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Abstract

Asset pricing models such as the conditional CAPM are typically estimated with

MLE using a monthly or quarterly horizon with data sampled to match the horizon even

though daily data are available. We develop an overlapping data inference methodology

(ODIN) that uses all of the data while maintaining the monthly or quarterly forecasting

period, and we apply it to the conditional CAPM. Our approach recognizes that the first

order conditions of MLE can be used as orthogonality conditions of GMM. We simulate

from GARCH and MIDAS models and examine the substantial reductions in standard

errors and increases in power that arise from our methodology. Using historical data, we

find considerable differences in the estimates from the non-overlapping samples that

begin on different days. Using our overlapping data inference, we find a significant

risk-return trade-off in the monthly data from 1955 to 2011 with a symmetric GARCH

model.



1 Introduction

This paper demonstrates how to use all the available data in estimating models such as the

conditional capital asset pricing model (CAPM) and explores the resulting improvements

in power. We thus extend the analysis of Hansen and Hodrick (1980), who introduced the

idea of what we call overlapping data inference (ODIN), to situations in which researchers

typically sample the data to use maximum likelihood estimation (MLE). We find substantial

improvements in power that translate into large increases in effective sample sizes of non-

overlapping data. Whenever the data are sampled, alternative non-overlapping estimates

can be generated by shifting the starting date, and we compare the one ODIN estimation to

the various estimates generated in this way.

We use the conditional CAPM as our laboratory. The conditional CAPM is the simplest

version of Merton’s (1973) intertemporal capital asset pricing model (ICAPM) which demon-

strates that expected returns on assets respond dynamically to changes in the investment

opportunity set. The conditional CAPM implies that the conditional expected returns on

assets depend on their conditional covariances with the market return. Because the market

return is also priced by the conditional CAPM, the model implies a linear trade-off between

the conditional expected return on the market and the conditional variance of the market, as

in Merton’s (1980) Model 1. The first econometric analyses of the ICAPM thus focused on

estimation of this risk-return trade-off. Ghysels, Santa Clara, and Valkanov (2005), Lund-

blad (2007), Lettau and Ludvigson (2010), and Nyberg (2012) provide extensive references

to some of the vast empirical literature that investigates this risk-return trade-off.

Although the ICAPM was developed as a continuous time model, no one seriously thinks

that agents act continuously, and empirical investigations of the ICAPM are typically done

using monthly or quarterly returns. Market microstructure frictions, non-synchronous port-

folio investment decisions, and individual stock illiquidity are features of the data that induce
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difficult short-run serial correlation issues that are outside the realm of the theoretical model.

Indeed, Merton (1980, p. 336) proposed a one-month time interval as “not an unreasonable

choice” for the horizon to examine the predictions of the model. While we agree that a

monthly or quarterly horizon is a reasonable frequency for testing the conditional CAPM

or the ICAPM, daily data are available, and estimation with monthly or quarterly calendar

returns is clearly arbitrary. An interval labeled a ‘month’ need not start on the first day of

a calendar month.

Many researchers estimate the conditional CAPM using variants of Bollerslev’s (1985)

generalized autoregressive conditional heteroskedastic (GARCH) model appropriately mod-

ified to incorporate a variance-in-mean term (GARCH-M), as in Engle, Lilien, and Robbins

(1987) and French, Schwert, and Stambaugh (1987). More recently, Ghysels, Santa Clara,

and Valkanov (2005) introduce the mixed data sampling (MIDAS) approach as an alterna-

tive to GARCH.1 The empirical evidence in support of the conditional CAPM can only be

described as decidedly mixed, with some studies finding positive and significant estimates of

the risk-return trade-off and others finding insignificant or negative coefficients. Perhaps this

should be unsurprising in light of Lundblad’s (2007) simulations that show the difficulty of

finding a significant risk-return trade-off in the available sample sizes when such a trade-off

actually exists.

In these GARCH and MIDAS models, researchers typically sample returns as calendar

months or quarters. We observe daily data on the market return from 1926 to the present, and

if we think of the typical month (quarter) as having 22 (66) working days, there are 22 (66)

different starting days for estimation that uses a one-month (one-quarter) sampling interval.

While it would be quite difficult to formally model the conditional distributions of the errors

1Ghysels, Santa Clara, and Valkanov (2005) found a positive, highly statistically significant estimate of
the risk-return trade-off. When we were unable to reproduce their results, we contacted them and found
an error in their MatLab code. Ghysels, Plazzi, and Valkanov (2013) revise the estimation and extend it to
include a discussion of the effects of financial crises on the risk-return trade-off.
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within MLE that uses all of the daily data and the one-month or one-quarter forecasting

interval, our ODIN approach allows estimation with all of the data constraining the various

non-overlapping samples to have the same coefficients. We do this by viewing the first order

conditions of the MLE as orthogonality conditions in Hansen’s (1982) Generalized Method

of Moments (GMM) that should be satisfied simultaneously by the same set of parameters

for each of the different starting days.

The plan of the paper is as follows. Section 2 motivates the study of the conditional

CAPM, discusses the choices of horizon and assets, notes that including a constant in the

conditional mean is necessary to test the prediction of the model, and introduces the original

MIDAS model as well as a modified version that allows simulations. Section 3 presents our

ODIN methodology. Section 4 examines power issues in testing the conditional CAPM, first

within the basic models and then in the ODIN versions. Section 5 examines estimation of the

GARCH and MIDAS models with calendar-sampled data. Section 6 presents the estimation

of the ODIN models, documents the differences between the results from the one ODIN

model and those of the various non-overlapping monthly models generated by shifting the

sampling start date, and examines the estimator that is the average of the non-overlapping

estimates. Section 7 provides conclusions, and an Appendix provides some technical details.

An Online Appendix contains additional figures and technical details.

2 The Conditional CAPM

We first introduce the conditional CAPM and discuss the importance of examining explicitly

conditional econometric models.2 Fundamentally, theoretical models imply a link between

2The classical reference on the unconditional implications of conditional asset pricing models is Hansen
and Richard (1987), who note that the market portfolio could be on the conditional mean-variance frontier,
but not on the unconditional frontier. Those who are familiar with the ideas in Lewellen and Nagel (2006)
could skip this motivational section as the general idea is that examining the unconditional implications of
conditional models by assessing their average pricing errors is problematic when the betas of assets covary
with the prices of risks.
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first and second moments that must be estimated simultaneously. We present the argument

in terms of the conditional CAPM, but it is more general and applies to multifactor models

as well. Then, we discuss the choices of horizon and assets for testing the implications of

the model. We then discuss the importance of including a constant in the conditional mean

when testing the conditional CAPM. The section concludes with a description of the MIDAS

model of the conditional variance.

