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Abstract

This paper examines the effect of agent belief heterogeneity on long-run risk models.

We find that for the long-run risk explanation to explain the equity premium, it is insuf-

ficient for long-run risk to merely exist : agents must all agree that it exists. Agents who

believe in a lower persistence level dominate the economy rather quickly, even if their

belief is wrong. This drives the equity premium down below the level observed in the

data. On the positive side, we show that belief heterogeneity can generate significant

excess volatility, which explains the large volatility of the price–dividend ratio observed

in the data.
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1 Introduction

This paper examines the effect of agent belief heterogeneity on consumption-based asset-

pricing models with long-run risk. We document that for the long-run risk explanation to

adequately explain the equity premium, it is not sufficient for long-run risk to merely exist :

agents must all agree that it exists. Agents who believe in a lower persistence level come to

dominate the economy rather quickly, even if their belief is wrong but not too far off the truth.

This drives the equity premium down below the level observed in the data. On the positive

side, we show that for intermediate levels of belief heterogeneity both agents survive in the

long run and the resulting economy can generate significant excess volatility. In fact, such

a model specification helps to explain, for example, the large volatility of the price–dividend

ratio observed in the data.

The Bansal–Yaron long-run risk model (Bansal and Yaron (2004)) has emerged as perhaps

the premier consumption-based asset-pricing model. It can generate many of the features of

aggregate stock prices that have long been considered puzzles. The model generates a high

equity premium by combining two mechanisms—investors with a taste for the early resolution

of uncertainty, and very persistent shocks to the growth rate of consumption. For long-run risk

to generate a high equity premium, the level of persistence must be very close to a unit root.

The amount of persistence in the data is very difficult to measure, and arguments for a range

of estimates have appeared in the literature (Bansal, Kiku, and Yaron (2016), Schorfheide,

Song, and Yaron (2018), or Grammig and Schaub (2014)). This literature suggests that there

is considerable scope for disagreement over the true value.

In this paper, we consider the consequences if the agents themselves disagree about its

persistence. If the disagreement is sufficiently large, then agents whose beliefs are more cor-

rect dominate the economy, in accordance with the market selection hypothesis of Alchian

(1950) and Friedman (1953). As we shrink the difference, the situation changes dramatically.

Investors who believe in a lower persistence level or—put differently—who are more skeptical

about the presence of long-run risks, not only survive in the long run but, in fact, enjoy a

larger share of consumption, even if their beliefs are wrong.

For small levels of disagreement, we find that investors who are more skeptical about the

presence of long-run risks accumulate wealth on average. Even if they initially hold only a

very small consumption share, their share increases rapidly over time. As small differences in

beliefs about the long-run risk process have large effects on asset prices, we report a drop in

the equity premium of 2% within a century for our baseline calibration.

For moderate levels of disagreement, the initial increase in the consumption share of the
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skeptical investors is even stronger, irrespective of whether their beliefs are correct or not. If

they hold the wrong beliefs, both agents survive, and asset prices become very volatile as the

wealth distribution shifts over time. Thus, agent heterogeneity itself can serve as a source of

endogenous asset-pricing volatility. However, the drop in the equity premium becomes even

more pronounced due to the fast initial increase in the consumption share of the skeptical

investors. For the calibration in this paper, we report a decrease in the premium of more than

3.5% within 100 years.

While differences in beliefs potentially undermine the ability of long-run risk to explain

the equity premium, they significantly help in explaining the volatility figures. Beeler and

Campbell (2012) show that the long-run risk models of Bansal and Yaron (2004) and Bansal,

Kiku, and Yaron (2012) cannot explain the large volatility of the price–dividend ratio observed

in the data (a value of 0.45 compared to 0.18 in the models). Moderate differences in beliefs

about long-run risk can generate large shifts in the wealth distribution over time when both

agents survive in the long run. These shifts in turn increase the volatility of the price–dividend

ratio as the impact of the different agents on asset prices varies over time. We find that a

moderate difference can generate significant excess volatility close to the values observed in

the data. This result also gives a model-based explanation for the empirical findings of Carlin,

Longstaff, and Matoba (2014), who use data from the mortgage-backed security market and

show that higher disagreement leads to higher volatility. They also show that, as in our model,

disagreement is time-varying and correlated with macroeconomic variables.

These results may seem surprising because it is well established that for agents with con-

stant relative risk aversion (CRRA) in the long run the agents with correct beliefs (Sandroni

(2000), Blume and Easley (2006), Yan (2008)) always come to dominate the economy, no

matter how large or small the difference in beliefs. This analysis breaks down once you allow

agents to have preferences for the early or late resolution of risk (Borovička (2015)), which

allows agents with incorrect beliefs to survive and even drive out agents with correct beliefs.

Our results are complementary to the findings of Collin-Dufresne, Johannes, and Lochstoer

(2016b) and Bidder and Dew-Becker (2016), which show that the asset-pricing implications

of long-run risk can emerge endogenously from parameter uncertainty, even without long-run

risk being present. Collin-Dufresne, Johannes, and Lochstoer (2016b) show that if investors

learn the growth rate from the data, then innovations to expectations of growth rates are

permanent. Agents then price in the risk from this permanent shock to their expected growth

rates. Bidder and Dew-Becker (2016) show that ambiguity-averse investors will price in long-

run risk if they cannot rule it out a priori. In our setup, neither investor suffers from model
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uncertainty, but despite this difference a clear picture of the effect of long-run risk emerges.

Also relevant for our work is the paper by Andrei, Carlin, and Hasler (2016). While in the

present paper the agents agree to disagree about the long-run risks in the economy, Andrei,

Carlin, and Hasler (2016) provide an explanation of how this disagreement can arise from

model uncertainty as market participants calibrate their models differently. They find that

uncertainty about long-run risks can explain many stylized facts of stock return volatilities,

such as large volatilities during recessions and booms and persistent volatility clustering. An-

drei, Hasler, and Jeanneret (2017) show how model uncertainty can lead to long-run-risk-like

behavior in the presence of a noisy signal of the growth rate.

Related Literature. The study of agent belief heterogeneity begins with the market se-

lection hypothesis of Alchian (1950) and Friedman (1953). By analogy with natural selection,

the market selection hypothesis states that agents with systematically wrong beliefs will even-

tually be driven out of the market. The influence of agent heterogeneity on market outcomes

under the standard assumption of discounted expected utility is well understood, and consis-

tent with market selection. Sandroni (2000) and Blume and Easley (2006) find strong support

for this hypothesis under the assumption of time-separable preferences in an economy without

growth. Yan (2008) and Cvitanić, Jouini, Malamud, and Napp (2012) analyze the survival of

investors in a continuous-time framework where there are not only differences in the beliefs

but also potentially differences in the utility parameters of the investors. They show that it

is always the investor with the lowest survival index1 who survives in the long run. However,

the ‘long run’ can indeed be very long and, therefore, irrational investors can have significant

effects on asset prices even under the assumption of discounted expected utility. David (2008)

considers a similar model setup, in which both agents have distorted estimates for the mean

growth rate of the economy, and shows that—as agents with lower risk aversion undertake

more aggressive trading strategies—the equity premium increases the lower the risk aversion

is. Chen, Joslin, and Tran (2012) analyze how differences in the beliefs about the probability

of disasters affect asset prices. They show that even if there is only a small fraction of investors

who are optimistic about disasters, this fraction sells insurance for the disaster states and so

eliminates most of the risk premium associated with disaster risk. Bhamra and Uppal (2014)

consider the case of habit utility.

For recursive utility, this qualitative behavior changes fundamentally. However, there has

1Yan (2008) shows that the survival index increases with the belief distortion, risk aversion, and subjective
time discount rate of the investor.
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been less research in this area, as solving such models is anything but trivial. Lucas and

Stokey (1984) observe in the deterministic case that the problem of finding all Pareto-optimal

allocations can be made recursive if we allow the weights in the social welfare function to be

time-varying. This approach is extended by Kan (1995) to the stochastic case with finite state

spaces. Anderson (2005) develops an extensive theory for the special case of risk-sensitive

preferences and finite state spaces, and finds first-order conditions similar to those we use

below. In particular, he shows how to characterize the equilibrium by a single value function

instead of one value function for each agent. Collin-Dufresne, Johannes, and Lochstoer (2015)

derive similar first-order conditions to ours for recursive utility by equating marginal utilities,

but use a different procedure to solve for their allocations. Duffie, Geoffard, and Skiadas

(1994) formulate the problem in continuous time, while Dumas, Uppal, and Wang (2000)

reformulate it in terms of variational utility. Borovička (2015) uses this formulation to explore

the question of the survival of agents with recursive utility in continuous time, and shows

that agents with fundamentally wrong beliefs can survive or even dominate.2 So, inferences

about market selection and equilibrium outcomes fundamentally differ under the assumption

of general recursive utility compared to the special case of standard time-separable preferences.

While Borovička (2015) concentrates on the special case of i.i.d. consumption growth, Branger,

Dumitrescu, Ivanova, and Schlag (2011) generalize the results to a model with long-run risks

as a state variable.

However, most papers with heterogeneous investors and recursive preferences consider only

an i.i.d. process for consumption growth. For example, Gârleanu and Panageas (2015) analyze

the influence of heterogeneity in the preference parameters on asset prices in a two-agent OLG

economy. Roche (2011) considers a model in which the heterogeneous investors can only invest

in a stock but there is no risk-free bond. Hence, as there is no savings trade-off, the impact

of recursive preferences on equilibrium outcomes will be quite different.

Exceptions that relax the i.i.d. assumptions include, for example, the papers by Branger,

Konermann, and Schlag (2015) or Collin-Dufresne, Johannes, and Lochstoer (2016a). Both

papers reexamine the influence of belief differences regarding disaster risk with Epstein–Zin

instead of CRRA preferences as in Chen, Joslin, and Tran (2012). Branger, Konermann, and

Schlag (2015) provide evidence that the influence of investors with more optimistic beliefs

about disasters is less profound when the disaster occurs to the growth rate of consumption

and investors have recursive preferences. Collin-Dufresne, Johannes, and Lochstoer (2016a)

2Borovička (2015) describes four channels that affect equilibrium outcomes. We examine these channels in more
detail in Section 4.1 and show how they affect equilibrium outcomes in the asset-pricing model considered in
this paper.
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make a similar claim but for a different reason. They show that if the investors can learn

about the probability of disaster and if they have recursive preferences, the impact of the

optimistic investor on asset prices decreases. Optimists are uncertain about the probability

of disaster and hence will provide less insurance to the pessimistic investors. Collin-Dufresne,

Johannes, and Lochstoer (2016a) use an OLG model with two generations to model optimists

and pessimists. Hence—in contrast to the results in the present study—the consumption

shares of the investors are fixed and the increasing influence of optimistic agents over time is

not captured.

In a different direction, Epstein, Farhi, and Strzalecki (2014) argue that an Epstein–Zin

investor dislikes long-run risk to the extent that he or she would pay a substantial premium

to get rid of it. In a model with two agents, the agent who believes that risk is longer term

than the other is willing to pay an insurance premium to the other agent to hedge against

long-run risk.

The remainder of the paper is organized as follows; In Section 2 we describe the general

asset-pricing model with heterogeneous investors and recursive preferences. Section 3 describes

the model specification with long-run risks and provides a justification for persistent belief

differences. In Section 4 we present results for the baseline model and explain the economic

mechanisms that generate these results. In Section 5 we relax the assumption of identical

preferences and analyze the influence of differences in the preference parameters on equilibrium

outcomes, both for economies with identical and with different beliefs. Section 6 concludes.

Online appendices presenting the proofs of all theoretical results, a description of the numerical

solution method, and additional results complete the paper.

2 Theoretical Framework

We consider a standard infinite-horizon discrete-time endowment economy with a finite num-

ber of heterogeneous agents. Agents can differ with respect to both their utility functions

and their subjective beliefs. We restrict our attention to the complete-markets setting, which

allows us to reformulate the problem as a social planner’s problem. Here we run into a crit-

ical difference to the representative-agent problem—even for a Markov economy, equilibrium

allocations are no longer required to be functions of the exogenous state alone. This feature

defeats most of the approaches to solving for equilibrium in an infinite-horizon asset-pricing

model.

This failure of recursiveness occurs for essentially economic reasons—even if aggregate
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consumption does not contain a trend, the individual consumption allocations can do so.

For example, Blume and Easley (2006) show that if agents have different beliefs, then the

individual consumption of an agent with wrong beliefs will trend down over time. Yan (2008)

shows that in an economy with growth and with agents with differing risk aversion, the relative

consumption of the more risk-averse agent tends downward.

We present a reformulation of the first-order conditions for equilibrium that is recursive.

