⇒ τi,t+1 = σi,iτi,t + σi,i−1τi−1,t + σi,i+1τi+1,t, i ∈ {2, ..., l},

still using σl,l+1 = 0 for notational convenience (see footnote 9). Noting that

exp[ξ1T0,t] = exp
[

ξ1
s

η
Ft

]

= exp
[

ξ1
s

log 2
log

M1,t +Gt

Mpre

]

=
M1,t +Gt

Mpre

,
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the equation for atmospheric temperature (i = 1) becomes

τ1,t+1 = σ1,1τ1,t + σ1,0
M1,t +Gt

Mpre

+ σ1,2τ2,t .

Note that the linearity in M1,t requires ξ1 = log 2
s

as stated in the proposition. Then,

using the definition σforc = σ1,0, the individual equations of motion for generalized

temperature can be collected into the vector equation

τt+1 = στt + σforcM1,t +Gt

Mpre

e1 . (B.4)

Finally, the equation of motion for the resource stock is

Rt+1 = Rt −Ed
t . (B.5)

The underlying constraints are

∑I

i=0 Ni,t = 1, Ni,t ≥ 0,
∑IK

i=1 Ki,t = 1, Ki,t ≥ 0, Rt ≥ 0,

and initial states given. The present paper assumes that the optimal labor and capital

allocation across sectors has an interior solution and that the scarce resources are

stretched over the infinite time horizon along the optimal path, avoiding boundary

value complications.

C Proofs (Certainty)

C.1 Proof of Proposition 1

1) Sufficiency: I show that the affine value function

V (kt, τt,Mt,Rt, t) = ϕkkt +ϕ⊤
MMt +ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt (C.1)

solves the linear-in-state system corresponding to the equations of sections 2.1 and 2.2

with the function form assumptions presented in Proposition 1. Appendix B trans-

formed these assumptions into the linear-in-state-system summarized by equations

(B.1-B.5), which I take as point of departure. Note that the coefficient on the re-

source stock has to be time-dependent: the shadow value of the exhaustible resource

increases (endogenously) over time following the Hotelling rule.

The controls in the equations of motion (B.2)-(B.5) are additively separated from

the states. Therefore, maximizing the right hand side of the resulting Bellman equation
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delivers optimal control rules that are independent of the state variables. These controls

are functions of the shadow values, but independent of the states. Solving the Bellman

equation then amounts to a set of coefficient matching conditions determining the

shadow values.

In detail, inserting the value function’s trial solution (equation C.1) and the next

period states (equations B.2-B.5) into the (deterministic) Bellmann equation (B.1)

delivers

ϕkkt+ϕ⊤
MMt +ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt = max

xt,Nt,Kt,Et

log xt + βϕk log(1−xt)

+ (1+βϕk)κkt + (1+βϕk) logF (At,Nt,Kt,Et)

− (1+βϕk)ξ0τ1,t + (1+βϕk)ξ0 +λN
t

(
1−

∑IN
i=1 Ni,t

)

+ βϕk(log[1 + gk,t]− log[δk + gk,t]) + λK
t

(
1−∑IK

i=1 Ki,t

)

+ βϕ⊤
R,t+1

(
Rt −Ed

t (At,Nt)
)
+ βϕt+1







≡ A(·)

+βϕ⊤
M

(

ΦMt +
(∑Id

i=1 Ei,t(At,Nt) + Eexo
t

)
e1

)

+βϕ⊤
τ

(

στt + σforcM1,t +Gt

Mpre

e1

)

Maximizing the right hand side of the Bellman equation over the consumption rate

yields

1

x
− βϕk

1

1− x
= 0 ⇒ x∗ =

1

1+βϕk

. (C.2)

The optimal labor, capital, and resource inputs depend on the precise assumptions

governing production and energy sector, i.e., the specification of F (At,Nt,Kt,Et).

For a well-defined energy system, I obtain unique solutions for these optimal inputs

as functions of the technology levels, shadow values, and current states. In detail, the
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first order conditions for the capital shares deliver

(1+βϕk)

∂F (At,Nt,Kt,Et)
∂Ki,t

F (At,Nt,Kt,Et)
= λK

t

⇔ Ki,t =
1

λK
t

(1+βϕk)σY,Ki
(At,Nt,Kt,Et)

⇒ λK
t =

IK∑

i=1

(1+βϕk)σY,Ki
(At,Nt,Kt,Et)

⇒ Ki,t =
σY,Ki

(At,Nt,Kt,Et)
∑IK

i=1 σY,Ki
(At,Nt,Kt,Et)

,

which is an explicit equation only in the case of constant elasticities

σY,Ki
(At,Nt,Kt,Et) ≡ ∂F (At,Nt,Kt,Et)

∂Ki,t

Ki,t

F (At,Nt,Kt,Et)
, and an implicit equation that has

to be solved together with the other first order conditions otherwise. Analogously, the

first order conditions for the labor input deliver

(1+βϕk)

∂F (At,Nt,Kt,Et)
∂Ni,t

F (At,Nt,Kt,Et)
= λN

t

⇒ Ni,t =
σY,Ni

(At,Nt,Kt,Et)
∑IN

i=1 σY,Ni
(At,Nt,Kt,Et)

,

with elasticities σY,Ni
(At,Nt,Kt,Et) ≡ ∂F (At,Nt,Kt,Et)

∂Ni,t

Ni,t

F (At,Nt,Kt,Et)
. The first order

conditions for a scarce (fossil) resource input are

(1+βϕk)

∂F (At,Nt,Kt,Et)
∂Ei,t

F (At,Nt,Kt,Et)
= β(ϕR,i,t+1 − ϕM,1) (C.3)

⇔ Ei,t =
(1+βϕk)σY,Ei

(At,Nt,Kt,Et)

β(ϕR,i,t+1 − ϕM,1)

with elasticities σY,Ei
(At,Nt,Kt,Et) ≡ ∂F (At,Nt,Kt,Et)

∂Ei,t

Ei,t

F (At,Nt,Kt,Et)
. The first order

conditions for a non-scarce resource input are analogous but without the shadow cost

term βϕR,i,t+1.

Solving the (potentially simultaneous) system of first order conditions I obtain the

optimal controlsN ∗
t (At , ϕk,ϕM ,ϕR,t+1),K

∗
t (At , ϕk,ϕM ,ϕR,t+1), andE∗

t (At , ϕk,ϕM ,ϕR,t+1).

I will suppress the detailed dependencies below for notational convenience. Knowing

these solutions is crucial for determining the precise output path and energy transition

under a given policy regime. However, the SCC and, thus, the carbon tax depend only

on the structure and optimization of the controls but not on their quantification.
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Inserting the (general) control rules into the maximized Bellman equation and col-

lecting terms that depend on state variables on the left hand side delivers

(
ϕ⊤

M − βϕ⊤
MΦ− βϕτ,1

σforc

Mpre

e⊤
1

)
Mt +

(
ϕ⊤

τ − βϕ⊤
τ σ + (1+βϕk)ξ0e

⊤
1

)
τt

(
ϕk − (1+βϕk)κ

)
kt +

(
ϕ⊤

R,t − βϕ⊤
R,t+1

)
Rt

+ϕt = βϕt+1 (C.4)

+ log x∗
t (ϕk ) + βϕk log(1−x∗

t (ϕk )) + (Nt + βϕk)ξ0

+ (1+βϕk)κkt + (1+βϕk) logF (At,N
∗
t ,K

∗
t ,E

∗
t )

+ βϕk(log[1 + gk,t]− log[δk + gk,t])− βϕ⊤
R,t+1E

d
t

∗







≡ B(·)

+βϕM,1

(
∑Id

i=1 E
∗
i,t + Eexo

t

)

+ βϕτ,1
σforc

MpreGt.