2.1 The Importance of Conditional Models

Let Ri,t denote the excess return on asset i, and let RM,t denote the excess return on the

market. Then, the conditional CAPM postulates that the expected excess return on an asset

depends on the conditional covariance of the return with the market return:

Et (Ri,t+1) = γCt (Ri,t+1, RM,t+1) (1)

where γ parameterizes the risk-return trade-off. Since equation (1) also applies to the market

return, we have

Et (RM,t+1) = γσ2
M,t (2)

which expresses the linear risk-return trade-off between the conditional expected excess re-

turn on the market and its conditional variance. Since the estimation of the conditional

covariances and variances requires estimating at least one conditional mean, a straightfor-

ward implication of equations (1) and (2) is that a test of the theory should involve developing

models that simultaneously estimate conditional means and variances.

Cochrane (2005) notes that equation (1) can be written in a conditional beta represen-

tation:

Et (Ri,t+1) = λtβi,t (3)
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where the conditional betas are given by

βi,t ≡ Ct(Ri,t+1, RM,t+1)/σ
2
M,t

and the time-varying price of risk is given by

λt ≡ γσ2
M,t.

Taking the unconditional expectation of equation (3) gives

E (Ri,t+1) = E (λtβi,t) = E (λt)E (βi,t) + Cov (λt, βi,t) . (4)

Equation (4) clearly demonstrates that if the conditional betas covary with the condi-

tional price of risk, a cross-sectional regression of the average excess returns on estimates of

the unconditional expectations of the βi,ts does not result in zero pricing errors.3 It is for

this reason that we desire to directly test the conditional implications of equation (1).

2.2 The Choice of Horizon

Since we want to test explicitly conditional theoretical models, we have to choose the horizon

for which to say the theory holds. While daily returns are available, most of the existing

literature prefers to test the conditional CAPM using longer horizon monthly or quarterly

returns. Researchers then sample the data so that the frequency of the data is the same as

the forecast interval of the model. Two considerations motivate this choice of horizon.

First, aspects of the trading process induced by market microstructure frictions, non-

3Lewellen and Nagel (2006) also note that E(βi,t) is not the same as the unconditional βi that would be
recovered in a time series multiple regression of Ri,t+1 on RM,t+1. Thus, the usual Fama-MacBeth (1973)
tests in which a sequence of cross-sectional regressions is run on the unconditional betas estimated over the
full sample is not an appropriate test of the unconditional implications of a conditional model. Ang and
Kristensen (2012) propose non-parametric methods to test the implications of conditional models.
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synchronous portfolio investment decisions, and individual stock illiquidity that are outside

the theory dominate the autocorrelations in short-horizon returns. More importantly, when

more volatile trading environments arise, theory predicts that stock returns are expected

to be contemporaneously negatively correlated with the increase in volatility because prices

must fall to provide an increase in expected returns, as in Campbell and Hentschel (1992).

If the adjustment of expected returns to news that increases the conditional variance is

not precisely contemporaneously correlated with the increase in the conditional variance

because of market illiquidity or the non-synchronous trading of investors, using a short

horizon for testing the conditional risk-return trade-off may problematically find a negative

relation as volatility increases and prices fall slightly later. Thus, researchers use a longer

horizon to balance the theoretical idea that there is a risk-return trade-off over a particular

horizon against the loss of power that arises from sampling the data. Then, the data are

sampled to allow the use of MLE. The ODIN model attempts to improve this situation. The

econometrician can use any forecast horizon while maximizing power from using all available

data.

In Section 4 we show in simulations that if the data were actually generated by a GARCH

process for which the risk-return relationship is present at the short-term (continuous) hori-

zon, using daily data with a daily horizon would indeed provide the highest power. But,

if it is desirable to set the forecast horizon to be a longer interval, which is preferred in

practice, we demonstrate that the power of the ODIN model is superior to that of the basic

model in which the frequency of observations is the forecast interval. We also find that the

improvement in power increases with the length of the sampling interval. Here, though, we

rely on large samples in which the overlap is a small fraction of the total sample size, so this

statement should not be extrapolated literally. In what follows we use the term ‘basic’ to

refer to models estimated with non-overlapping observations to distinguish them from ODIN

models.
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2.3 The Choice of Assets

Researchers must also choose which assets to use in measuring the risk-return trade-off of

the conditional CAPM. Any set of assets could potentially be used. Although simulations

with multiple assets calibrated to realistic data indicate that the ability to reject γ = 0 is

enhanced by using multiple assets, we focus only on the market portfolio primarily because

much of the literature uses the market as the only test asset even though the theory applies

generally. Thus, we present the nature of the improvement that using overlapping data

offers within a familiar context. We leave discussion of the improvements in power from

using multiple assets to a later paper that will explore additional risk factors. Given that

the only asset analyzed is the market return, we drop the M subscript on the market return

and its conditional variance to simplify the notation.

2.4 On Including a Constant in the Risk-Return Trade-off

Lanne and Saikkonen (2006) explicitly advocate estimating the conditional CAPM without

a constant, as in equation (2), and they find strong support for the conditional CAPM.

Scruggs (1998) and Nyberg (2012) estimate both with and without a constant finding much

higher significance of the risk-return trade-off without a constant. We now demonstrate

that including a constant in the conditional mean is necessary to test the prediction of the

conditional CAPM that the conditional mean of the market return is dynamically linked to

its conditional variance, even though under the null hypothesis that the model is true, the

constant is zero. Estimating without a constant simply relates the average future return to

the average conditional variance, whereas if a constant is included, the estimate of γ will only

be significantly different from zero if the covariance of the future return with its conditional

variance is positive and significant.

To make the point most easily, we treat the conditional variance, σ2
t , as known, and we as-
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sume that the market return is conditionally normally distributed, Rt+1 ∼ N (Et (Rt+1) , σ
2
t ) ,

where Et (Rt+1) is either specified by equation (2) or

Et (Rt+1) = µ+ γσ2
t . (5)

Without a constant, the relevant part of the log-likelihood function is

T∑

t=1

−1

2

(Rt+1 − γσ2
t )

2

σ2
t

.

The first order condition for γ gives

γ̂ =

∑T
t=1 Rt+1∑T
t=1 σ

2
t

=

(
1
T

)∑T
t=1Rt+1(

1
T

)∑T
t=1 σ

2
t

=
Rt+1

σ2
t

where Rt+1 and σ2
t denote the sample means of the return and the conditional variance,

respectively. Because the numerator and the denominator are both positive in the historical

data, γ̂ is positive and significant, but in no sense does finding a significant γ̂ indicate support

for the dynamic prediction of the conditional CAPM that the conditional mean increases

when the conditional variance increases.

If the conditional mean contains a constant, the relevant part of the log-likelihood function

is
T∑

t=1

−1

2

(Rt+1 − µ− γσ2
t )

2

σ2
t

.