This reformulation involves introducing new endogenous state variables. Interestingly, these

state variables have a clear interpretation in terms of time-varying weights in the social plan-

ner’s problem. The weights capture the relative trend in an agent’s consumption—an agent

who has a declining share of consumption will have a declining weight.

2.1 The Heterogeneous-Agents Economy

Time is discrete and indexed by t = 0, 1, 2, . . .. Let yt denote the exogenous state of the

economy in period t. The state has continuous support and may be multidimensional. The

economy is populated by a finite number of infinitely lived agents, h ∈ H = {1 . . . H}. Agents

choose individual consumption at time t as a function of the entire history of the exogenous

state, yt, where yt = (y0, . . . , yt). Let Ch(yt) be the individual consumption for agent h.

Similarly, C(yt) ∈ R++ denotes the aggregate consumption of all agents as a function of the

history, yt. The individual consumption levels satisfy the usual market-clearing condition,

H∑
h=1

Ch(yt) = C(yt). (1)

Agents have subjective beliefs about the stochastic process of the exogenous state. We denote

the expectation operator for agent h at time t by Eh
t . Each agent has recursive utility.

Let {Ch}t = {Ch(yt), Ch(yt+1), . . .} denote the consumption stream of agent h from time t

forward. The utility of agent h at time t, Uh({Ch}t), is specified by an aggregator, F h(c, x),

and a certainty–equivalence, Gh(x),

Uh({Ch}t) = F h
(
Ch(yt), Rh

t

[
Uh({Ch}t+1)

])
, (2)

with

Rh
t [x] = G−1

h

(
Eh
t [Gh(x)]

)
. (3)
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We assume that the functions F h and Gh are both continuously differentiable. This preference

framework includes both Epstein–Zin utility and discounted expected utility, for the appro-

priate choices of F h and Gh. To simplify the analysis, we ensure that agents never choose zero

consumption, in any state of the world, by imposing an Inada condition on the aggregator

F h; so, F h
1 (c, x) → ∞ as c → 0, where F h

1 denotes the derivative of F h with respect to the

first argument.

We also impose a condition on the agents’ beliefs. Let P h
t,t+1 be the subjective conditional

distribution of yt+1 given yt, and Pt,t+1 be the true conditional distribution. We assume that

each agent’s expectation can be written in terms of the true distribution as

Eh
t [x] = Et

[
x

dPh
t,t+1

dPt,t+1

]
,

for some measurable function dPh
t,t+1/dPt,t+1. In mathematical terms, every agent’s condi-

tional distribution is absolutely continuous with respect to the true distribution. Then, by

the Radon–Nikodym theorem, see Billingsley (1999, Chapter 32), such a dPh
t,t+1/dPt,t+1 must

exist. Accordingly, dPh
t,t+1/dPt,t+1 is known as the Radon–Nikodym derivative of Ph

t,t+1 with

respect to Pt,t+1. We also assume that, vice versa, the true distribution is absolutely continu-

ous with respect to every agent’s subjective distribution.

To solve for equilibrium, we assume that markets are complete so that we can reformulate

equilibrium as a social welfare problem (Mas-Colell and Zame (1991)). The social planner

maximizes a weighted sum of the individual agents’ utilities at t = 0. Let λ =
(
λ̄1, . . . , λ̄H

)
∈

RH
++ be a vector of positive Negishi weights and let {C}0 =

(
{C1}0, . . . , {CH}0

)
be an H-

vector of the agents’ consumption processes. Then, the social planner maximizes

SP ({C}0;λ) =
H∑
h=1

λ̄hUh
(
{Ch}0

)
(4)

subject to the market-clearing Equation (1). We denote an optimal solution to the social

planner’s problem for given Negishi weights λ by {C}∗0. For each agent h ∈ H, let Uh
t =

Uh({Ch}∗t ) be the utility in period t at the optimal solution. Also, for ease of notation, we

suppress the state dependence of consumption and simply write Ch
t for Ch(yt).

Theorem 1. The vector of consumption processes {C}∗0 solves the social planner’s problem

(4,1) for given Negishi weights λ =
(
λ̄1, . . . , λ̄H

)
if and only if the consumption processes
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satisfy the following first-order conditions in each period t ≥ 0;

λht F
h
1 (Ch

t , R
h
t

[
Uh
t+1

]
) = λ1

tF
1
1 (C1

t , R
1
t

[
U1
t+1

]
), (5)

where the weights λht satisfy

λh0 = λ̄h, (6)

λht+1

λ1
t+1

=
Πh
t+1

Π1
t+1

λht
λ1
t

, t ≥ 0, h ∈ {2, . . . H}, (7)

with Πh
t+1 given by

Πh
t+1 = F h

2

(
Ch
t , R

h
t [Uh

t+1]
)
·

G′h(U
h
t+1)

G′h(R
h
t [Uh

t+1])

dPh
t,t+1

dPt,t+1

. (8)

Appendix A contains the proof of this theorem as well as those of the theoretical results

presented later in this section.

In each period t, the weights λht are only determined up to a scalar factor, so we are free

to choose a normalization. For numerical purposes, the normalization requiring the weights

λht to lie in the unit simplex in every period is convenient. From a conceptual point of view,

an attractive choice is to let λ1
t+1 = Π1

t+1λ
1
t , because then for all h, λht+1 = Πh

t+1λ
h
t .

If the aggregator F h is additively separable, then the allocation of consumption in (5)

depends only on the current value for the weights λht . Additive separability is the most common

case in applications. Discounted expected utility is additively separable, while Epstein–Zin can

be transformed to be so. In this particular case, the Negishi weights and individual agents’

consumption allocations are closely linked. The following theorem provides an asymptotic

result relating the limits of weights λht to the limits of consumption.

Theorem 2. Suppose that F h is additively separable for all h ∈ H and that the aggregate

endowment is bounded, Ct ∈ [C,C] for finite constants C ≥ C > 0. If λjt/λ
i
t → ∞, then

Ci
t → 0. If Ci

t → 0, then for at least one other agent j, lim supt λ
j
t/λ

i
t =∞.

Note that lim supt λj/λi is a random variable—the limit can depend on the history. The-

orem 2 generalizes a similar result by Blume and Easley (2006).

2.2 The Growth Economy with Epstein–Zin Preferences

We now consider the special case of our heterogeneous-agent economy in which aggregate

consumption is expressed exogenously in terms of growth rates and agents have Epstein–Zin
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preferences (see Epstein and Zin (1989) and Weil (1989)). For this popular parametrization of

asset-pricing models, we can sharpen the general results of Theorems 1 and 2. Here we state

the equilibrium conditions for this model parametrization and refer any interested reader to

Appendix A.2 for a proper derivation of those conditions.

If agent h has Epstein–Zin preferences, then

F h(c, x) =
[
(1− δh)cρh + δhxρ

h
]1/ρh

(9)

Gh(x) = xα
h

(10)

with parameters ρh 6= 0, αh < 1. In this case, the equations are all homogeneous, so we can

divide through by aggregate consumption and express the equilibrium allocations in terms of

individual consumption shares, sht = Ch
t /Ct. Market-clearing (1) implies that

H∑
h=1

sht = 1. (11)

Let V h
t be agent h’s value function. We also normalize this function by aggregate consumption,

vht = V h
t /Ct. Let ct = logCt and ∆ct+1 = ct+1 − ct. The normalized value function of agent h

satisfies the following fixed-point equation,

vht =
[
(1− δh)(sht )ρ

h

+ δhRh
t

(
vht+1e

∆ct+1
)ρh] 1

ρh

, h ∈ H, (12)

with Rh
t (x) =

(
Eh
t

[
xα

h
]) 1

αh

. The parameter δh is the discount factor, ρh = 1− 1
ψh

determines

the elasticity of intertemporal substitution (EIS), ψh, and αh = 1−γh determines the relative

risk aversion, γh, of agent h.

To accompany the normalized value function we introduce a normalized Negishi weight,

λht =
λht

(vht )ρh−1
. In Appendix A.2 we show that the consumption share sht of agent h is given by

λht (1− δh)(sht )ρ
h−1 = λ1

t (1− δ1)(s1
t )
ρ1−1. (13)

Finally, the equations for λht simplify to

λht+1

λ1
t+1

=
Πh
t+1

Π1
t+1

λht+1

λ1
t+1

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh , h ∈ H−.
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This simplification gives us H − 1 nonlinear equations for the equilibrium. In our numerical

calculation, we complete the system by requiring that
∑
λht = 1, when we solve for the weights,

λht , given by

λht+1 =
λht Π

h
t+1∑H

h=1 λ
h
t Π

h
t+1

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1︸ ︷︷ ︸
CRRA-Term

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh︸ ︷︷ ︸

Additional EZ-Term

, h ∈ H−.
(14)

Unlike in the discounted expected utility case, the dynamics of the weights λht depend on

the value functions (12), which in turn depend on the consumption decisions (13). Hence, to

compute the equilibrium we need to jointly solve equations (11)–(14). As there are—to the

best of our knowledge—no closed-form solutions for the general model, we present in Appendix

B.1 a numerical solution approach, which is based on projection methods to approximate for

the equilibrium functions.

In this setting, we can derive an improvement over Theorem 2—the limiting behavior for λht

drives the limiting behavior for an agent’s share of aggregate consumption. This result requires

no assumptions on aggregate consumption, only that agents have utility in the Epstein–Zin

family.

Theorem 3. Suppose all agents in the economy have Epstein–Zin preferences. If λjt/λ
i
t →∞,

then sit → 0. If sit → 0, then for at least one agent j, lim supt λ
j
t/λ

i
t =∞.

This completes our discussion of the theoretical framework for our analysis. Appendix A

provides proofs for the three theorems in this section. Along the way, we derive a system of

first-order conditions for Epstein–Zin preferences. This system constitutes the foundation for

our numerical solution method (see Appendix B).

3 A Long-Run Risk Model with Differences in Beliefs

We consider a standard long-run risk model as in Bansal and Yaron (2004), in which log

aggregate consumption growth ∆ct+1 and log aggregate dividend growth ∆dt+1 are given by

∆ct+1 = µc + xt + σηc,t+1

xt+1 = ρxxt + φxσηx,t+1

∆dt+1 = µd + Φxt + φdσηd,t+1 + φd,cσηc,t+1.

(15)
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The process xt captures the long-run variation in the mean of consumption and dividend

growth and ηc,t+1, ηx,t+1, and ηd,t+1 are i.i.d. normal shocks. A key feature of long-run risk

models is highly persistent shifts in the growth rate of consumption. With a preference for

the early resolution of risks (γ > 1
ψ

), investors will dislike shocks in xt and require a large

premium for bearing those risks. Hence, the results in the long-run risk literature rely on a

highly persistent state process xt, or, put differently, the parameter ρx needs to be very close

to 1 (0.979 in the original calibration of Bansal and Yaron (2004)).

In this paper, we analyze the equilibrium implications of differences in beliefs with regard

to the long-run risk process. As xt is not directly observable from the data, it is reasonable

to assume that investors disagree—at least slightly—about the data generating process of xt.

In light of the results from the representative-agent literature on long-run risks, the majority

of investors need to believe in a highly persistent long-run risk process. Otherwise, asset

prices would be determined by those investors who don’t believe, or who believe less, in long-

run risks; and, hence, the model outcomes would certainly not be consistent with the data.

Therefore, we assume that a majority of investors believe in a highly persistent long-run risk

process. Then we address the question of what happens if there is a small fraction of investors

who believe in slightly less persistent shocks—that is, who are somewhat skeptical of the

presence of long-run risks.

3.1 The Benchmark Economy

Our baseline setup is an economy with H = 2 agents in which the first agent believes that ρx is

close to 1 while the second agent believes that ρx is slightly smaller. We do not make a specific

assumption about which agent has the correct beliefs. In fact, we show below that for small

belief differences the true distribution has a negligible influence on equilibrium outcomes. We

denote by ρhx the belief of agent h about ρx. As xt+1 conditional on time t information is

normally distributed with mean ρxxt and variance φ2
xσ

2, agents’ beliefs dPh
t,t+1 are given by

dPh
t,t+1 =

1√
2πφxσ

exp

(
−1

2

(
xt+1 − ρhxxt

φxσ

)2
)
dxt+1.