The equality holds for all levels of the state variables if and only if the coefficients in

front of the state variables vanish, and the evolution of ϕt satisfies the state independent

part of the equation. Setting the states’ coefficients to zero yields

ϕk − (1+βϕk)κ = 0 ⇒ ϕk =
κ

1− βκ
(C.5)

ϕ⊤
M − βϕ⊤

MΦ− βϕτ,1
σforc

Mpre

e⊤
1 = 0 ⇒ ϕ⊤

M =
βϕτ,1σ

forc

Mpre

e⊤
1 (1− βΦ)−1 (C.6)

ϕ⊤
τ + (1+βϕk)ξ0e

⊤
1 −βϕ⊤

τ σ = 0 ⇒ ϕτ =−ξ0(1+βϕk)e
⊤
1 (1− βσ)−1 (C.7)

ϕ⊤
R,t − βϕ⊤

R,t+1 = 0 ⇒ ϕR,t = β−tϕR,0 . (C.8)

The initial values ϕ⊤
R,0 of the scarce resources depend on the precise evolution of the

economy and, thus, depends on assumptions about production and the energy sec-

tor. Using the shadow value of log capital in equation (C.2) results in the optimal

consumption rate x∗ = 1− βκ. Then equation equation (C.4) turns into the condition

ϕt − βϕt+1 = B(·) + βϕM,1

(
∑Id

i=1 E
∗
i,t + Eexo

t

)

+ βϕτ,1
σforc

MpreGt. (C.9)

This condition will be satisfied by picking the sequence ϕ0, ϕ1, ϕ2, .... Equation (C.9)

does not pin down the initial value ϕ0. The additional condition limt→∞ βtV (·) = 0 ⇒
limt→∞ βtϕt = 0 pins down this initial value ϕ0 ensuring that the value function is

normalized just as the infinite sum of optimized utility (Stokey & Lucas 1989, chapter

4.1). Yet, optimal policy does not dependent on the sequence ϕ0, ϕ1, ϕ2, ϕ3, ... .

2) Necessity: The affine value function solves the system if and only if it is linear-

in-state. I have to show that no other transformation of capital or temperature, no
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other damage function, and no other non-linear mean can achieve the linear-in-state

transformation of the equations in sections 2.1 and 2.2. I take as common knowledge

that only the log-transformation of capital will solve the system with an affine value

function.

To obtain a linear-in-state structure, generalized atmospheric temperature has to

be linear in atmospheric carbon. By assumption, temperature evolves as a generalized

mean:

Mi(Ti−1,t , Ti,t , Ti+1,t) = f−1[σi,i−1f(Ti−1,t) + σi,if(Ti,t) + σi,i+1f(Ti+1,t)]

and atmospheric equilibrium temperature for a given forcing is

T0,t =
s

η
Ft =

s

log 2
log

M1,t +Gt

Mpre

, (C.10)

which is logarithmic in the atmospheric carbon stock. The equation of motion of

atmospheric temperature T1,t is therefore

T1,t+1 = M1(T0,t , T1,t , T2,t) = f−1[σ1,0f(T0,t) + σ1,1f(T1,t) + σ1,2f(T2,t)]

⇔ f(T1,t+1) = σ1,0f

(
s

log 2
log

M1,t +Gt

Mpre

)

+ σ1,1f(T1,t) + σ1,2f(T2,t). (C.11)

First, equation (C.11) implies that f(T1,t) and f(T2,t) have to be linear to permit a

linear-in-state interaction between generalized atmospheric and upper ocean temper-

ature (atmospheric temperature appears on both left and right side of the equality).

Second, equation (C.11) implies that f
(

s
log 2

log M1,t+Gt

Mpre

)

has to be linear in M1,t to

permit a linear-in-state interaction between generalized atmospheric temperature and

atmospheric carbon. Thus, f(z) = exp
(
log 2
s
z
)
up to positive affine transformation.

Yet, positive affine transformations of f leave the generalized mean unchanged as they

simply cancel with the inverse (Hardy et al. 1964). Note that this step fixes both the

functional form of f and the parameter ξ1 = log 2
s
.37 Consequently, the generalized

temperature state delivering a linear-in-state dynamics and a linear contribution to the

value function has to be τi,t = exp(ξ1Ti,t) for i ∈ {1, 2}. It follows inductively from

f(Ti,t+1) = σi,i−1f(Ti−1,t) + σi,if(Ti,t) + σi,i+1f(Ti+1,t)

37The earlier working paper version uses a slightly generalized version of the generalized mean
M1(·) permitting additional degrees of freedom (Traeger 2015). However, additional quality of the fit
achieved with these additional weight did not warrant the complications in the presentation.
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for i = 2, ..., l − 1 that τi,t = exp(ξ1Ti,t) has to hold for all i ∈ {1, ..., l}, up to affine

transformations with a joint multiplicative constant.

Finally, I show that damages have to be of the form stated in equation (10). Taking

the logarithm of the capital’s equation of motion (4) delivers

logKt+1 = log Yt + log[1−Dt(T1,t)] + log(1− xt) + log

[
1 + gk,t

δk + gk,t

]

,

where log Yt is linear in the state kt = logKt. To render the system linear in the states,

at any time t, there have to exist two constants c1, c2 ∈ IR such that

log[1−Dt(T1,t)] = c1τ1,t + c2 = c1 exp(ξ1T1,t) + c2

⇒ Dt(T1,t) = 1− exp(c1 exp(ξ1T1,t) + c2).

Moreover, c1 = −c2 ≡ ξ0 ∈ IR follows from the requirement that damages are zero at

T1,t = 0.

C.2 Proof of Proposition 3

Proof of Part (1): The SCC is the negative of the shadow value of atmospheric carbon

expressed in money-measured consumption units. Inserting equation (C.5) for the

shadow value of log-capital and (C.7) for the shadow value of atmospheric temperature

(first entry of the vector) into equation (C.6) characterizing the shadow value of carbon

in the different reservoirs delivers

ϕ⊤
M = −ξ0

(

1+β
κ

1− βκ

)
[
(1− βσ)−1

]

1,1

βσforc

Mpre

e⊤
1 (1− βΦ)−1 .

The expression characterizes the social cost in terms of welfare units. This marginal

welfare cost translates into a consumption change as follows: dut =
1
Ct
dCt =

1
x∗Y net

t
dCt ⇒

dCt = (1 − βκ)Y net
t dut. Thus, observing that

(
1 + β κ

1−βκ

)
= 1

1−βκ
, the SCC in con-

sumption units is

SCC = −(1− βκ)Y net
t

ϕM,1

Nt

= Y net
t ξ0

[
(1− βσ)−1

]

1,1

βσforc

Mpre

[
(1− βΦ)−1

]

1,1
.