The first order condition with respect to µ and γ are the following:

T∑

t=1

(Rt+1 − µ̂− γ̂σ2
t )

σ2
t

= 0

T∑

t=1

(
Rt+1 − µ̂− γ̂σ2

t

)
= 0.
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Solving for γ̂ gives

γ̂ =

(
Rt+1

σ2
t

)
−Rt+1

1
σ2
t

1− σ2
t

1
σ2
t

.

where bars above variables indicate sample averages. The solution for γ̂ is the sample

covariance of Rt+1 with 1/σ2
t divided by the sample covariance of σ2

t with 1/σ2
t . By Jensen’s

inequality, the denominator of γ̂ is negative. Therefore, γ̂ is positive if the covariance of

future returns with the reciprocal of the conditional variance is negative. Thus, including

the constant is necessary to test the prediction that the conditional mean responds positively

to its conditional variance. Variability of the conditional variance is clearly necessary for

identification of γ̂. For this example, the MLE standard error of γ̂ would be

s.e. (γ̂) =

√
1
σ2
t

√
T
[
σ2
t

1
σ2
t

− 1
]1/2 . (6)

From equation (6), the more variable is the conditional variance, the smaller is the standard

error, which is also what Lundblad (2007) finds in his simulations. Thus, rejecting the null

hypothesis should be easier, the more variable is σ2
t . While this example is highly stylized

because we assume that the conditional variance is known, the intuition is certainly correct.

Including a constant in the conditional mean of the risk-return trade-off also captures possible

effects of any omitted state-variables that might appear in alternative specifications of the

ICAPM. Consequently, we include a constant in all of our estimations.

2.5 The MIDAS Framework

One of the challenges in estimating the risk-return trade-off is that the conditional variance

is not observable, and the GARCH model is but one model for the conditional variance. This

section first explains the MIDAS model of the conditional variance introduced by Ghysels,
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Santa Clara, and Valkanov (2005). Because simulating from that model introduces unrealistic

sample paths, we develop an alternative formulation of the MIDAS model that avoids this

problem.

2.5.1 The Original MIDAS Model

Ghysels, Santa Clara, and Valkanov (2005) model the expected monthly excess return on

the market as a linear function of the conditional variance of the monthly market return

as in equation (5). The monthly conditional variance is modeled as a weighted average of

past squared daily excess returns on the market, where lower case r’s refer to daily excess

returns:4

σ2
t ≡ V MIDAS

t = 22
D∑

d=0

wdr
2
t−d. (7)

The weights on the past squared excess returns sum to one and are initially modeled as

wd(κ1, κ2) =
exp(κ1d+ κ2d

2)∑250
j=0 exp(κ1j + κ2j2)

, d = 0, ..., D. (8)

The number of days into the past, D, is set at 250, and multiplying by 22 in equation (7)

scales the variance to a monthly value. The numerators of the weights and thus the shape

of the distributed lag function are exponential functions of two parameters, κ1 and κ2, that

must be estimated. While this specification allows for considerable flexibility in the shape

of the distributed lag, as long as κ2 < 0, the weights die out eventually as the days get

further into the past. Ghysels, Santa Clara, and Valkanov (2005) use MLE to estimate the

four parameters of the model, µ, γ, κ1 and κ2, assuming that Rt+1 ∼ N(Et(Rt+1), V
MIDAS
t ),

where the conditional mean and variance are given in equation (5) and (7). The approach

is thus similar to a GARCH-M model but with a different specification of the conditional

4The mixture of monthly and daily data is the hallmark of the MIDAS approach. See Ghysels, Sinko, and
Valkanov (2007) for an introduction to the MIDAS literature and examples of its use in other applications.
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variance.

We note in the introduction that the results in Ghysels, Santa Clara, and Valkanov (2005)

are incorrect, and we refer the reader to Ghysels, Plazzi, and Valkanov (2013) for corrected

results and an update of their model. Their original sample periods use data from 1928 to

2000 for 850 observations and 1964 to 2000, for 450 observations.

To gain additional understanding of their modeling approach, we attempted to simulate

from this MIDAS model. However, even though the unconditional variance of rt is the

same for all t, the conditional distribution of rt becomes increasingly peaked as t grows

large.5 This leads to unrealistic data because most simulated paths essentially ‘die out’ as

the distribution of returns becomes more peaked around zero until a tail-event occurs, and

the variance increases dramatically.

2.5.2 An Alternative MIDAS Specification

It is easy to modify the original MIDAS specification of the conditional variance to eliminate

this problem. Inspired by the usual GARCH model, let the conditional variance for a horizon

of K days be

V MIDAS
t = K

(
ω + φ

D∑

d=0

wd(θ)r
2
t−d

)
(9)

where ω > 0, 0 < φ < 1, and as above, the weights, wd, sum to 1. The unconditional

variance of the daily return process is E(σ2) = ω
1−φ

. Using this specification results in

realistic simulated sample paths.

5To see this, consider the simplest example of a MIDAS model: The variance is estimated based on 1
past return and is used to describe only the next day. For simplicity, consider the case where µ = γ = 0.
With rt denoting daily returns, the model is

rt+1 = zt+1

√
V MIDAS
t , zt+1 ∼ N(0, 1), V MIDAS

t = r2t .

Let V MIDAS
0 = σ2

0 be given. We can then explicitly write out the sequence of returns and show that

rt = zt
∏t−1

s=1
|zs|σ0. As the zt’s are independent, E(rt) = 0 for all t, and V (rt) = E(r2t ) = σ2

0 . This shows
that all returns have the same unconditional mean and variance. However, the distribution of rt clearly
changes with t, and a small shock will cause the conditional distribution to be very tight around zero.
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While the two-parameter exponential weight function in equation (8) provides flexibility

in the pattern of the weights on past squared returns, our experience with MIDAS indicated

that estimates of κ2 are often insignificantly different from 0 and are sometimes disturbingly

positive, in which case the past weights do not die out.6 An alternative weight function can

be parameterized with the one-parameter beta-polynomial:

wd(κ) =
f (ud, κ)∑D
j=0 f (uj, κ)

, f(ud, κ) = u
(κ−1)
d , d = 0, . . . , D (10)

where ud = (1− d/D) are the points where f is evaluated.7 We also set D = 500, as we find

that the choice of lag length influences the estimate of γ, but that the variation is very small

once D is larger than 300. In this MIDAS specification, the variance process is parameterized

with three parameters as in the GARCH(1,1) model.

3 Overlapping Data Inference with GMM

This section derives our ODIN estimation strategy for the conditional CAPM. Throughout,

we maintain the usual assumption in the literature that monthly or quarterly returns satisfy

the conditional CAPM. The Appendix describes construction of the overlapping monthly or

quarterly excess returns.