We can think of this model as an extension of Borovička (2015), who considers a two-agent

setup with different beliefs about the mean growth rate of the economy. For Epstein–Zin

preferences, Borovička (2015) shows that the agent with the more optimistic beliefs (a larger

belief about the mean growth rate) will dominate the economy in the long run as long as the
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risk aversion in the economy is sufficiently large. This result stands in stark contrast to the

case of CRRA preferences, where the agent with the more correct beliefs will always dominate,

independent of the choice of preference parameters (see, for example, Yan (2008)).3

In our model with different beliefs about the persistence of long-run risks, agents’ beliefs

about the mean growth rate change over time relative to one another. The time-t expectation

of agent h about the mean growth rate is given by ρhxxt. In the benchmark case with ρx =

ρ1
x > ρ2

x, a negative realization of xt implies ρ2
xxt > ρ1

xxt and, therefore, the second agent is

more optimistic (less pessimistic). For xt > 0, we have ρ2
xxt < ρ1

xxt; now the first agent is more

optimistic about the mean growth rate. Thus, we can think of this model as a time-varying

version of Borovička (2015), in which the beliefs about the growth rate change over time.

Most long-run risk models calibrate the underlying cash-flow parameters in order to match

asset-pricing data. For example, Bansal and Yaron (2004) use a value of ρx = 0.979. Bansal,

Kiku, and Yaron (2012) use ρx = 0.975, and Drechsler and Yaron (2011) assume ρx = 0.976.

They obtain high values of ρx by construction, as otherwise the models would not be consistent

with the high equity premium observed in the data. The study by Bansal, Kiku, and Yaron

(2016) relies on cash flow and asset-pricing data to estimate the long-run risk model parameters

and reports a value of ρx ≈ 0.98 with a standard error of 0.01. For our baseline calibration,

we assume that the first agent believes that ρ1
x = 0.985. This value implies an equity premium

of 6.53% for the representative-agent economy, which is consistent with the value observed in

the data. The second agent has slightly smaller beliefs about the persistence, with ρ2
x = 0.975.

Both values lie well within the confidence interval provided by Bansal, Kiku, and Yaron (2016).

A small change in ρx has large effects on asset prices. For ρx = 0.975, the equity premium

decreases to 2.76% in the representative-agent economy. For ρx = 0.95, it collapses to 0.26%

and the influence of xt on asset prices is negligible. For completion, we also analyze the model

for the values ρ1
x = 0.985 and ρ2

x = 0.95 of the persistence parameter.

While the two agents have different beliefs, they have identical Epstein–Zin utility pa-

rameters in the benchmark economy (we relax this assumption in Section 5). They share

the properties of the representative agent of Bansal and Yaron (2004) with ψ1 = ψ2 = 1.5,

γ1 = γ2 = 10, and δ1 = δ2 = 0.998. For the remaining parameters of the state processes

(15) we also use the calibration from Bansal and Yaron (2004), with µc = µd = 0.0015, σ =

0.0078,Φ = 3, φd = 4.5, φd,c = 0, and φx = 0.044. (This calibration is used for all results in

the present paper.)

3In our benchmark economy, the only difference between the agents is their beliefs about the state processes;
they share the same utility parameter specifications. In Section 5 we present results for the model with
heterogeneous preferences.
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3.2 Plausibility of Persistent Belief Differences

The benchmark economy exhibits two agents with persistent belief differences. A critical

reader may argue that this assumption is unrealistic, since we may expect the agents to learn

the true exogenous growth processes over time. To address such potential criticism, we now

examine the speed of learning in the long-run risk model. For this purpose, we suppose that

investors need to estimate model parameters from the data. We show that it is difficult to

obtain a precise estimate for the persistence parameter ρx of the xt process in small finite

samples. Very long time series—much longer than those observed in our simulations (of up

to 500 years)—are required for the belief differences to vanish. Therefore, learning the true

persistence parameter is a very slow process.

Suppose the true persistence parameter of the long-run risk process is ρx = 0.985, which is

just the value of ρ1
x in the benchmark economy. Now suppose an investor does not know this

parameter but estimates it from a finite sample. To analyze this estimation, we simulate 1’000

time series consisting of 500 years of monthly data and calculate estimates after 100, 200, and

500 years. As a first estimation approach, we assume that the investor directly observes xt

and simply estimates the AR(1) process

xt+1 = µx + ρxxt + σxηx,t+1. (16)

We distinguish two cases of this estimation approach; first, the investor estimates the process

with the constant µx; and second, the investor estimates the process without a constant and

knows that µx = 0. We use least-squares to obtain consistent estimates. In reality, the process

xt is not directly observable but must be inferred from the consumption growth time series.

Therefore, as a second approach, we also estimate the full state-space model (15) using the

Kalman filter:

∆ct+1 = µc + xt + σηc,t+1

xt+1 = ρxxt + σxηx,t+1.
(17)

Table 1 reports the results of the two estimation approaches. We observe that for 100 years

of data there is the usual significant finite-sample downward bias in the mean of the point

estimates ρ̂x (see, for example, James and Smith (1998)). Kendall (1954) shows that the bias is

approximately −(1+3ρx)/T = −0.0033 for the model with a constant, which is in accordance

with the value we observe. (The investor can approximate the bias using the point estimate

ρ̂x and the number of periods, T = 1200.) The table also reports the 5% and 1% quantiles

of the point estimates from the 1’000 simulations. After 100 years, even after adjusting for
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Table 1: Parameter Estimates from Simulated Data

xt observable xt unobservable

with constant w/o constant all parameters

100 Years
ρ̂x 0.9817 0.9837 0.9715
ρ̂x,0.05 0.9709 0.9742 0.9329
ρ̂x,0.01 0.9660 0.9692 0.8252

200 Years
ρ̂x 0.9834 0.9844 0.9806
ρ̂x,0.05 0.9760 0.9773 0.9627
ρ̂x,0.01 0.9727 0.9742 0.9408

500 Years
ρ̂x 0.9844 0.9847 0.9833
ρ̂x,0.05 0.9804 0.9810 0.9745
ρ̂x,0.01 0.9786 0.9789 0.9691

The table shows the mean point estimates of ρx as well as the 5% and 1% quantiles after 100, 200,
and 500 years obtained from simulating 1’000 monthly time series of data. In the first approach,
Equation (16) is used for xt, assuming the process is directly observable, and least-squares is used
to estimate the model parameters; we distinguish the two cases of estimating the AR(1) model with
and without a constant. The second approach assumes that xt is unobservable and the full state-
space model (17) is estimated using the Kalman filter. For the data generating process, we use
µx = 0, ρx = 0.985, σx = 0.0003432, µ = 0.0015, and σ = 0.0078.

the bias, the 5% quantile is still smaller than ρ2
x = 0.975 in the benchmark economy. After

200 years, again after adjusting for the bias, the 1% quantile is still smaller than 0.975. If

the investor knows that µx = 0, then both the standard errors of the estimation and the bias

become slightly smaller.

In reality, however, the investor does not observe xt but must estimate the full model (17).

In this case, the bias in ρ̂x becomes significantly larger with a mean value of 0.9715 and a 5%

quantile value of 0.9329. Hence, also the second value of ρ2
x = 0.95 used for the second agent

is well above this quantile after 100 years. After 200 years, the standard error and the bias

become smaller, but a value of 0.95 is still well within the 1% quantile. After 500 years the

bias slowly vanishes but ρ2
x = 0.975 is still within the 1% range (even after correcting for a

bias).

In light of the estimation results, we conclude that even if the investor might learn about

the true data generating process after 500 or more years, it is reasonable to assume that any

nontrivial initial belief differences persist for at least 100 years if not for much longer.
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3.3 Additional Model Specifications

The main focus of the present paper is a thorough analysis of the benchmark economy of

two agents with identical preferences and heterogeneous beliefs about the persistence of the

long-run risk process. However, Yan (2008) argues that for CRRA preferences and i.i.d.

consumption growth, a difference in the beliefs can be offset by only a slight variation in

the preference parameters. In Section 5 we, therefore, consider the case in which investors

have also different preference parameters. First, we analyze the model in which the two

agents both know the true persistence parameter, ρx = 0.985, but differ in their EZ utility

parameters. We report results for two cases. In the first case, agents have the same EIS

but different risk aversion parameters. In the second case, agents have identical risk aversion

parameters but differ in their EIS. We find that for differences in the EIS, the changes in

the consumption shares are rather slow, while they move faster for different degrees of risk

aversion. Therefore, we then search for risk aversion parameters that lead to consumption

shares with a roughly constant median in the economy with different beliefs. We find that—

in contrast to the findings of Yan (2008) for CRRA preferences—a large difference in the

risk aversion is required to offset the trend in the consumption shares stemming from the

differences in beliefs.

4 Heterogeneous Beliefs about Persistence

We begin with the analysis of the equilibrium dynamics of the consumption shares of the

individual agents. Figure 1 shows the consumption share of the second, skeptical agent (ρ2
x =

0.975) over time for different initial shares s2
0 = {0.01, 0.05, 0.5}. We report the median, 5%,

and 95% quantile paths using 1’000 samples each consisting of 500 years of simulated data. To

minimize the influence of the initial value of xt, we initialize each simulated path by running

a “burn-in” period of 1’000 years before using the output. The left panel shows the results for

ρx = ρ1
x = 0.985 (the first agent has correct beliefs) and the right panel for ρx = ρ2

x = 0.975

(the second agent has correct beliefs).

We observe that in all cases the consumption share of the skeptical agent 2 strongly

increases over time. While this increase occurs faster if agent 2 has the correct beliefs (right

panel) the increase is almost as strong if agent 1 has the correct beliefs (left panel). Hence,

given a small difference in the beliefs, independent of whether agent 1 or agent 2 has the

correct beliefs, in the long run the agent with the lower beliefs about ρx will dominate the

economy. Most importantly, even if the economy is initially almost entirely populated by agent
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Figure 1: Consumption Shares—Simulations
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(c) ρx = 0.985, s2
0 = 0.05
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(d) ρx = 0.975, s2
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(e) ρx = 0.985, s2
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The figure shows the median, 5%, and 95% quantile paths of the consumption share of agent 2 for
1’000 samples each consisting of 500 years of simulated data. Agent 2 believes that ρ2

x = 0.975
and agent 1 believes that ρ1

x = 0.985. Results are shown for different initial consumption shares
(s2

0 = {0.01, 0.05, 0.5}). The left panel depicts the case where the skeptical agent, agent 2, has the
wrong beliefs about the long-run risk process (ρx = 0.985 = ρ1

x) and in the right panel the skeptical
agent has the right beliefs (ρx = 0.95 = ρ2

x).
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1 (s2
0 = 0.01), his consumption share decreases sharply and he loses significant share in a short

amount of time. Table 2 reports the corresponding median consumption shares for different

time horizons for s2
0 = {0.01, 0.05, 0.5}. We observe that for s2

0 = 0.01 the consumption share

of agent 1 has decreased by more than 27% after 100 years, 62% after 200 years, and almost

92% after 500 years.

Table 2: Consumption Shares—Summary Statistics

ρx = 0.985 ρx = 0.975

Years 100 200 500 100 200 500

s2
0 = 0.5 0.7429 0.8515 0.9628 0.8904 0.9683 0.9995

(0.0500) (0.0481) (0.0212) (0.0118) (0.0072) (4.2e-5)

s2
0 = 0.05 0.4507 0.7143 0.9393 0.5140 0.7947 0.9787

(0.0589) (0.0636) (0.0293) (0.0301) (0.0252) (0.0049)

s2
0 = 0.01 0.2824 0.6376 0.9278 0.3404 0.7249 0.9732

(0.0509) (0.0681) (0.0326) (0.0294) (0.0293) (0.0060)

The table shows the median and the standard deviation (in parenthesis) of the consumption share of
agent 2 using 1’000 samples each consisting of 500 years of simulated data. Agent 2 believes that
ρ2
x = 0.975 and agent 1 believes that ρ1

x = 0.985. Summary statistics are shown for different initial
consumption shares (s2

0 = {0.01, 0.05, 0.5}) and different time periods T = {100, 200, 500} years.
The left panel depicts the case where the skeptical agent, agent 2, has the wrong beliefs about the
long-run risk process (ρx = 0.985 = ρ1

x) and in the right panel the skeptical agent has the right beliefs
(ρx = 0.95 = ρ2

x).

Figure 2 shows the corresponding results for ρ2
x = 0.95 and an initial allocation of s2

0 = 0.01.

The left panel shows the results for ρx = 0.985 (agent 1 has the correct beliefs). We observe

that the initial increase in the consumption share is stronger compared to the case with

ρ2
x = 0.975 but that the median share does not become as large in the long run (the median

shares of the second agent after 100, 200, and 500 years are given by 32.59%, 37.82%, and

40.19%, respectively). Also, the 5% and 95% quantile paths show that there is significantly

more variation in the shares. The figure also shows a sample path (grey line). We observe

that there are large drops and recoveries in the consumption share. The large drops occur,

because the second agent assigns “wrong” probabilities to extreme states and hence “bets”

on states that turn out to occur less often in the long run. This effect works in favor of agent

2, once she has the correct beliefs and is therefore more likely to bet on the correct states.