Proof of Part (2): Mass conservation of carbon implies that the columns of Φ add

to unity. In consequence, the vector with unit entry in all dimensions is a left and,

thus, right eigenvector. The corresponding eigenvalue is one and the determinant of

1− βΦ has the root 1− β. It follows from Cramer’s rule (or as an application of the
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Cayley-Hamilton theorem) that the entries of the matrix (1− βΦ)−1 are proportional

to (1− β)−1.

C.3 Proof of Proposition 4

Extending numerator and denominator of the expression for optimal emissions in equa-

tion (C.3) by consumption x∗Y net
t (the inverse of marginal utility) yields

Ei,t =
(1+βϕk)x

∗Y net
t σY,Ei

(At,Nt,Kt,Et)

β(ϕR,i,t+1x∗Y net
t − ϕM,1x∗Y net

t )
=

Y net
t σY,Ei

(At,Nt,Kt,Et)

HOTi,t + βSCC

with HOTi,t ≡ βϕR,i,t+1x
∗Y net

t = ϕR,i,tx
∗Y net

t =
ϕR,i,t

u′(Ct)
being the marginal consumption

value of a unit of the resource Ei,t.

I now proof the statement in the text. Let the resource elasticities be constant

apart from a potential dependence on exogenous technological change: σY,Ei
(At). I

compare the two emission scenarios with with differing shadow price of carbon ϕM,1,

e.g., because of a different damage coefficient or a different climate dynamics. I denote

the variables of the scenario with the higher absolute shadow value of carbon by a

tilde (̃): the shadow value of carbon changes by assumption and the shadow value of

the resource as well as emissions change in response (all else equal). I assume that

resource i remains scarce also in the economy with the higher shadow cost of carbon

(otherwise emissions response will only be stronger). Then, the resource constraint has

to be satisfied in both scenarios and imposes

R0 =
∞∑

t=0

Ei,t =
∞∑

t=0

(1+βϕk)σY,Ei
(At)

β−tϕR,i,0 − βϕM,1

=
∞∑

t=0

Ẽi,t =
∞∑

t=0

(1+βϕk)σY,Ei
(At)

β−tϕ̃R,i,0 − βϕ̃M,1

.
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I proof Ẽi,0 < Ei,0 by contradiction. Assume

Ẽi,0 > Ei,0 ⇔ (1+βϕk)σY,Ei
(A0)

ϕ̃R,i,0 − βϕ̃M,1

>
(1+βϕk)σY,Ei

(A0)

ϕR,i,0 − βϕM,1

⇔ ϕR,i,0 − βϕM,1 > ϕ̃R,i,0 − βϕ̃M,1

⇔ ϕR,i,0 − ϕ̃R,i,0 > β(ϕM,1 − ϕ̃M,1) [> 0 by assumption]

⇔ ϕR,i,0 − ϕ̃R,i,0 > βt+1(ϕM,1 − ϕ̃M,1) ∀t ∈ N

⇔ β−t(ϕR,i,0 − ϕ̃R,i,0) > β(ϕM,1 − ϕ̃M,1) ∀t ∈ N

⇔ β−tϕR,i,0 − βϕM,1 > β−tϕ̃R,i,0 − βϕ̃M,1 ∀t ∈ N

⇔ (1+βϕk)σY,Ei
(At)

β−tϕ̃R,i,0 − βϕ̃M,1

>
(1+βϕk)σY,Ei

(At)

β−tϕR,i,0 − βϕM,1

∀t ∈ N

⇔ Ẽi,t > Ei,t ∀t ∈ N.

Thus, if emissions and resource extraction were higher in the first period under the

higher shadow cost of carbon, they would have to be higher in all subsequent periods

as well, which violates the resource constraint. As a result, Ẽi,0 < Ei,0 and there exists

some time t∗ ∈ N where emissions become larger in the regime with the higher shadow

cost of carbon. Note that the higher future emissions are an immediate result of saving

resources in the earlier periods and assuming that the resource remained scarce. If the

resource is no longer scarce, then ϕ̃R,i,0 = 0 and Ẽi,0 < Ei,0 is obviously satisfied.

D Additional Results (Certainty)

D.1 Social benefits of atmospheric cooling and geoengeneer-

ing

The social cost of an atmospheric temperature increase follows similarly from the

shadow value of the generalized temperature state τ1,t

SCτ = −(1− βκ)Y net
t ϕτ,1 = Y net

t ξ0
[
(1− βσ)−1

]

1,1
.

A marginal increase in generalized temperature relates to a temperature increase in

degree Celsius as dτ1,t = ξ1 exp(ξ1T1,t)dT1,t implying the social cost of a temperature

increase in degree Celsius of

SCT (T1,t) = Y net
t ξ0

[
(1− βσ)−1

]

1,1
ξ1 exp(ξ1T1,t) .
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In contrast to the SCC, the cost of a marginal temperature increase in degree Celsius

depends on the prevailing temperature level. This level-dependence reflects the convex-

ity of damages in temperature. The SCT characterizes the marginal cost of warming

or the benefit from a marginal cooling of the atmosphere. At a 3◦C warming, the SCT

in the deterministic standard calibration is about 15 trillion USD for a marginal degree

of cooling.

One of many geoengineering suggestions is to mitigate climate change by seques-

tering carbon into the oceans or other reservoirs like the biosphere. ACE gives a

simple back of the envelope calculation of the benefits of rerouting CO2 emissions into

other reservoirs. Pumping a ton of CO2 into layer i, instead of emitting it into the

atmosphere, results in the welfare gain

∆W seq = ϕM,i−ϕM,1 =
βϕτ,1σ

forc

Mpre

([
(1− βΦ)−1

]

1,i
−
[
(1− βΦ)−1

]

1,1

)

. (D.1)

The bracket on the right hand side captures the discounted sum of the differences in

the amount of carbon prevailing in the atmosphere over time when an emission unit is

injected into layer i instead of the atmosphere. This intuition is more easily observed

using the Neumann series for the expansion

∆W seq =
βϕτ,1σ

up
1

Mpre

(

β [Φ1,i−Φ1,1]+
∞∑

n=2

∑

j,l

(β)nΦ1,j

(
Φn−2

)

j,l
[Φl,i−Φl,1]

)

.

The first term in the brackets captures the difference between carbon flow from the

ocean into the atmosphere Φ1,i and the persistence of carbon in the atmosphere Φ1,1.

The second term captures the fraction of carbon reaching the atmosphere after n

periods if the carbon initially enters ocean layer i as opposed to entering the atmosphere

directly (read right to left). The matrix entry (Φn−2)j,l captures the overall carbon

flow and persistence from layer l to j after n− 2 periods. It approaches the stationary

distribution given by its (right) eigenvectors (in all columns). In the DICE carbon cycle,

the value of sequestering carbon into the intermediate ocean and biosphere is 20USD
tCO2

for

the standard time preference calibration, and 30USD
tCO2

for the case of ρ = 0.5%.38 Note

that the reduction of pure time preference increases the value of sequestering carbon

into the ocean relatively less than it increases the value of the SCC: sequestering carbon

dioxide into the ocean is largely a “delay the problem” solution.