Consider the ODIN-GARCH estimation first. Instead of presenting a general case, for

ease of exposition and consistency with the past literature, we assume that the model holds

at the monthly frequency. Thus, the GARCH-M model is

Rtm+1 = µ+ γσ2
tm + εtm+1, εtm+1 ∼ N(0, σ2

tm) (11)

6One sees this problem in the new results of Ghysels, Plazzi, and Valkanov (2013).
7Ghysels, Sinko, and Valkanov (2007) discuss various weighting schemes including exponential Almon

lags and beta functions. Our specification corresponds to a restricted version of their equation (4).
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where

σ2
tm+1 = ω + αε2tm+1 + βσ2

tm . (12)

The time index tm = 0, . . . , Tm − 1 counts 22 day periods or approximately one month

of trading days, and there are Tm of these monthly periods in the sample. Our notation

distinguishes between monthly data indexed with tm and daily data indexed with t. Capital

R’s represent monthly excess returns, and lower case r’s represent daily returns. Hence, the

excess monthly return, Rtm+1, can also be represented as an excess return over 22 trading

days, Rt+22,t.
8 Although the model in equations (11) and (12) is specified at the monthly

frequency, we assume that only the number of days in the forecast matters, in which case

the starting date for the month does not matter. Thus, we can write

Rt+22,t = µ+ γσ2
t,t+22 + εt+22,t, εt+22,t ∼ N(0, σ2

t,t+22) (13)

where the notation indicates that the monthly model can also be written with daily sub-

scripts, and εt+22,t denotes the innovation in the monthly return realized on day t+22. The

conditional variance evolves as

σ2
t+22,t+44 = ω + αε2t+22,t + βσ2

t,t+22 (14)

We assume that equations (13) and (14) hold for all t = 0, 1, . . . T − 1.

For the MIDAS version of the model, monthly returns indexed by tm are generated by

Rtm+1 = µ+ γV MIDAS
tm + εtm+1, εtm+1 ∼ N(0, V MIDAS

tm ) (15)

8The first subscript of a variable denotes the day that the variable enters the information set, and the
second subscript is a second day that indicates the period of time, either from the past for a return or into
the future for a conditional variance, that is necessary to describe the variable.
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where

V MIDAS
tm = 22

(
ω + φ

D∑

d=0

wtm−d(κ)r
2
tm,−d

)
(16)

and rtm,−d is the daily return d days before the start of month tm. Again, we assume that

equations (15) and (16) are true independently of the day we use as the starting date for the

month. Thus, we have

Rt+22,t = µ+ γV MIDAS
t,t+22 + εt+22,t, εt+22,t ∼ N(0, V MIDAS

t,t+22 ) (17)

where

V MIDAS
t,t+22 = 22

(
ω + φ

D∑

d=0

wt−d(κ)r
2
t−d

)
(18)

and equations (17) and (18) hold for all t = 0, 1, . . . T − 1.

As a caveat to our analysis, it is not at all clear whether there exists a data generating

process for daily returns that has the postulated return properties over the ‘monthly’ inter-

vals. Our point is that if the model is viewed as an abstraction that holds at the monthly

horizon better than it does at any other horizon, and if there is nothing particular about

calendar months, the starting date becomes irrelevant. We thus have the opportunity to

increase the power of the tests by using overlapping data. We should not be wedded to

calendar months given that we observe daily data.

3.1 ODIN-GARCH

This section derives the first order conditions from the MLEs of the monthly models that

must hold for each starting date. We use Hansen’s (1982) GMM to derive the asymptotic

distribution of the parameter estimates that must satisfy the average of the monthly first

order conditions. Because it is difficult to know how the serial correlation induced by the

creation of overlapping observations affects small sample inference, we examine extensive

14



simulations in the sections that follow.

The log likelihood function for the GARCH-M model with a monthly sampling interval

in equations (11) and (12) is

log(L) =
Tm−1∑

tm=0

(
−1

2
log(2π)− log (σtm)−

1

2

ε2tm+1

σ2
tm

)
.

Rather than estimating ω as a free parameter, we estimate ω by variance targeting as in

Engle and Kroner (1995).9 Consequently, the first order conditions of the MLE are the

following:

∂ log(L)

∂µ
=

Tm−1∑

tm=0

(
εtm+1

σ2
tm

+
1

σtm

∂σtm

∂µ

(
ε2tm+1

σ2
tm

+ 2γεtm+1 − 1

))
= 0

∂ log(L)

∂γ
=

Tm−1∑

tm=0

(
εtm+1 +

1

σtm

∂σtm

∂γ

(
ε2tm+1

σ2
tm

+ 2γεtm+1 − 1

))
= 0

∂ log(L)

∂α
=

Tm−1∑

tm=0

1

σtm

∂σtm

∂α

(
ε2tm+1

σ2
tm

+ 2γεtm+1 − 1

)
= 0

∂ log(L)

∂β
=

Tm−1∑

tm=0

1

σtm

∂σtm

∂β

(
ε2tm+1

σ2
tm

+ 2γεtm+1 − 1

)
= 0

Cochrane (2005) notes that the first order conditions of MLE are the sample counterparts

to unconditional moment conditions in GMM estimation. We think of these orthogonality

conditions as holding for the 22 possible daily starting dates that index the months associated

with tm. By utilizing GMM, we can use all of the daily data with these orthogonality

conditions and appropriately account for the serial correlation induced by the overlapping

data in constructing the GMM standard errors.

Let the parameter vector be θ = (µ, γ, α, β). Then, the vector of sample orthogonality

9Variance targeting guarantees that the unconditional estimate of the variance of a GARCH model equals
the sample variance. Francq, Horvath, and Zakoian (2011) examine the econometric properties of this popular
estimation strategy.
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conditions with t indexing daily data is

GT (R; θ) =
1

T
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


1

T

T−1∑

t=0

(
εt+22,t

σ2
t,t+22

+
1

σt,t+22

∂σt,t+22

∂µ

(
ε2t+22,t

σ2
t,t+22

+ 2γεt+22,t − 1

))

1

T

T−1∑

t=0

(
εt+22,t +

1

σt,t+22

∂σt,t+22

∂γ

(
ε2t+22,t

σ2
t,t+22

+ 2γεt+22,t − 1

))

1

T

T−1∑

t=0

1

σt,t+22
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


(19)

where gt(Rt+1; θ) denotes the vector of right-hand-side functions. Because the system of

equations (19) is just identified, GMM chooses the parameter estimates, θ̂, to set GT (R, θ̂) =

0. Intuitively, the parameters may be estimated by maximizing the average of the 22 monthly

log-likelihood functions.

Let the gradient of the sample orthogonality conditions with respect to the parameters

be

DT (θ̂) = ∇θGT (R; θ̂).