This case is shown in the right panel (ρx = ρ2
x = 0.95), where we indeed observe that the

increase in the consumption share is much stronger and that the large drops in consumption

are no longer present. The recoveries in the left panel occur because the second agent is less
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Figure 2: Consumption Shares for ρ2
x = 0.95—Simulations
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The figure shows the median, 5%, and 95% quantile paths of the consumption share of agent 2 for
1’000 samples each consisting of 500 years of simulated data as well as a sample path (grey line).
Agent 2 believes that ρ2

x = 0.95 and agent 1 believes that ρ1
x = 0.985. Results are shown for an initial

consumption share of s2
0 = 0.01. The left panel depicts the case where the skeptical agent, agent 2,

has the wrong beliefs about the long-run risk process (ρx = 0.985 = ρ1
x) and in the right panel the

skeptical agent has the right beliefs (ρx = 0.95 = ρ2
x).

afraid of long-run risks and hence sells insurance against these risks to the first agent. As the

first agent believes that ρ1
x = 0.985, he strongly dislikes shocks in xt and is willing to pay a

high premium to insure against these risks. So there are two interacting effects that affect

equilibrium outcomes. We provide a detailed analysis of the two effects later, in Section 4.1.

What does the change in the consumption shares imply for asset prices and aggregate

financial market statistics? We assume that the economy is initially almost entirely populated

by agent 1 in order to generate a high equity premium consistent with the data. But the

consumption share of the first agent decreases rapidly, and so will that agent’s influence on

asset prices. In Table 3 we show the annualized equity premium in the years 0, 100, 200, and

500, assuming an initial share of s2
0 = 0.01.4 The left panel shows the results for ρ2

x = 0.975

where agent 1 has the correct beliefs. For the initial allocation s2
t = 0.01, when agent 1

dominates the economy, the aggregate risk premium is 6.42%. This value is very close to

that of the representative-agent economy populated only by the first agent which generates a

premium of 6.53%. After 100 years, when the share of agent 1 has decreased from 99% to 72%,

4Note that Table 3 does not report the premium starting with a given value for s20 and simulating a long time
series, but that we report the average premium for a given consumption share s2t = s̄. Hence, we take the
expectation over all xt while keeping the consumption share constant at s̄. The population moment for 500
years of simulated data is given in Table 4.
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Table 3: Equity Premium for Different Consumption Shares

ρ2
x = 0.975 ρ2

x = 0.95

s2
t Equity Premium s2

t Equity Premium

Rep. Agent 1 0 6.53 0 6.53

0 Years 0.01 6.42 0.01 5.42
100 Years 0.2824 4.59 0.3259 1.84
200 Years 0.6376 3.49 0.3782 1.64
500 Years 0.9278 2.89 0.4019 1.56

Rep. Agent 2 1 2.76 1 0.26

The table shows the annualized equity premium for a specific consumption share s2
t = s̄. The premium

is reported for the equilibrium allocations after 0, 100, 200, and 500 years of simulated data assuming
an initial share of s2

0 = 0.01 (see Table 2). Agent 1 has the correct beliefs with ρ1
x = ρx = 0.985. The

left panel depicts the case for ρ2
x = 0.975 and the right panel for ρ2

x = 0.95.

the premium decreases to 4.59%. Hence, even if agent 1 holds almost all wealth initially, which

implies a high risk premium, the premium will drop by almost 2% within a century. After

200 years, the premium decreases by almost 3% and after 500 years it is almost at the level

of the representative-agent economy populated only by agent 2, with a premium of 2.89%.

The right panel shows the corresponding results for ρ2
x = 0.95. We observe that the sharp

increase in the consumption share decreases the premium from 5.42% initially to 1.84% after

100 years—a decrease of more than 3.5% in a century. Hence, the difference in beliefs brings

down the equity premium to well below the levels observed in the data even if the agent who

is skeptical about the presence of long-run risks does not have the correct beliefs. (In Table

5 in Appendix C we show the corresponding results for the case where agent 2 rather than

agent 1 has the correct beliefs. As expected, we observe that the drop in the equity premium

is even more severe.)

Table 4 shows selected moments from the 1’000 sample paths starting with an initial share

of s2
0 = 0.01. We report the mean and the standard deviation of the annualized log price–

dividend ratio, the annualized equity premium, and the risk-free return. Results are shown

for the case in which agent 1 has the correct beliefs. In addition to the two-agent economy,

the table also shows the two representative-agent cases where the economy is populated only

by agent 1 (s2
t = 0) or agent 2 (s2

t = 1).

While the mean statistics of the two-agent economy lie well within the bands of the two

representative-agent economies and depict the wealth shift towards the second agent, we

observe that the volatility of the log price–dividend ratio is significantly larger for the two-
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Table 4: Annualized Asset-Pricing Moments

E (pt − dt) σ (pt − dt) E
(
rmt − r

f
t

)
E
(
rft

)
σ (rmt ) σ

(
rft

)
ρ2
x = 0.975

s2
t = 0 2.68 0.25 6.53 2.32 17.84 1.50

Two-Agent Economy 3.10 0.29 3.98 2.58 17.19 1.51
s2
t = 1 3.29 0.20 2.83 2.71 16.55 1.53

ρ2
x = 0.95

s2
t = 0 2.68 0.25 6.53 2.32 17.84 1.50

Two-Agent Economy 3.60 0.48 2.63 2.47 20.37 1.58
s2
t = 1 6.27 0.14 0.26 2.93 14.80 1.52

The table shows selected moments from 1’000 samples each containing 500 years of simulated data
starting with an initial share of s2

0 = 0.01. It shows the mean and the standard deviation of the
annualized log price–dividend ratio, the annualized market over the risk-free return, and the risk-free
return. Agent 1 has the correct beliefs with ρ1

x = ρx = 0.985. All returns are shown in percent, so a
value of 1.5 is a 1.5% annualized figure.

agent economy compared to both representative-agent economies. This effect is especially

strong for ρ2
x = 0.95, where the volatility is 0.48 compared to 0.25 and 0.14 for the two

representative-agent economies.

Both of these results are driven by shifts in the wealth distribution. In states of the world

where one agent holds most of the wealth, the equity premium shifts towards the single-

agent case for that agent. As the wealth distribution shifts between the agents, this averages

the equity premium and other first-order moments between the two cases. For second-order

moments, however, the time variation will drive them upward.

Beeler and Campbell (2012) argue that one of the major issues of the long-run risk models

of Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012) is that they significantly

underestimate the volatility of the price–dividend ratio (they report values of 0.18 compared

to 0.45 observed in the financial market data). Our results show that differences in beliefs can

potentially resolve this puzzle, since they lead to a significant increase in the volatility figures.

In order to show that it is really the heterogeneity of the investors that generates the

excess volatility, we additionally consider the case where we fix the consumption shares of the

investors at the long-run median of s2
t = 0.40 and these consumption shares remain constant

throughout the simulations—that is, the volatility of the consumption share is 0 (compared

to 0.22 for the case with variable consumption shares). In this scenario, we obtain a volatility

of the price–dividend ratio of only 0.17, which is significantly smaller than the volatility of
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0.48 for the case with variable consumption shares. This result suggests that the shifts of

the consumption shares add significant excess volatility to the model. This strong increase

in volatility can be explained by the large variation in the consumption shares for the case

of ρ2
x = 0.95 (see Figure 2). Variation in the shares implies that the influence of each agent

on asset prices varies over time. As both agents have significantly different price–dividend

ratios in the representative-agent economies (a mean value of 2.68 for agent 1 compared to

6.27 for agent 2), the variation in the consumption shares generates excess volatility for the

price–dividend ratio.

In sum, if there are different investors who all believe in long-run risks but use slightly

different estimates for the long-run risk process, the investor who is more skeptical about ρx

eventually dominates the economy. The investor who believes in a larger value of ρx rapidly

loses wealth, no matter whether his beliefs are correct or not. Recall that a large ρx is needed

to obtain a high risk premium in the long-run risk model. Even if this investor with the belief

in a large ρx almost entirely populates the economy initially, that investor’s consumption

share decreases so fast that the equity premium in the economy declines considerably in a

short amount of time. On the positive side, different beliefs about ρx introduce variations in

the consumption shares, which in turn increase the volatility of the price–dividend ratio and

generate a value closer to the level observed in the data. We have also seen that when the

more skeptical agent’s estimate of ρx of is a bit further away from the true value then both

agents may survive in the long run. (And, obviously, the skeptical agent would not survive

when his estimate is sufficiently small and thus sufficiently far away from the correct value of

ρx.)

4.1 Optimal Consumption Decisions and Equilibrium Dynamics

In this section, we analyze the different effects that determine the equilibrium allocations of the

agents. For this purpose, we discuss our results in relation to the findings of Borovička (2015).

Borovička (2015) considers a simple two-agent economy with identical Epstein–Zin preferences

and different beliefs about the mean growth rate of the economy.5 Our model can be viewed as

a generalized version of his model with time-varying beliefs about the mean growth rate in the

economy. Borovička (2015) describes four channels through which individual choices influence

long-run equilibrium dynamics: the speculative bias channel, the risk premium channel, the

savings channel, and the speculative volatility channel. The speculative volatility channel only

influences equilibrium outcomes for small degrees of risk aversion and has therefore a negligible

5In Borovička (2015) there is no long-run risk and log aggregate consumption growth is normally distributed.
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influence on the results obtained in the present paper. In the following, we argue that the

speculative bias channel and the risk premium channel can explain the equilibrium dynamics

of the long-run risk model considered in the previous section, while the savings channel is

rather irrelevant for our model specification.

4.1.1 The Speculative Bias Channel

The speculative bias channel alone determines equilibrium outcomes in the special case of

CRRA preferences. The investors assign different subjective probabilities to future states and

buy assets that pay off in states they believe are more likely. Hence, for CRRA utility the

agent with the more correct beliefs will accumulate wealth in the long run, as the investor

with the more distorted beliefs bets on states that have a vanishing probability under the true

probability measure.

To demonstrate how the speculative bias channel affects equilibrium outcomes in the long-

run risk model with different beliefs, we first consider the special case of CRRA preferences.

In Figure 3 we show the change in the Pareto weights λ2
t+1−λ2

t as a function of λ2
t . Note that

a positive (negative) change in the Pareto weight also implies a positive (negative) change in

the consumption share (see Equation (13)). The blue and yellow lines depict the cases of a

negative shock (xt+1 − ρxxt = −0.001) and a positive shock (xt+1 − ρxxt = 0.001) in xt+1,

respectively. The red line shows the average over all shocks. From left to right, the results

are shown for xt = −0.008, xt = −0.0013, xt = 0, xt = 0.0013, and xt = 0.008. Agent 1 has

the correct belief, ρ1
x = ρx = 0.985, while agent 2 believes that ρ2

x = 0.975.

The second agent believes that xt converges faster to its long-run mean than does agent

1. Hence, if xt < 0, she assigns larger probabilities to large xt+1 and bets on those states as

ρ2
xxt > ρ1

xxt (left panels). The opposite holds true for xt > 0. So agent 2 loses wealth if xt

is low and the shock in xt is negative (blue line in the left-hand figures) or if xt is high and

the shock in xt is also high (yellow line in the right-hand figures). Taking the average over all

future realizations of xt+1 (red line), agent 2 loses wealth on average (red line). For xt = 0

both agents share the same beliefs (ρ2
xxt = ρ1

xxt) and hence they assign the same probabilities

to xt+1 (blue and yellow line coincide with the red line and are not visible). As agent 2 loses

wealth on average for all xt except for xt = 0, she will eventually vanish in the long run. Note

that the influence of the speculative bias channel becomes stronger the larger |xt| is, as the

belief dispersion grows the more xt deviates from its unconditional mean, E(xt) = 0.

The speculative bias channel can be directly related to the two sets of results in the

beginning of Section 4. There we show results for the case where agent 1 has the correct
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beliefs (ρx = ρ1
x) as well as for the case where agent 2 has the correct beliefs (ρx = ρ2

x). In

the first case, the speculative bias channel works in favor of agent 1, while in the second case,

it works in favor of agent 2. Hence, in case two, agent 2’s consumption share increases more

rapidly, as the speculative bias channel works in her favor (see Figure 1).

The speculative bias channel entirely determines the equilibrium in the standard case of

CRRA preferences. For general Epstein–Zin preferences equilibrium dynamics become more

complex. In the following we first describe the general effects of the risk premium channel

and then analyze how the two effects interact and influence equilibrium outcomes.