38Note that the present model does not explicitly model damages from ocean acidification, which
would be an interesting and feasible extension.
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I briefly note how the shadow cost of carbon in some reservoir is a simple function

of its exchange with the remaining reservoirs

ϕM,i = β

∑

j 6=i ϕM,jΦj,i + 1i,1
ϕτ,1σ

up
1

Mpre

1− βΦi,i

. (D.2)

The carbon price in layer i is the sum of carbon prices in the other layers times the

flow coefficient capturing the carbon transition into that other layer (generally only

positive for the two adjacent layers). The atmospheric carbon price has as an additional

contribution (δi,1 denotes the Kronecker delta): the shadow value of the atmospheric

temperature increase. The denominator weighs the sum by the reservoirs discounted

persistence βΦi,i.

D.2 Illustrating a Two Layer Carbon Cycle

In the simple and insightful case of two carbon reservoirs the carbon cycle’s transition

matrix is Φ =
(
1−δAtm→Ocean δOcean→Atm

δAtm→Ocean 1−δOcean→Atm

)
, where e.g. δAtm→Ocean characterizes the frac-

tion of carbon in the atmosphere transitioning into the ocean in a given time step. The

conservation of carbon implies that both columns add to unity: carbon that does not

leave a layer (δ·→·) stays (1− δ·→·). The shadow value becomes

ϕM,1 = βϕτ,1σ
forcMpre

−1(1− β)−1

[

1 + β
δAtm→Ocean

1− β(1− δOcean→Atm)

]−1

.

The shadow value becomes less negative if more carbon flows from the atmosphere

into the ocean (higher δAtm→Ocean). It becomes more negative for a higher persistence

of carbon in the ocean (higher 1− δOcean→Atm). These impacts on the SCC are straight

forward: the carbon in the ocean is the “good carbon” that does not contribute to

the greenhouse effect. In round brackets, I find Proposition 3(2)’s root (1− β)−1 that

makes the expression so sensitive to a low rate of pure time preference.

A common approximation of atmospheric carbon dynamics is the equation of motion

of the early DICE 1994 model. Here, carbon in excess of preindustrial levels decays as

in M1,t+1 = Mpre + (1− δdecay)(M1,t −Mpre). The shadow value formula becomes

ϕM,1 = βϕτ,1σ
forcM−1

pre

(
1− β(1− δdecay)

)−1
, (D.3)

which misses the long-run carbon impact and the SCC’s sensitivity to pure time pref-

erence. Equation (D.3) somewhat resembles the carbon pricing formula (D.2), where

atmospheric carbon persistence is Φi,i = 1 − δdecay. Yet, the full equation (D.3) adds
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the pricing contributions from the other carbon absorbing layers as, unfortunately, the

carbon leaving the atmosphere does not decay.

Finally, I illustrate the value of carbon sequestration in equation (D.1) for the case

of the two layer carbon cycle

∆W seq = βϕτ,1σ
up
1 Mpre

−1 [1 + βδOcean→Atm − β(1− δAtm→Ocean)]
−1

.

The value of carbon sequestration into the ocean falls in the stated manner in the

transition parameter δOcean→Atm that captures the carbon diffusion from the ocean

back into the atmosphere and increases with the transition parameter 1 − δAtm→Ocean

that characterizes the persistence of carbon in the atmosphere.

D.3 Illustrating a Two Layer Atmosphere-Ocean Tempera-

ture System

The two layer example of atmosphere-ocean temperature dynamics has the transition

matrix σ =
(

1−σ
up
1 −σdown

1 σdown
1

σ
up
2 1−σ

up
2

)

. The corresponding term of the SCC (equation 13)

takes the form

[
(1− βσ)−1

]

11
=

(

1− β (1− σdown
1 − σ

up
1 )

︸ ︷︷ ︸

persistence in atmosphere

− β2σdown
1 σ

up
1

1− β (1− σ
up
2 )

︸ ︷︷ ︸

pers. in ocean

)−1

.

Persistence of the warming in the atmosphere or in the oceans increases the shadow

cost. Persistence of warming in the oceans increases the SCC proportional to the

terms σdown
1 routing the warming into the oceans and σ

up
1 routing the warming back

from the oceans into the atmosphere. The discount factor β accompanies each of

these transition coefficients as each of them causes a one period delay. Taking the

limit of β → 1 confirms that (an analogue to) Proposition 3(2) does not hold for the

temperature system

lim
β→1

ϕτ,1 = −ξ0(1 + ϕk)
[
(1− σ)−1

]

11
= −ξ0(1 + ϕk)

σ
up
1

6= ∞. (D.4)

As the discount rate approaches zero, the transient temperature dynamics characterized

by σdown
1 and σ

up
2 becomes irrelevant for evaluation, and only the weight σup

1 reducing

the warming persistence below unity contributes.39

39I note that the carbon cycle lacks the reduction in persistence deriving from the forcing weight σup
1 .

With this observation, equation (D.4) gives another illustration of the impact of mass conservation
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Extending on the “missing time preference sensitivity” in the general case, note

that temperature is an intensive variable: it does not scale proportional to mass or

volume (as is the case for the extensive variable carbon). The columns of the matrix

σ do not sum to unity. As a consequence of the mean structure in equation (7),

however, the rows in the ocean layers’ transition matrix sum to unity. The first row

determining next period’s atmospheric temperature sums to a value smaller than unity:

it “misses” the weight that the mean places on radiative forcing. The “missing weight”

is a consequence of the permanent energy exchange with outer space. Radiative forcing

characterizes a flow equilibrium of incoming and outgoing radiation.

in the case of carbon: “σup
1 → 0 ⇒ ϕτ,1 → ∞”. Note that in the SCC formula σup

1 cancels, as it
simultaneously increases the impact of a carbon change on temperature. This exact cancellation (in
the limit β → 1) is a consequence of the weights σup

1 on forcing and 1−σup
1 on atmospheric temperature

summing to unity. The result that a warming pulse has a transitional impact and an emission pulse
has a permanent impact on the system is independent of the fact that these weights sum to unity.
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Part II - Uncertainty

E Equivalence to Epstein-Zin-Weil Utility and Il-

lustration of Risk Aversion

This section presents a quantitative illustration of the adopted risk aversion and derives

the equivalence to Epstein-Zin-Weil preferencs. I start by showing the equivalence of

the Bellman equation (9) to the wide-spread formulation of recursive utility going

back to Epstein & Zin (1991) and Weil (1990). Keeping isoelastic risk aggregation

and using the logarithmic special case for intertemporal aggregation reflecting ACE’s

intertemporal elasticity of unity, the usual formulation reads

V ∗
t = exp

(

(1− β) log ct + β log
[
Et V

∗
t+1

α∗] 1

α∗

)

. (E.1)

Defining Vt =
log V ∗

t

1−β
and rearranging equation (E.1) delivers

Vt = log ct +
β

1− β
log
[

Et exp
(
(1− β)Vt+1

)α∗
] 1

α∗

. (E.2)

Defining α = (1 − β)α∗ and pulling the risk aversion coefficient α∗ of the Epstein-Zin

setting to the front of the logarithm and into the exponential yields equation (9) stated

in the text.