Then, the asymptotic distribution theory of Hansen’s (1982) GMM implies that

√
T
(
θ̂ − θ0

)
→ N

(
0, DT (θ̂)

−1S(θ̂)D⊺

T (θ̂)
−1
)

where

S(θ̂) =

21∑

j=−21

CT

(
gt(Rt; θ̂), gt−j(Rt−j , θ̂)

⊺

)
(20)

and the CT

(
gt(Rt; θ̂), gt−j(Rt−j ; θ̂)

⊺

)
are the sample autocovariances of gt(Rt, θ̂). Under the

null hypothesis, these autocovariances will be non-zero until j = 22. Note that we equally

weight the sample covariances, as in Hansen and Hodrick (1980), to estimate the spectral
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density matrix, S(θ̂).

3.2 ODIN-MIDAS

The log likelihood function for the MIDAS model specified at the monthly horizon is

log(L) =
Tm−1∑

tm=0

(
−1

2
log(2π)− log

(√
V MIDAS
tm

)
− 1

2

ε2tm+1

V MIDAS
tm

)
.

We again estimate ω by variance targeting, such that the first order conditions are the

following:

∂ log (L)

∂µ
=

Tm−1∑
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− εtm+1

V MIDAS
tm

∂εtm+1
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= 0
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)
∂V MIDAS
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∂κ
= 0

Notice that these first order conditions for µ and γ, in contrast to the analogous equations

for the GARCH model, do not involve derivatives of the conditional variances. This arises

because the conditional variances depend on daily data, and there is no link in the MIDAS

model between the conditional mean of the low frequency returns and the conditional mean

of the higher frequency returns. Consequently, there is no indirect effect of conditional mean

errors on the conditional mean parameters through their effect on the conditional variances.

Once we have the first order conditions of the MLE for the MIDAS model, we proceed with

the GMM estimation of the ODIN-MIDAS model as in the ODIN-GARCH model, above.

We treat the first order conditions of the MLE as GMM orthogonality conditions, estimate
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the parameters to satisfy the average of the 22 possible starting values, and construct the

standard errors to allow for the serial correlation induced by the use of overlapping data.

4 Power Analysis of the Conditional CAPM

The section analyzes the power of the basic models before examining the power of the ODIN

models. We first consider the improvement in power from using t-statistics instead of the

distribution of the coefficient estimates in the GARCH model. Then, we examine power

properties of the MIDAS model, and then the improvements in power from using the ODIN

models.

4.1 Power in the Basic Monthly GARCH Model

We note above that the evidence for a significantly positive risk-return trade-off, γ, is decid-

edly mixed. Lundblad (2007) demonstrates that the negative estimates of γ often found

in the literature are not inconsistent with the conditional CAPM being the true data-

generating process. He demonstrates this intuitively by simulating 500 months of returns

from a GARCH-M, in which γ = 2 and the volatility process is calibrated to historical data.

He finds that 19% of the estimates of γ fall below zero.

We now ask a different but related question. If γ 6= 0, how likely are we to reject the

null of γ = 0 at a 5% marginal level of significance in particular sample sizes? This is a

question about the power of the test of γ = 0 for different sample sizes against the alternative

hypothesis that γ = 1, 2, or 3, for example.10 To address these power issues, we simulate

from the GARCH-M model using the same parameters as Lundblad (2007). Specifically, the

10This analysis uses a non-overlapping data framework to maintain consistency with the analysis in Lund-
blad (2007). In Section 7, we show that using the ODIN framework increases the power of the t-test even
more.
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data-generating process imposes the restrictions of the conditional CAPM such that

Rtm+1 = γσ2
tm + εtm+1

where εtm+1 ∼ N(0, σ2
tm), and the monthly conditional variance evolves according to a

GARCH model

σ2
tm+1 = ω + αε2tm+1 + βσ2

tm

with ω = 0.0002, α = 0.1, β = 0.85. We simulate under the null hypothesis, γ = 0, and under

the alternative hypotheses, γ = 1, 2 and 3, and we vary the sample length from T = 500 to

5,000. For each sample we jointly estimate the parameters of the model, including a constant,

µ, with MLE, and we conduct 5,000 simulations of each sample size. Rather than focusing

strictly on the distributions of γ̂, as in Lundblad (2007), we also examine the distributions of

the test statistics under both the null and the alternative hypotheses to examine the powers

of the tests.

Our simulations indicate that with at least 500 observations, the MLE of γ is only slightly

biased, but it is fairly spread out, as in Lundblad (2007). In particular, with T = 500, we

confirm that 19% of the estimates are less than zero. We also find that the 95th-percentile

of γ̂ is 4.48 and that the 97.5-percentile is 6.03. Hence, with 500 observations, if one were

to base a significance test strictly on the distribution of the coefficient estimate, one could

argue that to reject the null hypothesis of γ = 0 at the 5% marginal level of significance one

would need to observe γ̂ > 6.03 when using a two-sided test or γ̂ > 4.48 for a one-sided test,

which is more relevant because we think that the true γ is positive. Increasing the sample

size to 1,000 months, the 95th and 97.5-percentiles of γ̂ under the null hypothesis decrease

to 2.56 and 3.27, respectively. When simulating under the alternative hypothesis that γ = 2

with 500 months of data, only 9.2% of the samples have a γ̂ > 6.03, while with 1,000 months

of data, 21.1% of the samples have a γ̂ > 3.27. Viewed in this way, the power of MLE in
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this environment seems quite low.

Appropriately assessing the power of an estimation strategy, though, requires examination

of a test statistic. Under the null hypothesis of γ = 0, the t-statistic is a pivot whose

distribution does not depend on the actual underlying parameters and which should be

asymptotically N(0, 1). The Online Appendix shows QQ-plots of the t-statistics against the

quantiles of a standard normal distribution, and with at least 500 observations we find that

convergence of the test statistic is excellent as the QQ-plot virtually overlays the diagonal

line.11 Thus, the 95% confidence interval of the t-test is approximately (−1.96, 1.96) for these

sample sizes. Under the alternative hypotheses that γ = 1, 2, or 3, the t-statistic follows a

non-central t-distribution where the non-centrality parameter depends on the value of γ and

the sample size. As the sample size increases, the distribution moves farther to the right,

and the power of the test increases.

To illustrate the differences between using the distribution of the coefficient estimates and

the t-test, we examine the power of both. We first calculate 95% confidence intervals for the

point estimates and the t-statistics using the distributions simulated under the null of γ = 0.

Next, we calculate the percentages of the observations that fall outside these confidence

intervals when simulating under the different alternative hypotheses. These percentages

represent the powers of the two tests.

Figure 1 presents the power functions for three ‘pairs’ of lines associated with the alter-

native hypotheses that γ = 1, 2, or 3. For each pair, the solid line graphs the power based on

the t-test, and the dashed line graphs the power based on coefficient estimates as a function

of the sample size.