Figure 3: Changes in the Wealth Distribution—The CRRA Case
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The figure shows the change in the optimal weights λ2
t+1−λ2

t as a function of λ2
t . From left to right,

the change is shown for xt = {−0.008,−0.0013, 0, 0.0013, 0.008} (± 4 standard deviations). The blue
line depicts the case of a negative shock in xt+1 (xt+1 − ρxxt = −0.001) and the yellow line of a
positive shock in xt+1 (xt+1−ρxxt = 0.001). The red line shows the average over all shocks. Baseline
calibration with ρx = ρ1

x and CRRA preferences.

4.1.2 The Risk Premium Channel

With Epstein–Zin preferences, risk-return trade-offs are not the same among agents and op-

timistic agents are willing to take larger risks (see Borovička (2015)). So if risk aversion, and

hence risk premia, are high, more optimistic agents will profit from investing in a portfolio

with a higher average return. Borovička (2015) calls this the risk premium channel. In our

model, we cannot unambiguously specify optimists or pessimists, as beliefs about the mean

growth rate change over time (see Section 3). We, rather, refer to agents who are skeptical

about the presence of long-run risks, that is, they have a lower belief about ρx. Skepticism

implies that an agent is less afraid of long-run risks. An investor who believes in a large ρx

is afraid of large negative realizations of xt and would therefore like to buy insurance against
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these risks. As risk premia in the economy are high due to the combination of high risk

aversion, the preference for the early resolution of risks, and highly persistent shocks to xt,

the premium the investor is willing to pay will be high. The skeptical investor, on the other

hand, will be willing to provide this insurance as she is less afraid of the long-run risks.

In Figure 4 we demonstrate how this channel affects model outcomes. It shows the cor-

responding results to Figure 3 but for the general case of Epstein–Zin preferences. First,

consider the center panel, where xt = 0 and hence the speculative bias channel has no effect

on equilibrium outcomes (see Figure 3). Agent 1 is more afraid of negative shocks to xt+1

than is agent 2. Therefore, he buys insurance against the long-run risks, which pays off in

bad times when there is a negative shock to xt+1 (the blue line is negative which implies an

increase in the weights of the first agent for all λ2
t ). Therefore, he has to pay a premium in

good times. So, for a positive shock to xt+1 the results reverse (yellow line). The average over

all shocks (red line) is positive, so agent 1 pays a positive premium to insure against long-run

risk which is why he loses wealth on average. The effect is stronger for small λ2
t and decreases

for large λ2
t . A small value of λ2

t implies that there is a large share of agents who want to buy

insurance against long-run risks. Hence, they are willing to pay a higher price. The larger

the share of the skeptical investors becomes, the lower becomes the demand for the insurance

and, hence, the increase in the Pareto weights also becomes less pronounced.

Decreasing xt has two effects. First of all, agent 1 becomes more afraid of long-run risks

(given a negative value of xt, a large negative realization of xt+1 becomes more likely due to

high persistence of ρx), which is why he wants to buy more insurance against long-run risks

and is willing to pay a higher premium. We observe this effect in the second panel from the

left (xt = −0.0013) in Figure 4, where the average increase in the Pareto weight of the second

agent (red line) increases compared to the results for xt = 0. Additionally, the belief difference,

and hence the difference between the subjective probabilities, becomes more pronounced for

large |xt|. So the influence of the speculative bias channel becomes stronger the further xt is

away from its unconditional mean. This potentially shifts wealth to the first agent, who has

the correct beliefs about ρx. We observe this pattern in the left panel (xt = −0.008), where

for large λ2
t the average change in the weights λ2

t+1 − λ2
t becomes negative. For positive xt

agent 1 becomes less afraid of long-run risks and hence is less willing to pay to insure against

them. Therefore, the average increase in the weights of agent 2 decrease for xt = 0.0013

compared to xt = 0. For very large xt (right panel) the influence of the speculative bias

channel dominates and hence the results reverse. The second agent wins if there is a negative

shock (blue line), but loses if there is a positive shock (yellow line). The risk premium channel
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becomes negligible and the second agent loses on average as she bets on states that have a

vanishing probability under the true measure (see Figure 3). So, the risk premium channel

dominates the speculative bias channel for xt close to its unconditional mean; only for very

large xt the speculative bias channel dominates and then agent 2 potentially loses wealth

(on average). However, values of xt = 0.008 (+4 standard deviation of xt) occur only very

rarely; most of the time, the process stays within the range where the risk premium channel

clearly dominates the speculative bias channel and so, on average, agent 2’s consumption share

increases.

In Figure 5 we show the corresponding results for ρ2
x = 0.95 instead of ρ2

x = 0.975. The

decrease in ρ2
x increases the influence of the speculative bias channel as the beliefs of the

second agent are “more wrong” on average and hence will shift wealth to the first investor.

Furthermore, the second agent is less afraid of long-run risks and therefore will be willing to

sell more insurance. So, the influence of the risk premium channel also increases, which—on

the other hand—shifts wealth to the second investor. Looking at the aggregate effects, we

observe that for xt = 0 the change in the weights λ2
t+1 − λ2

t becomes larger on average. (Note

the different scale. For a better visualization we show the average change separately in Figure

12 in Appendix C.) This increase reflects the increasing influence of the risk premium channel

compared to the case with ρ2
x = 0.975. However, for larger |xt|, the influence of the speculative

bias channel quickly increases and only for small λ2
t—where there is a large share of investors

who want to buy insurance against long-run risks—the risk premium channel dominates. This

observation explains why the median consumption share in Figure 2 only increases to a certain

level and does not converge further towards 1. The magnitude of the change in the weights

explains the large drops and recoveries that we observe in Figure 2. For example, for the

extreme case with xt = −0.008 a large negative shock implies a drop in the weights of more

than 0.3 for λ2
t = 0.5. This implies a decrease in the consumption share of the second agent

of more than 0.3. But as the influence of the risk premium channel increases for small λ2
t the

second agent recovers rather quickly, as can be observed from Figure 2.

4.1.3 The Savings Channel

The third channel that influences equilibrium outcomes for Epstein–Zin preferences is the

savings channel. It states that agents with high subjective beliefs about expected returns

will choose a high (low) savings rate if the EIS is large (small). In the long-run risk model

the EIS needs to be significantly larger than 1 in order to model a strong preference for the

early resolution of risks. Hence, the agent with the higher subjective expected returns chooses
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Figure 4: Changes in the Wealth Distribution—The Epstein–Zin Case
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The figure shows the change in the optimal weights λ2
t+1−λ2

t as a function of λ2
t . From left to right,

the change is shown for xt = {−0.008,−0.0013, 0, 0.0013, 0.008} (± 4 standard deviations). The blue
line depicts the case of a negative shock in xt+1 (xt+1 − ρxxt = −0.001) and the yellow line of a
positive shock in xt+1 (xt+1−ρxxt = 0.001). The red line shows the average over all shocks. Baseline
calibration with ρx = ρ1

x.

Figure 5: Changes in the Wealth Distribution—The Epstein–Zin Case (ρ2
x = 0.95)
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The figure shows the change in the optimal weights λ2
t+1 − λ2

t as a function of λ2
t . From left to

right, the change is shown for xt = {−0.008,−0.0013, 0, 0.0013, 0.008} (± 4 standard deviations).
The blue line depicts the case of a negative shock in xt+1 (xt+1− ρxxt = −0.001) and the yellow line
of a positive shock in xt+1 (xt+1 − ρxxt = 0.001). The red line shows the average over all shocks.
Calibration with ρx = ρ1

x = 0.985 and ρ2
x = 0.95.
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a higher savings rate and therefore—everything else being equal—this agent’s consumption

share increases relative to the agent with the lower expected returns.

Figure 6 shows the subjective expected risk premia of the two agents as a function of the

states (Figure 6a) as well as the difference between the two risk premia (Figure 6b). Agent 2

has higher subjective risk premia for small xt and the opposite is true for large xt. Therefore,

for small (large) xt, agent 2 will choose a higher (lower) savings rate compared to agent 1.

However, we find that in the aggregate, the influence of the savings channel is rather small

compared to that of the risk premium channel and the speculative bias channel. In Figure 7 we

show the corresponding results to Figure 4, but with ψ1 = ψ2 = 1.1 instead of ψ1 = ψ2 = 1.5

and, hence, a smaller influence of the savings channel. We observe that the quantitative

change is rather small and that the qualitative conclusions stay the same.

Figure 6: Expected Subjective Risk Premia
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The figure shows the expected subjective risk premium of the two agents as a function of the states
λ2
t and xt. Panel (a) shows the premia for the two agents and Panel (b) the difference between

the subjective risk premia of agent 2 and agent 1. Baseline calibration with ρx = ρ1
x = 0.985 and

ρ2
x = 0.975.

4.2 Examination of the Risk Premium Channel (Robustness of the

Results)

In this section we examine the influence of the risk premium channel in more detail. We have

argued that, if risk premia are high, the influence of the risk premium channel is strong. This

will in turn shift wealth to those investors who are skeptical about the presence of long-run

risks. In Figure 8a we show the median consumption share of agent 2 (as in Figure 1) for

different degrees of risk aversion γh = {2, 5, 10}. For γ1 = γ2 = 10 the equity premium for

the representative-agent economies either populated only by agent 1 or agent 2 are 6.53%
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Figure 7: Changes in the Wealth Distribution—Sensitivity of the Epstein–Zin Case ψh
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The figure shows the change in the optimal weights λ2
t+1−λ2

t as a function of λ2
t . From left to right,

the change is shown for xt = {−0.008,−0.0013, 0, 0.0013, 0.008} (± 4 standard deviations). The blue
line depicts the case of a negative shock in xt+1 (xt+1 − ρxxt = −0.001) and the yellow line of a
positive shock in xt+1 (xt+1−ρxxt = 0.001). The red line shows the average over all shocks. Baseline
calibration with ρx = ρ1

x and ψ1 = ψ2 = 1.1 (instead of 1.5 as in the baseline model).

and 2.76%, respectively (see Table 3). For a risk aversion of γ1 = γ2 = 5 they decrease to

2.71% and 0.72% and for γ1 = γ2 = 2 the premia are only -0.61% and -0.68%. So for γh = 5

and γh = 2 we expect the impact of the risk premium channel to decrease significantly. For

γh = 10 (yellow line) the influence of the risk premium channel is strong. Hence, agent 2

profits from selling the insurance against long-run risks and rapidly accumulates wealth. For

γh = 5 (red line) this effect becomes less severe and her consumption share increases less

quickly. For γh = 2 (blue line) risk premia are negative; the risk premium channel has no

influence and the speculative bias channel dominates equilibrium outcomes. As ρx = ρ1
x, the

speculative bias channel works in favor of agent 1 (agent 2 bets on states that have a vanishing

probability under the true probability measure) and agent 1 dominates the economy in the

long run. If agent 2 has the correct beliefs ρx = ρ2
x, the speculative bias channel works in

favor of agent 2. We show this case in Figure 8b. The blue line shows the consumption shares

for ρx = ρ1
x and the red line for ρx = ρ2

x. So in the absence of the risk premium channel, the

speculative bias channel determines equilibrium outcomes.

In Figure 8c we depict the robustness of our findings with regard to the level of the

persistences of xt. We show the consumption paths for ρ2
x = 0.6 and ρ1

x = 0.5 instead of for

0.975 and 0.985, respectively. Lowering the persistence will—similarly to the decrease in risk

aversion—bring down the equity premium to -0.74%. Consequently, we observe that in this

setup the dynamics of the consumption shares strongly depend on the true value of ρx as the

speculative bias channel dominates—that is, the agent with the correct beliefs will dominate
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the economy.

But long-run risk models require a high degree of risk aversion and a high persistence level

of the long-run risk process in order to obtain an equity premium consistent with the data.

Consequently, the impact of the risk premium channel will be strong and those investors who

are skeptical about the presence of long-run risks will dominate the economy. The qualitative

implications also hold irrespective of the true value of the underlying persistence of the long-

run risk process. In Figure 9 we show the consumption paths with ρ1
x = 0.985 and ρ2

x = 0.975

for different values of ρx = {0, 0.9, 0.99}. A lower persistence of ρx implies that xt will remain

closer to its unconditional mean (given the same standard deviation). As Figure 4 shows, for

xt close to 0, the consumption share of the second agent increases on average. Hence, the

lower the true persistence, the faster the increase in the consumption share. But even for the

very large value of ρx of 0.99, the risk premium effect still dominates and the second agent

dominates the economy in the long run.