The renormalization of the Bellman equation from equation (E.1) to equations (E.2)

and (9) renormalizes utility such that marginal utility in the present is invariant to the

choice of discount factor. This insight underlies the interpretation of the welfare losses

in section (4.4). This renormalization and equation (9) suggest the natural measure

of relative risk aversion RRA= 1 − α, which differs from the normalization suggested

by Epstein & Zin (1991) leading to RRA∗ = 1 − α∗ = 1 − α
1−β

. Only the measure

RRA= 1 − α is normalized so that RRA= 0 indeed corresponds to risk neutrality.40

As importantly, the risk aversion measure RRA= 1− α is time preference invariant in

that the lottery choice depicted in Figure 6, which I will use to illustrate the strength

of a given risk aversion, depends only on the choice of risk aversion and not on time

preference.

40The reader can convince herself of this statement by either substituting Vt+1 recursively into
equations (E.1) or (9), or by looking at Figure 6 for the special case of the lottery that I will introduce
below. See Traeger (2014b) for more on the normalization of risk aversion measures in the Epstein-
Zin-Weil setting.
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Figure 6: The graphs shows the compensating risk premium that an agent requires with
probability one half to compensate a 5% loss occurring as well with probability one half.
The intertemporally additive expected utility (IAEU) model corresponds to α = 0 (no risk
aversion beyond the desire to smooth consumption over time) and to a risk aversion of unity.
The base calibration in ACE corresponds to α = −1, and a total risk aversion of 2 (see text
for normalization of the risk measure).

Figure 6 illustrates in a simple lottery the strength of risk aversion implied by the

numeric choices of the parameters α and RRA= 1 − α. In the baseline, an agent

consumes a constant level c̄ in perpetuity. Now I offer the agent a lottery where

she either loses 5% of her baseline consumption c̄ in the upcoming decade or gains

the fraction z of consumption, each with probability one half. The graph presents,

as a function of her risk aversion RRA, the percentage gain z that leaves the agent

indifferent between the lottery and the baseline. Note that these losses and gains

are direct consumption changes.41 The asset pricing literature usually finds RRA∗ =

1 − α∗ ∈ [6, 10]. In ACE’s baseline calibration, these values translate approximately

into the range α ∈ [−1.2,−0.7] and I pick α = −1 as the baseline (RRA= 2), also

presenting results for α = −1.25 and α = −.5 (RRA= 1.5 and RRA= 2.25) just outside

41The underlying calculation comes down to comparing the welfare for the deterministic path
exp

(
α
[
log c̄+β

∑ ·
])

with that for the lottery 1
2 exp

(
α
[
log(1−5%)+log c̄+β

∑ ·
])
+ 1

2 exp
(
α
[
log(1+

z) + log c̄ + β
∑ ·
)]
, where

∑ · is the coinciding future utility from future consumption. Equat-
ing the welfare resulting from the deterministic path and the lottery implies the formula z =
(2− (1− 5%)α)

1

α − 1 depicted in the figure. Note that the Bellman formulation of welfare in equation
(9) assesses uncertainty only in the next period. One can either use the terms subsequent to β in
equation (9) to evaluate an immediate lottery, or one can interpret the lottery as taking place over
next period’s consumption level where current period consumption is at the deterministic level c̄.
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of these bounds as a sensitivity range.

F Proofs (Uncertainty)

F.1 Proof of Proposition 2

Inserting an affine trial solution of the value function into the Bellman equation (9)

and using the same transformations as in the deterministic case delivers

ϕkkt +ϕ⊤
MMt+ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt +ϕ⊤

I It = max
xt,Nt,Kt,Et

log xt + βϕk log(1−xt)

+A(·) + β

α
log
(

Et exp
[

α
(

ϕ⊤
MMt+1 +ϕ⊤

τ τt+1 +ϕ⊤
I It+1

)])

, (F.1)

where A(·) summarizes the terms defined on page 47, already appearing in the de-

terministic solution. Using assumption (8) on the conditional expectation Xt =

(Mt, τt, It) with z = (αϕ⊤
M , αϕ⊤

τ , αϕ
⊤
I ) yields

ϕkkt +ϕ⊤
MMt +ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt +ϕ⊤

I It = max
xt,Nt,Kt,Et

log xt + βϕk log(1−xt)

+A(·) + β

α

(

a
(
αϕ⊤

M , αϕ⊤
τ , αϕ

⊤
I ,At,Nt,Kt,Et

)
+

N∑

i=1

bi(αϕ
⊤
M , αϕ⊤

τ , αϕ
⊤
I ))Xt,i

)

.

Maximizing the right hand side of the Bellman equation implies the same optimal con-

sumption rate x∗ = 1
1+βϕk

as in the deterministic case, and an analogous set of optimal

controlsN ∗
t (At , ϕk,ϕM ,ϕR,t+1),K

∗
t (At , ϕk,ϕM ,ϕR,t+1), andE∗

t (At , ϕk,ϕM ,ϕR,t+1).

Inserting the optimal control rules and collecting the state-dependent terms (ordered

by state) on the left hand side of the equality yields

(
ϕk−(1 + βϕk)κ

)
kt +

∑m

i=1

(

ϕM,i − β

α
bMi (αϕ⊤

M , αϕ⊤
τ , αϕ

⊤
I )
)

Mi,t

+
∑l

i=1

(

ϕτ,i + (1 + βϕk)ξ0δi,1 − β

α
bτi (αϕ

⊤
M , αϕ⊤

τ , αϕ
⊤
I )
)

τi,t

+
(
ϕ⊤

R,t − βϕ⊤
R,t+1

)
Rt + ϕt

+
∑N−l−m

i=1

(
ϕI,i − β

α
bIi (αϕ

⊤
M , αϕ⊤

τ , αϕ
⊤
I )
)
Ii,t

=B(·) + βϕt+1 +
β

α
a(αϕ⊤

M , αϕ⊤
τ , αϕ

⊤
I ) ,

where B(·) summarizes the terms defined on page 49 that coincide with those of the de-

terministic solution. where Moreover, (bM1 , ..., bMm , bτ1, ..., b
τ
l , b

I
1, ..., b

I
N−l−m) = (b1, ..., bN )
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and δi,j denotes the Kronecker-delta (one if i = j and zero otherwise) as defined in

the proposition. As in the deterministic case, the trial solution solves the stochastic

optimization problem if (and only if) all the coefficients in front of the state vari-

ables vanish, and the affine terms are eliminated by appropriate choice of the sequence

ϕ0, ϕ1, ϕ2, ... . The coefficient on log capital results in ϕk =
κ

1−βκ
(as in equation C.5).

The coefficient in front of the resource vector implies Hotelling’s rule ϕR,t = βtϕR,0 (as

in equation C.8). For sufficiency of the proposition, note that the remaining equations

needed to eliminate the coefficients on the states in the Bellman equation are those

equations stipulated in the proposition. For necessity, note that any solution that does

not satisfy the stated equations will imply non-zero coefficients on the state variables

and, thus, implies that the Bellman equation cannot be satisfied for all relevant state

realizations.

F.2 Proof of Propositions 5 and 6

Propositions 5 is the special case of Proposition 6 focusing on only carbon flow un-

certainty. To avoid repetition, I go straight to proving the general case with joint

uncertainty, after introducing the details of the autoregressive gamma process.