11Rather than present these figures, we have placed them in an Online Appendix. The standard errors
are calculated using the quasi-maximum likelihood (QMLE) approach of Bollerslev and Wooldridge (1992).
We take care in evaluating the Hessian of the likelihood function. In particular, the Hessian returned from
the MatLab optimization routine is not reliable, as it is a so-called ‘pseudo-Hessian’ constructed with the
purpose of choosing sensible step-sizes, not to be a high-precision estimate of the second derivatives. Instead,
we use the DERIVEST suite by D’Errico (2011), an adaptive numerical differentiation toolbox that provides
high-precision first-order and second-order derivatives.
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Note that, as expected, the power of the t-test is always higher than the power of the

test based on coefficient estimates, and for very large sample sizes, the powers of both tests

converge to one. Recall that 500 months is about 42 years, and 1,000 months is about 83

years. For a 500 month sample, using the t-test roughly doubles the power compared to

using the point estimates. Comparing the two power curves for γ = 1, 2, and 3 to see the

number of observations for which the lower power test has the same power as the t-test with

500 observations indicates that we would need about 1,200 observations when γ = 1, 950

observations when γ = 2, and about 800 observations when γ = 3. For 1,000 months, the

increase in power is a little less, but it is still substantial. Because Lundblad (2007) focuses

directly on the distributions of γ̂, he somewhat overstates the difficulty of rejecting the null

hypothesis of γ = 0. We nevertheless agree with his central point: If the true risk-return

trade-off is γ = 2, with 1,000 months of data, we only have a 30% chance of rejecting the

false null (up from 21% if one uses coefficient estimates instead of the t-statistic). If γ = 1,

power drops to 11%, while if γ = 3, power increases to 57%. Section 4.3 demonstrates that

using the ODIN framework increases the power of the tests, and hence the effective sample

size, even more.

4.2 Power Analysis in the Basic Monthly MIDAS Model

As for the GARCH model, all MIDAS simulations have µ = 0 in the data generating process,

but µ is estimated with the other parameters using MLE. Figure 2 analyzes the power of the

test of the null hypothesis, γ = 0, against different alternatives in the MIDAS model for two

sets of parameters.12 The first set of parameters, associated with the left part of Figure 2, use

φ = 0.87 and κ = 21, which are chosen to match the volatility-of-volatility in the GARCH

12The Online Appendix contains QQ-plots of the simulated t-statistics against the quantiles of a standard
normal distribution. We first calculate 95% confidence intervals for the t-statistics using the distribution
simulated under the null of γ = 0. Next, we calculate the percentages of the observations that fall outside
these confidence intervals when simulating under the alternatives.
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Figure 1: Power of the test of γ = 0 against different alternatives in the GARCH-M model
for a 5% marginal level of significance. The solid lines represent the power of the t-test,
and the dotted lines represent the power of the test using the distribution of the coefficient
estimates.

model considered in Figure 1. We do this because, as shown above, the volatility-of-volatility

is important for the identification of γ. As might be anticipated in this case, the power of

the MIDAS model is not much different from that of the GARCH model. The right plot

shows the power of the MIDAS model calibrated to the value-weighted market return over

1927-2011. In this case, the volatility-of-volatility is much lower as φ = 0.69 and κ = 5.55.

The smaller values of both φ and κ decrease the implied volatility-of-volatility, directly with

a lower value of φ but also because a lower value of κ makes the beta-polynomial weight

function flatter which ‘averages’ the monthly volatility over a longer history of past daily

squared returns.
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Figure 2: Power of the test γ = 0 against different alternatives in the MIDAS model for a
5% marginal level of significance. In the left plot the parameters are chosen to match the
volatility-of-volatility for the GARCH model in Figure 1. In the right plot, the model is
calibrated to the value-weighted index over 1929-2011 (see Table 5.)

4.3 Power Analysis of ODIN Models

The ODIN estimation method shares a lot with the basic estimation method. We think of

the underlying model as an abstraction that holds at a given frequency, but we assume that

the starting date is irrelevant. As noted above, the ODIN estimator specified at the monthly

horizon maximizes the average of the 22 likelihood functions based on the different starting

dates. Hence, under the assumption that the starting date is irrelevant, the probability limit

of the ODIN estimator is the same as the probability limit of the basic estimator. The

asymptotic variance of the ODIN estimates is however always smaller than the asymptotic

variance of the basic estimator. As shown above in equation (20), the spectral density matrix

that enters the asymptotic variance of the monthly ODIN estimator is S =
∑21

j=−21CT (j),

where CT (j) is the sample autocovariances of gt with gt−j . In the Online Appendix we show

that the corresponding spectral density matrix for the basic monthly model is S = 22CT (0).

Hansen and Hodrick (1980) demonstrate that S =
∑21

j=−21CT (j) is less than 22CT (0) by a

positive definite matrix, and it follows that the asymptotic variance of the ODIN estimator
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is smaller than the asymptotic variance of the basic estimator.

While the asymptotic results are interesting, to assess the performance of ODIN estima-

tion on historical sample sizes we simulate 22,000 days or 1,000 months of data from a con-

tinuous time GARCH model. Following Nelson (1990), Drost and Nijman (1993), Andersen

and Bollerslev (1998), and Lundblad (2007) the continuous-time limit for a GARCH(1,1)-M

is specified as

dPt

Pt
= γσ2

t dt+ σtdWP,t

dσ2
t = θ(ω − σ2

t )dt+
√
2λθ σ2

t dWσ,t

where Pt is the market price level, σ2
t is the stochastic instantaneous variance process, and

WP,t and Wσt
are independent Brownian motions. Andersen and Bollerslev (1998) derive

the mapping between discrete time GARCH parameters estimated on monthly data (ω =

0.0002, α = 0.10, β = 0.85), and the continuous-time parameters (θ = 0.0023, ω = 1.8182 ·

10−4, λ = 0.459, assuming 22 trading days per month), as in Lundblad (2007). We then

simulate from the continuous time model in 5-minute increments using a standard Euler

scheme and different values of γ. Finally, we sample the process to get daily log prices

and compute daily log returns. Summing these gives log returns for any given start date

and any forecasting horizon, and these returns satisfy a weak GARCH model. The Online

Appendix contains further details on the simulations. We then estimate basic GARCH

models and ODIN GARCH models with forecasting horizons of one, five, ten, 22, 33, 44,

55, and 66 days. In the basic model, the sampling frequency is the same as the forecast

horizon, whereas the ODIN-GARCH model always uses all available daily data. Although

no analytical results are available for QMLE or GMM applied to weak GARCH models,

Drost and Nijman (1993) show that the asymptotic bias of the QMLE estimates is small,

which we confirm is also the case for the ODIN estimator.
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Table 1 presents the means of γ̂ from the 10,000 simulations, both for the null hypothesis,

γ = 0, and for three alternative hypotheses, γ = 1, 2, and 3. We find that γ̂ is slightly biased,

which confirms the results in Drost and Nijman (1993) that QMLE is not consistent but that

the asymptotic bias is small. Under the null hypothesis, there is only a slight bias in γ̂ for the

ODIN estimate, as the largest mean is 0.043. The bias for the ODIN estimator is comparable

to the bias of the basic estimator for small forecast horizons, but the bias fluctuates more

for the basic model for long forecasting horizons.