4.3 Correcting for the Difference in Mean Consumption Growth

Different beliefs about the persistence of the long-run risk process imply that—everything else

being equal—the agent also has different beliefs about the mean of the gross growth rate of

consumption E
(
Ct+1

Ct

)
due to Jensen’s inequality. In this section we show that our results are

not driven by this simple mean effect, but rather by the time varying risk premium channel as

demonstrated in the previous section. In fact, when we correct for the belief difference in the

mean growth rate of consumption, the consumption share of the skeptical investor increases

even faster. For the long-run risks model (15), the mean growth rate of consumption is given

by

E

(
Ct+1

Ct

)
= E

(
e∆ct+1

)
= e

µc+0.5σ2+0.5
φ2xσ

2

1−(ρx)2 . (18)

For ρ2
x < ρ1

x = ρx we have that

E2

(
Ct+1

Ct

)
= e

µc+0.5σ2+0.5
φ2xσ

2

1−(ρ2x)
2 < E

(
Ct+1

Ct

)
. (19)

So the second agent believes in a lower mean growth rate of consumption as she believes in

a lower persistence and hence a lower unconditional volatility of the long-run risk process.

We correct for this belief difference by setting the subjective belief of the second agent with

regard to mean log consumption growth to µ2
c = µc + 0.5 φ2xσ

2

1−(ρx)2
− 0.5 φ2xσ

2

1−(ρ2x)2
. Once we correct

for this difference, the consumption shares of the skeptical investor increase even faster. For
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Figure 8: The Risk Premium and Speculative Bias Channels
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The figure shows the median consumption share of agent 2 for 1’000 samples each consisting of 500
years of simulated data. Panel (a) shows the time series for different degrees of risk aversion γh ∈
{2, 5, 10}. Agent 2 believes that ρ2

x = 0.975 and agent 1 has the correct beliefs with ρ1
x = ρx = 0.985.

Panel (b) shows the time series for γh = 2, ρ1
x = 0.985, and ρ2

x = 0.975 for the two cases in which
either agent 1 (blue line) or agent 2 (red line) has the correct beliefs. Panel (c) shows the time series
for γh = 10, ρ1

x = 0.6, and ρ2
x = 0.5 for the two cases where either agent 1 (blue line) or agent 2 (red

line) has the correct beliefs.
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Figure 9: The Risk Premium and Speculative Bias Channels (2)
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The figure shows the median consumption share of agent 2 for 1’000 samples each consisting of 500
years of simulated data. Both agents have a risk aversion of γ = 10. The results are shown for
ρ2
x = 0.975 and ρ1

x = 0.985 for different values of ρx = {0, 0.9, 0.99}.

the original specification with an initial allocation of s2
0 = 0.01, the consumption shares of

the skeptical investor increased to 0.2824, 0.6376, and 0.9278 after 100, 200, and 500 years,

respectively (see Table 2). With the corrected mean we obtain values of 0.2827, 0.6379,

and 0.9281. Hence, our results are not driven by the effect of different mean beliefs about

consumption growth. This result is also in accordance with Borovička (2015), who shows that

underestimation of the mean growth rate lowers the chances of survival while overestimation

has the opposite effect due to the positive risk premium channel. Consequently, in our model

specification, the effect of the mean growth rate should lead the skeptical investor to have

lower consumption shares. And indeed, once we correct the mean growth rate estimate of

the skeptical investor we obtain a faster increase in the consumption shares of that skeptical

investor.

5 Heterogeneity in the Preference Parameters

In this section we relax the assumption of identical preferences and analyze the influence of

differences in the preference parameters on equilibrium outcomes. Yan (2008) shows that

for CRRA preferences and i.i.d. consumption growth differences in beliefs can be offset by

only small differences in the preference parameters. We show that in our model setup with

Epstein–Zin preferences, very large differences in the EIS are required to obtain variations

in the consumption shares similar to the setup with different beliefs. Differences in the risk
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aversion parameter induce larger changes to the consumption shares, but values for the risk

aversions significantly larger than 10—the maximum values considered as reasonable in the

literature—are required to offset the effect obtained from the differences in beliefs.

For the analysis, we assume that beliefs are the same among agents but that the agents

differ with regard to their degree of risk aversion and their intertemporal elasticity of sub-

stitution; and second, we consider model parametrizations with heterogeneity in both beliefs

and preferences.

5.1 Identical Beliefs and Heterogeneous Preferences

In the first example, we assume that both investors have identical beliefs about the persistence

of xt with ρx = ρ1
x = ρ2

x = 0.985, but they differ with regard to their preference parameters.

For agent 1 we use the standard preference parameters from Bansal and Yaron (2004) with a

risk aversion of γ1 = 10 and an EIS of ψ1 = 1.5. For the second agent we consider different

preference parameter combinations. In Figure 10 we show the consumption shares of the

second agent for 500 years of simulated data. Panel (a) shows the case in which agent 2 has a

smaller degree of risk aversion with γ2 = 5, and Panel (b) the case of a larger risk aversion with

γ2 = 15. We observe that for the case of a lower risk aversion, the consumption shares of the

second agent increase rapidly. For the case of a higher risk aversion, we observe the opposite,

namely a rapid decrease in the consumption share. The changes can again be explained by

the risk premium channel. An investor with a higher degree of risk aversion is more afraid

of negative shocks to the economy and would therefore like to buy insurance against these

risks. As risk premia in the economy are high, the premium this investor is willing to pay is

high. The investor with the lower degree of risk aversion, on the other hand, will be willing

to provide this insurance as he is less afraid of the long-run risk. Hence, in Panel (a), where

agent 2 has a lower risk aversion, she is willing to provide the insurance; as risk premia in the

economy are high (the equity premia in the economies populated by agent 1 or agent 2 alone

are 6.53% and 2.71%, respectively), she benefits on average. In Panel (b) agent 2 is a lot more

risk averse than agent 1 and hence the risk premium channel works against agent 2. As risk

premia in Panel (b) are larger (the equity premium in the economies populated by agent 1 or

agent 2 alone are 6.53% and 9.49%, respectively), we observe a faster decrease in Panel (b)

than the increase in Panel (a), with a median share after 100 years of only 14% for Panel (b)

and 75% for Panel (a).

In Panels (c) and (d) we show the case of the two agents having identical levels of risk

aversion but different EIS parameters. In Panel (c) agent 2 has a smaller EIS compared to
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Figure 10: Consumption Shares for Heterogeneous Preferences: Simulations
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The figure shows the median, 5%, and 95% quantile paths of the consumption share of agent 2 for
1’000 samples each consisting of 500 years of simulated data. The investors have identical beliefs
about ρx with ρx = ρ1

x = ρ2
x = 0.985, but differ with respect to their preference parameters. Agent

1 has a risk aversion of γ1 = 10 and an EIS of ψ1 = 1.5 and the different panels show the results for
different preference parameters of the second investor.
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agent 1, ψ2 = 1.2, and in Panel (d) she has a larger EIS, ψ2 = 1.8. We observe that the

consumption share of the agent with the lower EIS increases on average; but the change in

the shares is much slower compared to the case with different degrees of risk aversion and

there is also no sharp increase or decrease initially. As the risk premium channel is the most

important channel for the change in the consumption shares and as the difference in the EIS

has a negligible influence on risk premia (the equity premium of the economy only populated

by agent 2 is 6.04% for ψ2 = 1.2 and 6.95% for ψ2 = 1.8), the influence of the difference in the

EIS on the change in the consumption shares is rather small. As a robustness check, we show

in Figure 13 in Appendix C the corresponding results for two more extreme cases: ψ2 = 0.8

and ψ2 = 2.2. The consumption shares still move very slowly. Therefore, we conclude that

preference heterogeneity in the EIS has only a minor influence in the long-run risk model—in

particular when compared to the effects of heterogeneity in beliefs and in the risk aversion

parameter.

5.2 Heterogeneous Beliefs and Preferences

In Figure 11 we show the evolution of the consumption shares in an economy in which the

investors have both different beliefs about the persistence of xt and different preference param-

eters. The first agent has the same characteristics as in the baseline economy; he is the long-run

risk investor of Bansal and Yaron (2004), who has the correct beliefs with ρx = ρ1
x = 0.985, a

risk aversion of γ1 = 10, and an EIS of ψ1 = 1.5. The second agent believes that ρ2
x = 0.975

and has an EIS of ψ2 = 1.5; we choose γ2 so that there is no visible trend in the average

consumption shares of the two agents. We find that for a value of γ2 ≈ 17.5 the effect of

a larger risk aversion and the belief in a lower value of ρx cancel each other so that the

median consumption share in Figure 11 remains approximately at the same level.6 For the

representative-agent economy with a risk aversion γ2 = 17.5 and ρ2
x = 0.975, the equity pre-

mium is 5.6% and therefore only slightly smaller than the 6.53% for the representative-agent

economy of the first agent. So, in this setup the equity premium would not collapse in the

two-agent economy. However, even for the small belief difference in ρx, a large degree of risk

aversion is needed so that the two effects cancel each other. As it is usually assumed that

the risk aversion coefficient is not significantly larger than 10, simply increasing the risk aver-

sion of the investor who believes in a smaller persistence of xt does not seem like a plausible

6We tried to obtain similar results where we increase the EIS instead of the risk aversion accordingly. However,
as Table 10 shows, the effect of ψ2 on the equilibrium consumption shares is so small that a very large value
of ψ2 would be needed, which makes solving the model computationally very challenging.
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Figure 11: Consumption Shares for Heterogeneous Preferences and Beliefs—Simulations
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The figure shows the median, 5%, and 95% quantile paths of the consumption share of agent 2 for
1’000 samples each consisting of 500 years of simulated data. Agent 2 has a risk aversion of γ2 = 17.5
and believes that ρ2

x = 0.975 and agent 1 has the correct beliefs about ρx with ρx = ρ1
x = 0.985 but

a lower risk aversion of γ1 = 10. Both agents have the same EIS of ψ1 = ψ2 = 1.5.

mechanism via which to retain the large equity premium in the two-agent economy.

6 Conclusion

We have performed a detailed study of heterogeneity in agents’ beliefs for the long-run risk

model of Bansal and Yaron (2004). In particular, we consider agents with different beliefs

about the level of persistence of long-run risk. We find that as long as the level of heterogeneity

is not too large, agents who believe in a lower level of persistence come to dominate the

economy rather quickly relative to agents who believe in a higher level of persistence. This

holds even if the agent with the higher level of persistence holds the correct belief. This

suggests that for long-run risk to work as an explanation of the equity premium, it is insufficient

for long-run risk in consumption to merely exist—agents must also all agree on the amount of

long-run risk the economy experiences.

For larger differences in beliefs, both agents survive in the long run. In that case, belief

heterogeneity leads to considerable volatility in asset prices. This result suggests that—even

though belief heterogeneity does not explain the equity premium—it can explain the large

asset price volatility found in the data.
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Appendix

A Proofs and Details

In this appendix, we provide proofs for the theoretical results presented in Section 2. Along

the way, we derive a system of first-order conditions for Epstein–Zin preferences. This system

constitutes the foundation for our numerical solution method (see Appendix B).

A.1 Proofs for Section 2.1

Proof of Theorem 1. Let λ = {λ̄1, . . . , λ̄H} be a set of Negishi weights and let {C}0 =

{{C1}0, . . . , {CH}0} denote a vector of agents’ consumption processes. The optimal decision

{C}∗0 of the social planner in the initial period assigns consumption streams to all individ-

ual agents for all periods and possible states. Obviously, the optimal decisions must satisfy

the market-clearing condition (1) in all periods and states. For ease of notation we again

abbreviate the state dependence; we use Ch
t for Ch(yt) and Uh

{t} for Uh
(
{Ch}t

)
.

To derive the first-order conditions, we borrow a technique from the calculus of variations.

For any function ft, we can vary the consumption of two agents by

Ch
t → Ch

t + εft

C l
t → C l

t − εft.
(20)

It is sufficient to consider the variation with l = 1 and h ∈ H−. For an optimal allocation it

must be true that
dSP ({C}0;λ)

dε

∣∣∣∣
ε=0

= 0. (21)

This gives us

λ̄hÛh
0,t = λ̄1Û1

0,t, h ∈ H−, (22)

where Ûh
t,t+k is defined as

Ûh
t,t+k =

dUh(Ch
t , . . . , C

h
t+k + εft+k, . . .)

dε

∣∣∣∣
ε=0

. (23)

Using the expression given in Equation (2), the derivative Ûh
t,t+k satisfies a recursive equation
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with the initial condition

Ûh
t,t =

dUh(Ch
t + εft, . . .)

dε

∣∣∣∣
ε=0

= F h
1

(
Ch
t , Rt[U

h
{t+1}]

)
· ft, (24)

where F h
k

(
Ch
t , R

h
t [Uh
{t+1}]

)
denotes the derivative of F h

(
Ch
t , R

h
t [Uh
{t+1}]

)
with respect to its

kth argument. The recursive step is given by

Ûh
t,t+k =

dF h
(
Ch
t , R

h
t

[
Uh(Ch

t+1, . . . C
h
t+k + εft+k, . . .)