The autoregressive gamma process by Gourieroux & Jasiak (2006) is as a Poisson

mixture of gamma distributions,

Xt+1

c
|(Z,Xt) ∼ gamma(νt + Z), where Z|Xt ∼ Poisson

(
γXt

c

)

for c, γ, νt > 0 in all periods. The random variable Z is drawn from a Poisson distri-

bution and modulates the shape parameter of the standard gamma distribution (with

scale c). The expectation and variance of this process are

Et(Xi,t+1|Xt) = νtc+ γXt

Vart(Xi,t+1|Xt) = νtc
2 + 2cγXt.

and the cumulant generating function is

GXt+1
(u) = log [E (exp(uXt+1)|Xt)] = −νt log(1− uc) + u

1−uc
γXt .

Applying the model to the temperature-carbon feedback, I specify the gamma autore-

gressive process yt choosing

νt =
1

c

(
M1,t+Gt

Mpre
− ητ

)

,
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which results in the expectation and variance

E yt+1 = γzyt +
(

M1,t+Gt

Mpre
− ητ

)

Var yt+1 = c
[

2γzyt +
(

M1,t+Gt

Mpre
− ητ

) ]

. (F.2)

I define the deterministic process neutralizing the temperature expectations to those

of the deterministic model42 as

yot+1 = γzyot+ (1− ǫ(c))
(

M1,t+Gt

Mpre
− ητ

)

Then the expectation adjusted process zt ≡ yt − yot has the expectation and variance

stated as equations (22) and (23) in the main text. To apply Proposition 2, I calculate

(one over α times) the cumulant generation function of Xt = (Mt, τt, It) with It =

(xM
t , σM

t , yt, y
o
t ) and z = αϕ⊤:

1

α
log
(
E exp(αϕ⊤Xt+1)|Xt

)
= (F.3)

ϕ⊤
MΦMt + ...+ (ϕM,1 − ϕM,2)x

M
t +

α

2
(ϕM1 − ϕM2)

2σM
t

2

+ϕ⊤
τ στt +

σforc

Mpre

ϕτ,1M1,t − hϕτ,1γ
zyot − hϕτ,1(1− ǫ(c))M1,t

Mpre
+ ...

+ϕM
x γxxM

t +
α

2
ϕM
x

2
δMx2 M1,t

Mpre

+
α

2
ϕM
x

2
δσx

2
σM
t

2

+ϕM
σ γσσM

t

2
+ ...+ ϕM

σ δMσ M1,t

Mpre

− 1
αc

M1,t

Mpre
log(1− α[ϕτ

y + hϕτ,1]c) +
ϕτ
y+hϕτ,1

1−α[ϕτ
y+hϕτ,1]c

γzyt

+ϕτ
yoγ

zyot + ϕτ
yo(1− ǫ(c))M1,t

Mpre
+ ...

I abbreviate by “...” affine terms that are independent of the states. Sorting the r.h.s. of

equation (F.3) by states identifies Proposition 2’s linear terms bMi (αϕ⊤
M , αϕ⊤

τ , αϕ
⊤
I ),

bτi (αϕ
⊤
M , αϕ⊤

τ , αϕ
⊤
I ), and bIi (αϕ

⊤
M , αϕ⊤

τ , αϕ
⊤
I ) where ϕI = (ϕM

x , ϕτ
y , ϕ

M
σ , ϕτ

σ). Then,

42When combining carbon flow uncertainty with temperature uncertainty, yot also becomes stochas-
tic, but accounts only for the stochastic evolution of carbon, not for the persistent shocks to the
temperature response to CO2 concentrations.
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Proposition 2 implies the following system of equations for the shadow values

ϕ⊤
M = βϕ⊤

MΦ+β
(

σforc

Mpre
ϕτ,1+

α
2
δMx2

Mpre
ϕM
x

2
+ δMσ

Mpre
ϕM
σ + 1

Mpre
(ϕτ

yo−hϕτ,1)(1−ǫ(c))

− 1
Mpre

log(1−αc(ϕτ
y+hϕτ,1)

αc

)

e⊤
1 (F.4)

ϕ⊤
τ = βϕ⊤

τ σ − (1 + βϕk)ξ0e
⊤
1 (F.5)

ϕτ
yo = β(ϕτ

yo − hϕτ,1)γ
z (F.6)

ϕτ
y = β

ϕτ
y+hϕτ,1

1−αc(ϕτ
y+hϕτ,1)

γz (F.7)

ϕM
x = β(ϕM,1 − ϕM,2) + βϕM

x γx (F.8)

ϕM
σ = β

α

2

(

(ϕM,1 − ϕM,2)
2 + δσx

2
ϕM
x

2
)

+ βϕM
σ γσ (F.9)

Temperature related shadow values:

The temperature’s shadow value is as before by equation (F.5)

ϕ⊤
τ = −(1 + βϕk)ξ0e

⊤
1 (1I−βσ)−1.

The feedback operates through the carbon’s shadow value and through the persistent

shock shadow value ϕτ
y for which equation (F.7) delivers the quadratic equation

ϕτ
y − αcϕτ

y

2 − αchϕτ,1ϕ
τ
y = βϕτ

yγ
z + βhϕτ,1γ

z

⇔ αc
︸︷︷︸

≡ã

ϕτ
y

2
+ (βγz + αchϕτ,1 − 1)
︸ ︷︷ ︸

≡b̃

ϕτ
y + βhϕτ,1γ

z

︸ ︷︷ ︸

≡c̃

= 0.

Instead of using the common abc-formula I use the solution arrived at by Mullers

method, which solves ãx2 + b̃x + c̃ = 0 by the roots x = −2c̃

b̃±
√

b̃2−4ãc̃
. The solution is

advantageous because it yields a valid root for the case ã = 0, which corresponds to

the deterministic case.43 Then

ϕτ
y =

−2c̃

b̃±
√

b̃2 − 4ãc̃
= ϕτ,1

2βhγz

(1− βγz − αchϕτ,1)±
√

(1− βγz − αchϕτ,1)2 − 4αchϕτ,1βγz

=
βγz

1− βγz

2

1− αchϕτ,1

1−βγz ±
√
(

1− αchϕτ,1

1−βγz

)2

− 4αchϕτ,1

1−βγz

βγz

1−βγz

︸ ︷︷ ︸

≡T

hϕτ,1 (F.10)

43The common abc-formula yields a fraction 0
0 for ã = 0. Having a well-defined root for the

deterministic special case permits me to connect the uncertain SCC directly to the deterministic
SCC.
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To identify the economically meaningful root, I take c → 0. The negative root diverges

and identifies the positive root as the correct root (the root with +
√

). The correct

deterministic limit delivers ϕτ
y → ϕτ,1

βhγz

(1−βγz)
for c → 0. The shadow value in the

deterministic limit coincides with the (negative of the) shadow value ϕτ
yo that results

from equation (F.7) as

ϕτ
yo = − βhγz

1− βγz
ϕτ,1.