As we increase the value of γ, the bias with daily sampling grows from −2% at γ = 1, to

−3.5% at γ = 2, and −4.3% at γ = 3. For the basic GARCH, this negative bias is offset by a

positive bias induced by the shrinking of the sample size as the forecast horizon increases. In

some cases, these biases offset such that there appears to be little overall bias for sampling

frequency 22 and γ = 1, for sampling frequency 33 and γ = 2, and for a sampling frequency

between 33 and 44 for γ = 3. For the ODIN GARCH specification, as the overlap in forecasts

increases, the negative bias is still present for γ = 2 and 3. As the forecasting interval is

increased, the bias becomes less negative for γ = 1, but more negative when γ = 2 or 3. In

general, the bias is smaller for the ODIN model than for the basic model for long forecasting

horizons.

The Online Appendix shows QQ-plots of γ̂ against the quantiles of a normal distribution.

For all sampling frequencies and all values of γ, the distributions of γ̂ for the ODIN model

are closer to a normal distribution than is the distributions of γ̂ for the basic model. The

Online Appendix also shows the empirical means of γ̂ when the models are estimated on

5,000 months of simulated data. In this case, the biases of the basic model and the ODIN

model are very similar. Further, the empirical means of γ̂ based on 1,000 months of data are

much closer to the large-sample means for the ODIN model, suggesting that the small-sample

bias is larger for the basic model than for the ODIN model.

While these simulations from a weak GARCH model indicate small biases in the pa-

25



rameter estimates, we are interested in the increased precision that ODIN offers. Indeed,

correctly assessing any bias that basic and ODIN estimations may introduce when calibrated

on real data requires taking explicit stand on the true data generating process, and the weak

GARCH model is but one example. To illustrate the increased precision that ODIN offers,

Figure 3 shows box-plots of γ̂ for γ = 0.13 The Online Appendix show similar box-plots for

γ = 1, 2, and 3. For each sampling frequency, the left blue box-plot shows the results for

the basic GARCH, and the right green box-plot shows the results for the ODIN GARCH.

In the right figure, showing sampling frequencies 33-66, the values have been truncated at

50. Beneath each box-plot is the number of estimations out of 10,000 that did not converge

(meaning that the estimates of the GARCH process had α̂ = 0, β̂ = 0, or α̂ + β̂ = 1).

For instance, for γ = 0 and a 33 day sampling frequency, 88 of the basic estimations did

not converge, and 5 of the ODIN estimations did not converge. Note that the two models

are estimated on exactly the same simulated data. For all sampling frequencies, the ODIN

model converges more often than the basic model. It is clear from the figure that the preci-

sion of the ODIN GARCH estimates is much higher than the precision of the basic GARCH

estimates for all sampling frequencies. Further, the increase in precision increases with the

sampling frequency.

Having illustrated the increased precision for the ODIN estimates, we now turn to hy-

pothesis testing. Hypothesis testing is based on the estimated standard errors, and we first

compare the estimated standard errors to the empirical standard deviations of γ̂ in Table 9.

The first two lines of the table show the empirical standard deviations of the 10,000 γ̂’s

for the basic and ODIN models, respectively. The next two lines show the averages of the

10,000 estimated standard errors. The last two rows show the bias in the estimated standard

errors as the percentage deviation of the average estimated standard error from the actual

13The central mark is the median, the edges of the box are the 25th and 75th percentiles, the whisker length
is 1.5 of the interquartile range which for a normal distribution corresponds to 99.3% coverage. Outliers
beyond the whiskers are marked individually with a ‘+’.
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Table 1: Empirical Means.

Forecast Horizon 1 5 10 22 33 44 55 66
γ = 0

Basic GARCH 0.0273 0.0353 0.0371 0.0215 0.0042 0.0739 0.1118 −0.0222
ODIN GARCH 0.0273 0.0273 0.0258 0.0228 0.0229 0.0360 0.0393 0.0434

γ = 1
Basic GARCH 0.9808 0.9777 0.9791 0.9889 1.0621 1.1657 1.2817 1.5190
ODIN GARCH 0.9808 0.9752 0.9686 0.9702 0.9795 1.0003 1.0149 1.0031

γ = 2
Basic GARCH 1.9305 1.9139 1.9100 1.9302 2.0185 2.1966 2.4449 2.8619
ODIN GARCH 1.9305 1.9189 1.9023 1.8943 1.8997 1.9182 1.9195 1.8949

γ = 3
Basic GARCH 2.8722 2.8379 2.8194 2.8235 2.9354 3.1225 3.4697 3.7735
ODIN GARCH 2.8722 2.8542 2.8185 2.7750 2.7535 2.7412 2.7100 2.6651

Note: The Table shows the empirical means of γ̂ for different values of γ and for different
forecast horizons, which correspond to different sampling frequencies for the Basic GARCH
model.
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Figure 3: Box-plots of γ̂ when γ = 0, for different sampling frequencies. For each sampling
frequency, the left box-plots shows the results for the basic GARCH, and the right box-plot
shows the results for the ODIN GARCH. In the right, the values have been truncated at 50.
Beneath each box-plot is the number of estimations that did not converge (out of 10,000).
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Table 2: Precision of Basic and ODIN Model Estimates.
Sampling Frequency 1 5 10 22 33 44 55 66
Empirical Std of γ̂, Basic 1.05 1.19 1.33 1.71 2.98 4.34 9.78 10.66
Empirical Std of γ̂, ODIN 1.05 1.15 1.26 1.49 1.72 1.94 2.13 2.25
Average of σ̂ (γ̂), Basic 1.02 1.15 1.28 1.61 2.28 3.86 7.70 9.40
Average of σ̂ (γ̂), ODIN 1.02 1.11 1.20 1.41 1.60 1.78 1.93 2.06
Basic Bias −0.03 −0.04 −0.04 −0.05 −0.24 −0.11 −0.21 −0.12
ODIN Bias −0.03 −0.04 −0.04 −0.06 −0.07 −0.08 −0.09 −0.09

Note: Table for γ = 0. The first two lines of the table show the empirical standard deviation
of γ̂i for the basic and ODIN models, based on all 10,000 estimates. The next two lines show
the average of the 10,000 estimated standard errors. The last two rows show the bias in
the estimated standard errors as the percentage deviation of the average estimated standard
error from the actual standard deviation.

standard deviation. As we saw above, the standard deviation of the 10,000 estimates of

γ is much smaller for the ODIN model which we quantify in rows 1 and 2. Rows 3 and

4 also demonstrate that the average estimated standard errors, σ̂ (γ̂), are smaller for the

ODIN model. Finally, rows 5 and 6 show that the asymptotic standard error estimates are

generally too small, but the bias in the basic model is far larger. This analysis shows that

the standard error estimates for the ODIN model are generally more appropriate than the

standard errors for the basic model for the available historical sample sizes.