])
dε

∣∣∣∣
ε=0

= F h
2

(
Ch
t , R

h
t [Uh
{t+1}]

)
·

dRh
t

[
Uh(·)

]
dε

∣∣∣∣
ε=0

= F h
2

(
Ch
t , R

h
t [Uh
{t+1}]

)
·

dG−1
h

(
Eh
t Gh

[
Uh(·)

])
dEh

t Gh[Uh(·)]
· dEh

t Gh[U
h(·)]

dε

∣∣∣∣
ε=0

= F h
2

(
Ch
t , R

h
t [Uh
{t+1}]

)
· 1

G′h(G
−1
h (Eh

t Gh[Uh
{t+1}]))

· Eh
t

(
G′h(U

h
{t+1}) · Ûh

t+1,t+k

)

= F h
2

(
Ch
t , R

h
t [Uh
{t+1}]

)
·
Eh
t

(
G′h(U

h
{t+1}) · Ûh

t+1,t+k

)
G′h(R

h
t [Uh
{t+1}])

, (25)

where we use ∂G−1(x)
∂x

= 1
G′(G−1(x))

and abbreviate Uh(Ch
t+1, . . . C

h
t+k + εft+k, . . .) by Uh(·). We

can recast this recursion into a useful form. For this purpose, we define a second recursion

Uh
t,t+k by

Uh
t,t = F h

1

(
Ch
t , R

h
t [Uh
{t+1}]

)
(26)

and

Uh
t,t+k = Πh

t+1 · Uh
t+1,t+k, (27)

where

Πh
t+1 = F h

2

(
Ch
t , R

h
t [Uh
{t+1}]

)
·

G′h(U
h
{t+1})

G′h(R
h
t [Uh
{t+1}])

dPh
t,t+1

dPt,t+1

. (28)

A simple induction shows that

Ûh
t,t+k = Et(U

h
t,t+kft). (29)

Plugging (29) into the optimality condition (22) we obtain

E0

(
(λ̄hUh

0,t − λ̄1U1
0,t)ft

)
= 0, h ∈ H−. (30)
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Under a broad range of regularity conditions, this condition implies that

λ̄hUh
0,t = λ̄1U1

0,t, h ∈ H−. (31)

For example, if λ̄hUh
0,t− λ̄1U1

0,t has finite variance, then this holds for the Riesz Representation

Theorem for L2 random variables. We can then split Expression (31) into two parts. First

define λh0 ≡ λ̄h to obtain

λh0
λ1

0

=
U1

0,t

Uh
0,t

=
Π1

0

Πh
0

U1
1,t

Uh
1,t

=
Π1

0

Πh
0

λh1
λ1

1

, h ∈ H−,

where λh1 denotes the Negishi weight in the social planner’s optimal solution in t = 1. General-

izing this equation for any period t, we obtain the following dynamics for the optimal weight7

λht+1

λht+1

λ1
t+1

=
Πh
t+1

Π1
t+1

λht
λ1
t

, h ∈ H−. (32)

Inserting the initial condition (26) into (31) for t = 0 and generalizing it for any social planner’s

optimal solution at time t yields

λht F
h
1

(
Ch
t , R

h
t [Uh
{t+1}]

)
= λ1

tF
1
1

(
C1
t , R

1
t [U

1
{t+1}]

)
, h ∈ H−. (33)

Equation (33) states the optimality conditions for the individual consumption choices at any

time t. This completes the proof of Theorem 1.

Note that for time-separable utility, F h
1

(
Ch
t , R

h
t [Uh
{t+1}]

)
is simply the marginal utility of

agent h at time t, and so we obtain the same optimality condition as, for example, Judd,

Kubler, and Schmedders (2003) (see Equation (7) on page 2209). In this special case the

Negishi weights can be pinned down in the initial period and thereafter remain constant. For

general recursive preferences this is not true. The optimal weights vary over time following

the law of motion described by Equation (32).

We can use Equations (32) and (33) together with the market-clearing condition (1) to

compute the social planner’s optimal solution. We therefore define λ−t = {λ2
t , λ

3
t , . . . , λ

H
t } and

let V h denote the value function of agent h ∈ H. We are looking for model solutions of the

form V h(λ−
t , y

t). So, the model solution depends on both the exogenous state yt and the

7Note that we can either solve the model in terms of the ratio
λh
t

λ1
t

(this is equal to setting λ1t = 1 for all t as

done in Judd, Kubler, and Schmedders (2003)) or we can normalize the weights so that they remain bounded
in (0, 1). Our solution method uses the latter approach as it obtains better numerical properties.
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time-varying Negishi weights λ−t . An optimal allocation is then characterized by the following

four equations:

• the market-clearing condition (1)

H∑
h=1

Ch(λ−
t , y

t) = C(yt); (34)

• the value functions (2) of the individual agents

V h(λ−
t , y

t) = F h
(
Ch(λ−

t , y
t), Rh

t [V h(λ−
t+1, y

t+1)]
)
, h ∈ H; (35)

• the optimality conditions (33) for the individual consumption decisions for h ∈ H−

λht F
h
1

(
Ch(λ−

t , y
t), Rh

t [V h(λ−
t+1, y

t+1)]
)

= λ1
tF

1
1

(
C1(λ−

t , y
t), R1

t [V
1(λ−

t+1, y
t+1)]

)
; (36)

• the equations (32) for the dynamics of λ−
t

λht+1

λ1
t+1

=
Πh
t+1

Π1
t+1

λht
λ1
t

, h ∈ H−, (37)

with

Πh
t+1 = F h

2

(
Ch(λ−

t , y
t), Rh

t [V h(λ−
t+1, y

t+1)]
)
·

G′h(V
h(λ−

t+1, y
t+1))

G′h(R
h
t [V h(λ−

t+1, y
t+1)])

dPh
t,t+1

dPt,t+1

. (38)

This concludes the general description of the equilibrium obtained from the social planner’s

optimization problem.

To prove Theorem 2, we first derive a variant of Lemma 1 in Blume and Easley (2006).

Lemma 1. Let X i
t , i = 1, 2, . . . , H, be a family of positive random variables for each t =

0, 1, 2, . . ., such that A ≤
∑

iX
i
t ≤ B with B ∈ R++. Let f i : R++ → R++, i = 1, 2, . . . , H,

be a family of decreasing functions such that f i(x) → ∞ as x → 0. If f i(X i
t)/f

j(Xj
t ) → ∞,

then X i
t → 0 for t→∞. If X i

t → 0, then for at least one j, lim supt f
i(X i

t)/f
j(Xj

t ) =∞.

Proof. Since X i
t is positive, X i

t ≤ B for all i, t. By assumption, 0 < f j(B) ≤ f j(Xj
t ). Thus,

f i(X i
t)/f

j(Xj
t )→∞ if and only if f i(X i

t)→∞, which happens when X i
t → 0 as t→∞.

Conversely, assume X i
t → 0. Every period, for at least one j, Xj

t ≥ A/H (otherwise∑H
i=1 X

i
t < A). Since there are only finitely many random variables, for at least one j we have
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Xj
t ≥ A/H infinitely often. Then, by assumption, f j(Xj

t ) ≤ f j(A/H) infinitely often, and so

lim sup f i(X i
t)/f

j(Xj
t ) =∞.

Proof of Theorem 2. By the first-order condition (5), λjt/λ
i
t = F i

1(Ci
t , R

i
t)/F

j
1 (Cj

t , R
j
t ). Since

F h is additively separable, F h
1 is a function of consumption alone. Let f i = F i

1, f
j = F j

1 ,

A = C, and B = C, and apply Lemma 1.

A.2 Proofs for Section 2.2

In this section we provide the specific expressions for V h, F h
1 , F

h
2 , and Πh when the heteroge-

neous investors have recursive preferences as in Epstein and Zin (1989) and Weil (1989). The

value function for Epstein–Zin (EZ) preferences is given by8

V h
t =

[
(1− δh)(Ch

t )ρ
h

+ δhRh
t

(
V h
t+1

)ρh] 1

ρh

(39)

with

Rh
t

(
V h
t+1

)
= G−1

h

(
Eh
t

[
Gh(V

h
t+1)
])

Gh(V
h
t+1) =

(
V h
t+1

)αh
.

Recall that the parameter δh is the discount factor, ρh = 1 − 1
ψh

determines the EIS, ψh,

and αh = 1 − γh determines the relative risk aversion γh of agent h. The derivatives of

F h
(
Ch
t , R

h
t [V h

t+1]
)

= V h
t with respect to its first and second argument are then given by

F h
1,t = (1− δh)(Ch

t )ρ
h−1(V h

t )1−ρh (40)

and

F h
2,t = δhRh

t

(
V h
t+1

)ρh−1
(V h

t )1−ρh . (41)

In this paper we focus on growth economies. Therefore, we introduce the following normal-

ization to obtain a stationary formulation of the model. We define the consumption share of

agent h by sht =
Cht
Ct

and the normalized value functions, vht =
V ht
Ct

. Recall that ∆ct+1 = ct+1−ct
with ct = log (Ct). The value function (39) is then given by

vht =
[
(1− δh)(sht )ρ

h

+ δhRh
t

(
vht+1e

∆ct+1
)ρh] 1

ρh

. (42)

8For ease of notation, we again abbreviate the dependence on the exogenous state yt and the endogenous state
λ−
t . Hence we write V ht for V h(λ−

t , yt) or Cht for Ch(λ−
t , yt).
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By inserting (40) into (36) we obtain the optimality condition for the individual consumption

decisions

λht F
h
1

(
Ch(λ−

t , y
t), Rh

t [V h(λ−
t+1, y

t+1)]
)

= λ1
tF

1
1

(
C1(λ−

t , y
t), R1

t [V
1(λ−

t+1, y
t+1)]

)
,

which simplifies to

λht (1− δh)(Ch
t )ρ

h−1(V h
t )1−ρh = λ1

t (1− δ1)(C1
t )ρ

1−1(V 1
t )1−ρ1 . (43)

Recall the definition of the normalized Negish weights, λht =
λht

(vht )ρh−1
. From Equation (43) we

obtain

λht (1− δh)(sht )ρ
h−1 = λ1

t (1− δ1)(s1
t )
ρ1−1. (44)

This equation is the optimality condition for the individual consumption decisions we employ

for solving for the model with Epstein–Zin preferences. Inserting the de-trended weight λht

into the dynamics for the weights (37), we obtain

λht+1

λ1
t+1

=
λht+1(vht+1)ρ

h−1

λ1
t+1(v1

t+1)ρ1−1
=
λht (v

h
t )ρ

h−1

λ1
t (v

1
t )
ρ1−1

Πh
t+1

Π1
t+1

, h ∈ H−. (45)

Plugging the expressions for Epstein–Zin preferences (39)–(41) into Equation (38), we obtain

the following expression for Πh
t+1:

Πh
t+1 = δhRh

t

(
V h
t+1

)ρh−1
(V h

t )1−ρh
(
V h
t+1

)αh−1

Rh
t

(
V h
t+1

)αh−1

dPh
t,t+1

dPt,t+1

= δh(V h
t )1−ρh

(
V h
t+1

)αh−1

Rh
t

(
V h
t+1

)αh−ρh dPh
t,t+1

dPt,t+1

. (46)

Using the normalized value function vht =
V ht
Ct

, we have

Πh
t+1 = δh(vht )1−ρh

(
vht+1e

∆ct+1
)αh−1

Rh
t

(
vht+1e

∆ct+1
)αh−ρh dPh

t,t+1

dPt,t+1

. (47)

Equation (45) can then be written as

λht+1

λ1
t+1

=
λht
λ1
t

Πh
t+1

Π1
t+1

, h ∈ H−, (48)
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where

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1︸ ︷︷ ︸
CRRA-Term

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh︸ ︷︷ ︸

New EZ-Term

. (49)

For αh = ρh, we obtain the standard term for CRRA preferences; the dynamics of λht+1 only

depend on the subjective discount factor, the EIS, and the subjective beliefs of the investors.

For Epstein–Zin preferences, we obtain an extra term that reflects the time trade-off. Using

the normalization
∑H

h=1 λ
h
t = 1, the dynamics for λht+1 are then given by

λht+1 =
λht Π

h
t+1∑H

h=1 λ
h
t Π

h
t+1

. (50)

Hence, for Epstein–Zin preferences we obtain the following system for the first-order con-

ditions (34)-(38):

The market-clearing condition:
H∑
h=1

sht = 1. (MC)

The optimality condition for the individual consumption decisions:

λht (1− δh)(sht )ρ
h−1 = λ1

t (1− δ1)(s1
t )
ρ1−1, h ∈ H−, (CD)

with
∑H

h=1 λ
h
t = 1.