Carbon-flow uncertainty:

Equation (F.4) delivers the shadow value vector equation

ϕ⊤
M = β

(
σforc

Mpre

ϕτ,1 +
α

2

δMx2

Mpre

ϕM
x

2
+

δMσ

Mpre

ϕM
σ +

1

Mpre

(ϕτ
yo − hϕτ,1)(1− ǫ(c))

− 1

Mpre

log(1− αc(ϕτ
y + hϕτ,1)

αc

)
[
(1I−βΦ)−1

]

1,·
. (F.11)

Dividing the second through the first shadow value entry I obtain

ϕM,2 =
[(1I−βΦ)−1]1,2
[(1I−βΦ)−1]1,1
︸ ︷︷ ︸

≡r

ϕM,1 . (F.12)

Equation (F.8) delivers the shadow value

ϕM
x =

β

1− γxβ
(ϕM,1 − ϕM,2) =

β

1− γxβ
(1− r)

︸ ︷︷ ︸

≡A

ϕM,1 , (F.13)

where the second equality uses equation (F.12). Substituting these results into equation

(F.9) delivers

ϕM
σ = β

α

2

(ϕM,1 − ϕM,2)
2 + δσx

2
ϕM
x

2

1− γσβ
= β

α

2

(1− r)2 + δσx
2
A2

1− γσβ
︸ ︷︷ ︸

≡B

ϕM,1
2. (F.14)

Inserting equation (F.13) and (F.14) into the atmospheric shadow value component of
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equation (F.11) results in the quadratic equation

ϕM,1 = β

(
α

2

δMx2

Mpre

ϕM
x

2
+

δMσ

Mpre

ϕM
σ

)
[
(1I−βΦ)−1

]

1,1

+
β

Mpre

(

σforcϕτ,1 + (ϕτ
yo − hϕτ,1)(1− ǫ(c))−

log(1− αc(ϕτ
y + hϕτ,1)

αc

)
[
(1I−βΦ)−1

]

1,1

= β

(
α

2

δMx2

Mpre

A2 +
δMσ

Mpre

B

)
[
(1I−βΦ)−1

]

1,1

︸ ︷︷ ︸

≡â

ϕM,1
2

+
β

Mpre

(

σforcϕτ,1 + (ϕτ
yo − hϕτ,1)(δτ − ǫ(c))−

log(1− αc(ϕτ
y + hϕτ,1)

αc

)
[
(1I−βΦ)−1

]

1,1

︸ ︷︷ ︸

≡ĉ

.

Using once more the quadratic formula deriving from Muller’s method I obtain the

solution

ϕM,1 =
2ĉ

1±
√
1− 4âĉ

and once again the positive root is the one that is economically meaningful as it con-

verges for â = 0 to the correct solution (including the deterministic special case if all

uncertainty is absent). I transform the expression for ϕM,1 and, in the last step, do a

first order Taylor approximation in both numerator and denominator

ϕM,1 =
2ĉ

1 +
√
1− 4âĉ

= ĉ

(

1 +
1−

√
1− 4âĉ

1 +
√
1− 4âĉ

︸ ︷︷ ︸

≡θM

)

≈ ĉ

(

1 +
âĉ

1− âĉ

)

, (F.15)

where the approximation is first order around âĉ = 0 in both numerator and denomi-
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nator. The term â is

â = β

(
α

2

δMx2

Mpre

A2 +
δMσ

Mpre

B

)
[
(1I−βΦ)−1

]

1,1

= β
α

2

1

Mpre

[( βδMx

1− γxβ

)2

(1− r)2

+
βδMσ

1− γσβ

(

(1− r)2 +
( βδσx

1− γxβ

)2

(1− r)2
)]
[
(1I−βΦ)−1

]

1,1

=
α

2

β

Mpre

[

AM�x2 + AM�σAσ�x2 + AM�σ
]

(1− r)2
[
(1I−βΦ)−1

]

1,1

=
α

2

β

Mpre

[

AM�x2 + AM�σAσ�x2 + AM�σ
]
(

[(1I−βΦ)−1]
1,1

−[(1I−βΦ)−1]
1,2

)2

[(1I−βΦ)−1]1,1
(F.16)

with AM�x =
δMxβ

1− γxβ
, AM�σ =

δMσβ

1− γσβ
, Aσ�x =

δσxβ

1− γxβ
.

Temperature-carbon feedback:

Evaluating the term ĉ requires the evaluation of

ϕτ
yo − hϕτ,1 = −

(
βγz

1− βγz
+ 1

)

hϕτ,1 = − h

1− βγz
ϕτ,1 = −h̄ϕτ,1,

where I defined h̄ = h
1−βγz , and, using equation (F.10), the evaluation of

ϕτ
y + hϕτ,1 =

(
βγz

1− βγz
T + 1

)

hϕτ,1 =
1 + βγz(T − 1)

1− βγz
hϕτ,1 =

(

1 + βγz(T − 1)
)

h̄ϕτ,1.

Using the definition F ≡ αc h
1−βγzϕτ,1 = αch̄ϕτ,1, I define the expression

θ†τ ≡ βγz(T − 1) = βγz




2

1− F +
√

(1− F )2 − 4F βγz

1−βγz

− 1





= βγz
1 + F −

√

(1− F )2 − 4F βγz

1−βγz

1− F +
√

(1− F )2 − 4F βγz

1−βγz

≈ βγzF

1− βγz − F
(F.17)

Using this definition and denoting the shadow value of atmospheric carbon under cer-
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tainty, see equation (C.6), by ϕdet
M,1 the term ĉ becomes

ĉ =
βσforcϕτ,1

Mpre

[
(1I−βΦ)−1

]

1,1

(

1 +
h̄

σforc

(

− 1

− log(1− αc
(
1 + βγz(T − 1)

)
h̄ϕτ,1

αch̄ϕτ,1

+ ǫ(c)

))

= ϕdet
M,1

(

1 +
h̄

σforc

(− log
(
1− αch̄ϕτ,1(1 + θ†τ )

)

αch̄ϕτ,1

− 1 + ǫ(c)

))

= ϕdet
M,1

(

1 +
h̄

σforc

(− log
(
1− F (1 + θ†τ )

)

F
− 1 + ǫ(c)

))

. (F.18)

The joined first order approximation in θ†τ and F (first approximation), and a first

order approximation in F using the definition of θ†τ (second approximation) deliver

θ∗τ ≡ − log
(
1− F (1 + θ†τ )

)

F
− 1 ≈ θ†τ +

1

2
F ≈ 1

2

1 + βγz

1− βγz
F. (F.19)

Summarizing the results for Proposition 5

I define θ∗M = âĉ. The main text uses the definitions of persist and ∆persist defined

on page ?? simplifying the representation of â in equation (F.16). Moreover, equations

(F.18) and (F.19) imply

ĉ = ϕdet
M,1

(

1 +
h̄

σforc

(

θ∗τ + ǫ(c)

))

with θ∗τ as in equation (F.19).

Equation (F.15) delivers ϕM,1 = ĉ
(
1 + θM

)
with

θM =
1−

√
1− 4θ∗M

1 +
√
1− 4θ∗M

≈ θ∗M
1− θ∗M

. (F.20)

Therefore, ϕM,1 = ϕdet
M,1

(
1+θM

)(

1+ h̄
σforc

(
θ∗τ + ǫ(c)

))

and transformed to consumption

units

SCCt = SCCdet
t

(
1 + θM

)
(

1 +
h̄

σforc

(

θ∗τ + ǫ(c)
))

. (F.21)

In the case of Proposition 5, h̄ = 0 so that the second bracket is unity. The approxima-

tion in equation (F.20) delivers the approximation in equation (19) of the proposition.

Summarizing the results for Proposition 6

Equation (F.21) summarizes the general SCC of Proposition 6. The expressions h̄ =
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h
1−βγz and F = αch̄ϕτ,1 are as defined in the text above. The expression for θ∗τ is stated

in equation (F.19) and equation (F.17) defines θ†τ . The approximation in equation (24)

follows from the approximation in equation (F.19).

F.3 Proof of Proposition 7

Let ǫ
j
t be distributed with existing cumulant generating function, and let νt,j be iid

white noise (and let other shocks be zero for the moment). Making use of Proposition

2, the informational state variable is the current realization of the autoregressive shock

µ
j
t , which is known at time t. Then equation (F.1) becomes

ϕkkt +ϕ⊤
MMt+ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt + ϕj

µµ
j
t = max

xt,Nt,Kt,Et
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α
log
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)])
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µµ
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µµ
j
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)])

. (F.22)

In the autoregressive shock model, ǫjt is known to be µ
j
t in period t and µ

j
t+1 =

γjµ
j
t + χ

j
t . Moreover, νj

t = 0 (by assumption). Therefore, in the autoregressive shock

model, I obtain the Bellman equation

ϕkkt +ϕ⊤
MMt+ϕ⊤

τ τt +ϕ⊤
R,tRt + ϕt + ϕj

µµ
j
t = max

xt,Nt,Kt,Et
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l
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The Bellman equation delivers in close analogy to the deterministic setting (see equa-

tion C.4)

(
ϕ⊤

M − βϕ⊤
MΦ− βϕτ,1

σforc

Mpre
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1

)
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where the coefficient on the new state µt has to vanish implying

ϕj
µ =

β

1− γjβ
ϕj (F.23)

The value function difference between the deterministic and the autoregressive shock

model is determined by the contribution from the informational state and the con-

tribution of the affine parts of the value function. The informational state is zero in

the present by assumption ϕj
µµ

j
0 = 0 (same expected motion as under certainty). By

equation (C.9) we know that the affine part of the value function evolves as

ϕdet
t = βϕdet

t+1 + B(·) + βϕM,1

(
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i=1 E
∗
i,t + Eexo

t

)

+ βϕτ,1
σforc

MpreGt

in the deterministic model, and similarly as
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in the autoregressive shock model. Therefore, the value function difference is

∆WAR
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which, together with equation (F.23) delivers the result stated in part (3) of the propo-

sition. For a normally distributed mean-zero shock χ
j
t the first cumulant (expectation)

is zero and only the second cumulant contributes (all others being zero), delivering

part (1) of the proposition. Part (1) of the proposition follows from the

In the case of anticipated learning, the informational state evolves as µ
j
t+1 =

σ2
ǫ,tz̃+σ2

ν,tµ
j
t

σ2
ǫ,t+σ

2
ν,t

, where z̃ is the observation, which is distributed as the sum of measurement

error and Bayesian prior z ∼ N(µj
t , σ

2
ǫ,t + σ2

ν,t) (see as well footnote 30). The variance

of the normal-normal Bayesian learning model evolves deterministically as σ2
ǫ,t+1 =

σ2
ν,tσ

2
ǫ,t

σ2
ν,t+σ2

ǫ,t
. Therefore, the Bellman equation (F.22) becomes
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Moreover
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Then, the Bellman equation delivers in close analogy to above or the deterministic

setting (see equation C.4)
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where the coefficient on the informational state µt has to vanish implying
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Analogously to the autoregressive model, the value function difference between the de-

terministic and the Bayesian learning model is determined by the contribution from the

informational state, which is zero in the present by assumption (or rather calibration),

and the contribution of the affine parts of the value function. Here, the affine part of

the Bayesian learning model is

ϕ
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where the last term is new with respect to the deterministic equation. Therefore, the

value function difference is
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where the last line uses equation (F.24). Moreover, the term in brackets is equivalent

to
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as stated in part (2) of the proposition.

G Calibration of the stochastic processes

The climate sensitivity measures the medium to long-term response of global warming

to a doubling of the carbon dioxide concentrations. Because this medium to long-term

response takes a few centuries, integrated assessment modelers increasingly calibrate
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their models to the transient climate response (TCR). TCR measures the warming

response to a scenario that increases atmospheric CO2 concentrations from preindus-

trial levels by one percent yearly until concentrations doubled w.r.t. preindustrial

(7 decades), keeping concentrations constant afterwards. TCR measures the average

temperature increase during the two decades centered at the year when concentrations

doubled. TFE.6 Figure 2 IPCC (2013) shows a set of different probabilistic TCR dis-

tributions that share the slight positive skewness of ACE’s TCR depicted in Figure

4. The IPCC (2013) summarizes the mean TCR prediction of 30 models (CMIP5) as

1.8◦C and reports the 66% probability interval of TCR as 1◦C to 2.5◦C, see black “x”

and black bars in the right panel of Figure 4. In addition, the calibrating of ACE’s TCR

distribution was guided by my argument discussed in section 4.4 that the persistence

of the autoregressive shock model should lie somewhere between 0.9 and 0.99 to reflect

epistemological uncertainty over the coming decades, and that η ∈ {0.5, 1} reflects well

that the uncertainty should increase somewhat more steeply in the perturbation of the

climate system than a lower η would suggest. I varied all parameters substantially, and

the calibration γ = 0.95, h = 0.23, η = 0.8, c = 0.21, and ǫ = 0.05 depicted in Figure 4

most closely resembled the look and stated moments of the TCR information provided

by the IPCC (2013).

It proved more difficult to find good probabilistic information governing carbon

dynamics. The current carbon budget has a missing sink of a little over 1GtC per year.

It has been somewhat stable, but the fear is that we cannot predict how it responds

to further perturbation of the climate system. In addition, there is uncertainty how

the known flows between sinks and sources respond to climate change. I assume that

a change in carbon flows governed by a volatility of 5GtC per decade in response to

doubling atmospheric CO2 is a reasonable order of magnitude proxy of carbon flow

uncertainty. Once more, I set η = 0.8 to reflect that the uncertainty should increase

somewhat more steeply in the perturbation of the climate system. Then, setting δMx =

δMσ = 25 implies that a doubling of preindustrial concentrations adds a 5Gt variance

shock per decade to the conditional mean. I set δσx = 1 to explore the impact of

stochastic volatility affecting not only carbon flows directly, but also their conditional

expectations with a comparable order of magnitude. Again, I choose a persistence of

the autoregressive shock models as 0.95 to reflect epistemological uncertainty and to

make it comparable to the uncertainty in the temperature response.

I compare the resulting stochastic carbon dynamics to the model comparison study

by Joos et al. (2013) who subject 18 different carbon cycle models to a 5000Gt carbon

pulse. The study calculates the variance of the pulse evolution across models. ACE
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Figure 7: Uncertainty of response to a 5000Gt carbon pulse.

is a single stochastic model rather than a set of different deterministic models. Thus,

not only the evolution of the pulse will be uncertain, but also the baseline evolution

of atmospheric carbon dioxide. For my order of magnitude comparison, I calculate the

overall uncertainty in ACE as well as a measure of the uncertainty of the pulse itself.44

Figure 7 presents the result. Overall, the magnitude of the uncertainty is close.

44To obtain a measure of the uncertainty adhering to the pulse itself in an overall stochastic scenario,
I draw 2000 paths for the random variables and simulate the model with and without the carbon pulse.
I then calculate the variance in the difference of the carbon evolution with and without the pulse,
taking differences between the paths with coinciding draws of the shock.
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