The value functions of the individual agents:

vht =
[
(1− δh)(sht )ρ

h

+ δhRh
t

(
vht+1e

∆ct+1
)ρh] 1

ρh

, h ∈ H. (VF)

The equation for the dynamics of λht :

λht+1 =
λht Π

h
t+1∑H

h=1 λ
h
t Π

h
t+1

Πh
t+1 = δheρ

h∆ct+1
dPh

t,t+1

dPt,t+1

(
vht+1e

∆ct+1
)αh−ρh

Rh
t

(
vht+1e

∆ct+1
)αh−ρh , h ∈ H−.

(Dλ)

Note that the conditions (MC, CD, VF, Dλ) are just the equilibrium conditions (11)–(14)

stated in Section 2.2. We observe that Equation (CD) and hence the individual consumption
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decisions sht only depend on time t information and that there is no intertemporal dependence.

This feature allows us to first solve for sht given the current state of the economy, and in

a second step to solve for the dynamics of the Negishi weights. Hence, we can separate

solving the optimality conditions (11)–(14) into two steps in order to reduce the computational

complexity. In Appendix B we describe this approach in detail.

Using condition (CD) we can prove Theorem 3. Recall that ρh = 1− 1
ψh
< 1 for all possible

values of an agent’s EIS, ψh > 0.

Proof of Theorem 3. Condition (CD) implies

λjt
λit

=
(1− δi)(sit)ρ

i−1

(1− δj)(sjt)ρ
j−1

.

Now let f i(s) = sρ
i−1, f j(s) = sρ

j−1, and A = B = 1, and apply Lemma 1.

B Solution Method

We describe our solution method for asset-pricing models with heterogeneous agents and

recursive preferences.

B.1 Computational Procedure—A Two-Step Approach

For ease of notation the following procedures are described for H = 2 agents and a single state

variable yt ∈ R1. However, the approach can analogously be extended to the general case of

H > 2 agents and multiple states. We solve the social planner’s problem using a collocation

projection. For this we perform the usual transformation from an equilibrium described by

the infinite sequences (with a time index t) to the equilibrium being described by functions

of some state variable(s) x on a state space X. We denote the current exogenous state of

the economy by y and the subsequent state in the next period by y′ with the state space

Y ∈ R1. λ2 denotes the current endogenous state of the Negishi weight and λ′2 denotes the

corresponding state in the subsequent period with Λ2 ∈ (0, 1).

We approximate the value functions of the two agents, vh(λ2, y), h = {1, 2}, by two-

dimensional cubic splines and we denote the approximated value functions by v̂h(λ2, y). For

the collocation projection we have to choose a set of collocation nodes {λ2k
}nk=0 and {yl}ml=0 at

which we evaluate v̂h(λ2, y). The individual consumption shares only depend on the endoge-

neous state λ2k
. So in the following we show how to first solve for the individual consumption
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shares at the collocation nodes shk = sh(λ2k
) that are then used to solve for the value functions

vh and the dynamics of the endogenous state λ2.

Step 1: Computing Optimal Consumption Allocations

Equation (13) has to hold at each collocation node {λ2k
}nk=0:

λ2k
(1− δ2)

(
s2
k

)ρ2−1
= (1− λ2k

)(1− δ1)
(
s1
k

)ρ1−1
.

Together with the market-clearing condition (11) we get

λ2k
(1− δ2)

(
s2
k

)ρ2−1
= (1− λ2k

)(1− δ1)
(
1− s2

k

)ρ1−1
. (51)

So for each node {λ2k
}nk=0 the optimal consumption choice s2

k can be computed by solving

Equation (51) and s1
k is obtained by the market-clearing condition (11).9 For the special case

of ρ2 = ρ1 we can solve for s2 as a function of λ2 analytically, and hence we don’t have to

solve the system of equations for each node.

Step 2: Solving for the Value Function and the Dynamics of the Negishi Weights

Solving for the value function is not as straight-forward, as it depends on the dynamics

of the endogenous state λ2, which are unknown and follow Equation (14). We compute the

expectation over the exogenous state by a Gauss-Quadrature with Q quadrature nodes. This

implies that the values for y′ at which we evaluate vh are given by the quadrature rule. We

denote the corresponding quadrature nodes by {y′l,g}
m,Q
l=0,g=1 and the weights by {ωg}Qg=1.10

We can then solve Equation (14) for a given pair of collocation nodes {λ2k
, yl}n,mk=0,l=0 and the

corresponding quadrature nodes {y′l,g}
m,Q
l=0,g=1 to compute a vector ~λ

′
2 of size (n+1)×(m+1)×Q

that consists of the corresponding values λ′2k,l,g for each node. For each λ′2k,l,g , Equation (14)

9Note that in the case of H agents we have to solve a system of H − 1 equations that pin down the H − 1
individual consumption choices sh ∈ H−.

10Note that the quadrature nodes {{y′

l,g}Gg=0}ml=0 depend on the state today, {yl}ml=0.
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then reads

λ′2k,l,g =
λ2k

Π2

(1− λ2k
)Π1 + λ2k

Π2

Πh = δheρ
h∆c(y′l,g)

(
vh(λ′2k,l,g , y

′
l,g)e

∆c(y′l,g)

Rh
[
vh(λ′2, y

′)e∆c(y′)|λ2k
, yl
])αh−ρh

dPh(y′l,g|yl)
dP(y′l,g|yl)

, (52)

where

Rh
[
vh(λ′2, y

′)e∆c(y′)|λ2k
, yl

]
= G−1

h

(
E

[
Gh

(
vh(λ′2, y

′)e∆c(y′)
) dPh(y′)

dP(y′)

∣∣∣∣λ2k
, yl

])
.

Note that λ′2k,l,g depends on the full distribution of λ′2 through the expectation operator. By

applying the Gauss-Quadrature to compute the expectation we get

E

[
Gh

(
vh(λ′2, y

′)e∆c(y′)
) dPh(y′)

dP(y′)

∣∣∣∣λ2k
, yl

]
≈

Q∑
g=1

Gh

(
vh(λ′2k,l,g , yl,g)e

∆c(yl,g)
)
· ωg.

So by computing the expectation with the quadrature rule, we do not need the full distribution

of λ′2; instead we only have to evaluate vh at those values λ′2k,l,g that can be obtained by solving

(52) for each pair of collocation nodes {λ2k
, yl}n,mk=0,l=0 and the corresponding quadrature nodes

{y′l,g}
m,G
l=0,g=1. So at the end we have a square system of equations with (n+ 1)× (m+ 1)×G

unknowns, λ′2k,l,g , and as many equations (52) for each {k, l, g}.
The value function is in general not known so we have to compute it simultaneously when

solving for λ′2k,l,g . Plugging the approximation v̂h(λ2, y) into the value function (12) yields

v̂h(λ2k
, yl) =

[
(1− δh)

(
shk
)ρh

+ δhRh

(
v̂h(λ′2, y

′)e∆c(y′)

∣∣∣∣λ2k
, yl

)] 1

ρh

. (53)

The collocation projection conditions require that the equation has to hold at each colloca-

tion node {λ2k
, yl}n,mk=0,l=0. So we obtain a square system of equations with (n+1)×(m+1)×2

equations (53) and as many unknowns for the spline interpolation at each collocation node,

which we solve simultaneously with the system for λ′2k,l,g described above.

B.2 Properties of the Value Function

In the case of heterogeneous agents the approximation of the value function is a delicate

computational task as an agent can vanish over time. The marginal utility of the agent for

this limiting case is infinity, which makes it difficult to obtain accurate approximations for
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the value function close to the singularity. To obtain information about the properties of the

singularity, we formally derive the limiting behavior of the value function for the special case

of an economy with no uncertainty. We then include this information in the value function

approximation for the stochastic economy. From Equation (13) we know that

s2(λ2) =

(
1− δ1

1− δ2

)−ψ2

(λ2)ψ
2

(1− λ2)−ψ
2

(s1(λ2))
ψ2

ψ1 . (54)

We are interested in the properties of s2(λ2) for λ2 close to 0. For λ2 ≈ 0, agent 1 obtains all

consumption so s1(λ2) ≈ 1 and the Negishi weight of the first agent becomes 1. Therefore,

we obtain

s2(λ2) ≈
(

1− δ1

1− δ2

)ψ2

(λ2)ψ
2

(55)

for λ2 close to 0. The value function (39) for the deterministic economy at the steady state

y = y′, λ2 = λ′2 is given by

v2(λ2, y) = s2(λ2). (56)

Inserting the behavior of s2(λ2) for λ2 close to 0, we obtain11

v2(λ2) ≈
(

1− δ1

1− δ2

)ψ2

(λ2)ψ
2 ≡ Υ0(λ2). (57)

We denote by Υ0(λ2) the zero basis functions, which we add to the cubic spline value function

approximation to obtain accurate approximations close to the singularity. We find that for all

solutions reported in this paper, including the zero basis functions improves the accuracy of

the solution. This concludes the description of the methodology for solving the heterogeneous

agent model with recursive preferences.

B.3 Computational Details

For the projection method outlined above we need to choose certain collocation nodes. In

this paper we use 17 uniform nodes for the λ2 dimension and 13 uniform nodes for the xt

dimension for the results with ρ2 = 0.975 and ρ1 = 0.985. For the results with ρ2 = 0.95 and

ρ1 = 0.985, we use 51 uniform nodes for the λ2 dimension and 23 uniform nodes for the xt

dimension. For λ2 the minimum and maximum values are given by 0 and 1. For xt we choose

the approximation interval to cover ±4 standard deviations around the unconditional mean

11For the first agent we obtain a similar expression for λ2 close to 1 given by v1(λ2) ≈
(

1−δ2
1−δ1

)ψ1

(1− λ2)ψ
1

.
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of the process. We approximate the value functions using two-dimensional cubic splines with

not-a-knot end conditions. We provide the solver with additional information that we can

formally derive for the limiting cases. For example, we know that for λ2
t = 1 (λ2

t = 0) agent

2 (1) consumes everything, so it corresponds to the representative-agent economy populated

only by agent 2 (1). Hence, we require that the value function for these cases equals the

value function for the corresponding representative-agent economy. We also know that for

λ2
t = 0 (λ2

t = 1) the consumption of agent 2 (1) is 0 and hence the value function is also

0. As the shocks in the model are normally distributed, we compute the expectations over

the exogenous states by Gauss–Hermite quadrature using 5 nodes for the shock in xt+1 and 3

nodes for the shock in ∆ct+1. Euler errors for the value function approximations evaluated on

a 200× 200 uniform grid for both states are less than 1× 10−6, suggesting a high accuracy of

our results. We double-checked the accuracy by increasing the approximation interval as well

as the number of collocation nodes, with no significant change in the results.

C Additional Results

Table 5: Equity Premia for Different Consumption Shares (ρx = ρ2
x)

ρ2
x = 0.975 ρ2

x = 0.95

s2
t Equity Premium s2

t Equity Premium

Rep. Agent 1 0 6.49 0 6.50

0 Years 0.01 6.38 0.01 5.36
100 Years 0.3404 4.39 0.8147 0.49
200 Years 0.7249 3.33 0.8810 0.41
500 Years 0.9732 2.83 0.9388 0.34

Rep. Agent 2 1 2.75 1 0.25

The table shows the annualized equity premium for a specific consumption share s2
t = s̄. The premium

is reported for the equilibrium allocations after 0, 100, 200, and 500 years of simulated data assuming
an initial share of s2

0 = 0.01 (see Table 2). Agent 1 believes that ρ1
x = 0.985 and agent 2 has the

correct belief (ρx = ρ2
x). The left panel depicts the case for ρ2

x = 0.975 and the right panel for
ρ2
x = 0.95.
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Figure 12: Changes in the Wealth Distribution—The Epstein–Zin Case 2 (ρ2
x = 0.95)
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The figure shows the change in the optimal weights λ2
t+1−λ2

t as a function of λ2
t . From left to right,

the change is shown for xt = {−0.008,−0.0013, 0, 0.0013, 0.008} (± 4 standard deviations). The red
line shows the average over all shocks in xt+1. Calibration with ρx = ρ1

x = 0.985 and ρ2
x = 0.95.

Figure 13: Consumption Shares for Heterogeneous Preferences—Simulation 2
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(b) γ2 = 10, ψ2 = 2.2
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The figure shows the median, 5%, and 95% quantile paths of the consumption share of agent 2 for
1’000 samples each consisting of 500 years of simulated data. The investors have identical beliefs
about ρx with ρx = ρ1

x = ρ2
x = 0.985, but differ with respect to their preference parameters. Agent

1 has a risk aversion of γ1 = 10 and an EIS of ψ1 = 1.5 and the different panels show the results for
different preference parameters of the second investor.
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