Finally, we assess the increase in the power of the tests from using ODIN versus sam-

pling the data. The QQ-plots of the empirical distributions of the t-statistics versus a

standard normal distribution in the Online Appendix indicate that with these sample sizes,

the asymptotic distributions of the t-statistics are very close to a standard normal, but that

the convergence is better for the ODIN model. We nevertheless use the empirical distribution

under the null hypothesis for inference.

Figure 4 displays the power of the test of the null hypothesis γ = 0 against the alternative

hypotheses γ = 1, 2, and 3 for different sampling horizons, using a two-sided test. The actual

values are calculated for forecast horizons of 1, 5, 10, 22, 33, 44, 55, and 66 days.14 The

14The Online Appendix contains QQ-plots of the simulated t-statistics against the quantiles of a standard
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Figure 4: Power of ODIN GARCH vs. Basic GARCH for various values of the risk-return
trade-off and a sample size of 1,000 months of daily data.

power of the ODIN model is always higher. As seen in Table 3, for monthly sampling, the

power of the ODIN model is between 5% and 10% higher than the power of the basic model,

and for quarterly sampling the power of the ODIN model is 15% higher for γ = 2 (19%

higher for γ = 3, and 5% higher for γ = 1). These results appear less dramatic than the

box-plots in Figure 3, which is due to the increased bias of both γ̂ and σ̂ (γ̂) for the basic

model, when γ = 1, 2 and 3.

Also note that because there is a true risk-return relationship at short horizons in the

simulations, daily sampling does provide a substantive increase in power. This result is

normal distribution. We first calculate 95% confidence intervals for the t-statistics using the distribution
simulated under the null of γ = 0. Next, we calculate the percentages of the observations that fall outside
these confidence intervals when simulating under the alternatives. The t-statistics for both the basic GARCH
model and the ODIN GARCH model are slightly skewed, but in opposite directions. Using the traditional
(−1.96, 1.96) interval increases the improvement of the ODIN model over the basic model.
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Table 3: Power Improvement for ODIN GARCH Models over Standard GARCH Models

Forecast Horizon 1 5 10 22 33 44 55 66
γ = 1 1.000 1.054 1.001 1.048 1.085 1.221 1.178 1.053
γ = 2 1.000 1.044 1.030 1.076 1.158 1.199 1.207 1.149
γ = 3 1.000 1.030 1.030 1.097 1.162 1.225 1.186 1.194

Note: The table presents the improvement in power for the ODIN over the basic model.

contrary to Lundblad’s (2007) conclusion that the sampling frequency does not matter much.

The different conclusions are due to Lundblad focusing on point estimates only, whereas we

focus on t-statistics.

4.4 A Caveat on the Sample Size

The previous discussion could leave the reader with the impression that ODIN is a free

lunch. One can increase power and not suffer any ill consequences. But, we use only

relatively long samples in which the overlap remains a small fraction of the sample size. We

know from Richardson and Stock (1989) and Valkanov (2003) that building up highly serially

correlated error processes can cause the standard asymptotic distribution theory underlying

test statistics to provide poor approximations if the sample size is not sufficiently large.

We have not worked out the asymptotic distribution theory associated with the functional

central limit theorem discussed in these papers, but this is a worthwhile idea. With this

caveat in mind, we turn to the evidence from actual data.

5 Estimating the Basic Models

This section presents estimates for the basic GARCH and MIDAS models for three samples

of monthly and quarterly non-overlapping calendar data. Table 4 presents the GARCH

estimation, and Table 5 presents the modified MIDAS estimation as described in equations
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(9) and (10). As above, we estimate ω by variance targeting.

We use the same observations on the dependent variable, Rt+1, for the GARCH and

MIDAS models. Although CRSP data begin in 1926, the full sample for monthly data is

1927:10 to 2011:12 because of the lags introduced in the MIDAS model. The corresponding

full sample for quarterly data is 1927:4 to 2011:4. We split the sample after 1952 to recognize

that the Great Depression, World War II, and the lack of Federal Reserve independence prior

to the Treasury-Fed Accord of 1952 may have produced data that require more complex

modeling than the conditional CAPM. The second monthly sample is consequently 1927:10

to 1952:12, and its quarterly counterpart is 1927:4 to 1952:4. To avoid use of data from

before 1952, the third monthly sample is 1955:1 to 2011:12, and its quarterly counterpart is

1955:1 to 2011:4.

The tables report the estimates of γ, with the QMLE asymptotic standard errors in

parenthesis, and the associated p-values of the t-tests of γ = 0. We also report bootstrap

p-values under the null hypothesis that the true coefficient is 0 (see Appendix B for details).

In Table 4, for the monthly GARCH model, the γ̂’s range from 0.44 to 3.01, but only

the latter estimate from the post 1952 sample has a bootstrap p-value less than .10. With

quarterly data, the GARCH model γ̂’s range from 1.75 to 6.34, and each of the values is sig-

nificantly different from zero at the 10% marginal level of significance from the bootstrapped

p-values. Note, though, that for the early quarterly sample from 1927-1952, α̂ is unusually

high, and β̂ is unusually low.

For the MIDAS results in Table 5, the γ̂’s do not approach statistical significance at

traditional levels. The γ̂’s for the monthly full sample and the first sub-sample are negative,

and the γ̂ for the second sub-sample has a bootstrap p-value that is .904. With quarterly data,

only the γ̂ of 3.56 in the second sub-sample approaches traditional statistical significance with

a bootstrap p-value of .17.

To understand how the MIDAS model weights past squared daily returns in the con-
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Table 4: GARCH Estimation Results and Bootstrapped p-values

Panel A: Monthly GARCH(1,1)-M model
Period µ γ ω × 10,000 α β Obs LLF
1927:10–2011:12 0.005 1.331 0.764 0.129 0.846 1011 1653.61
Standard error (0.002) (0.917) (0.260) (0.021) (0.026)
p-value .029 .146 .003 .000 .000
Bootstrap p .176
1927:10–1952:12 0.010 0.443 0.707 0.141 0.846 303 419.91
Standard error (0.004) (1.017) (0.468) (0.034) (0.039)
p-value .012 .663 .131 .000 .000
Bootstrap p .725
1955:1–2011:12 0.001 3.011 1.028 0.105 0.843 684 1188.81
Standard error (0.004) (1.903) (0.404) (0.028) (0.037)
p-value .801 .114 .011 .000 .000
Bootstrap p .083

Panel B: Quarterly GARCH(1,1)-M model
Period µ γ ω × 10,000 α β Obs LLF
1927:12–2011:12 0.006 1.747 16.930 0.334 0.536 337 321.24
Standard error (0.011) (1.008) (8.678) (0.085) (0.137)
p-value .570 .083 .051 .000 .000
Bootstrap p .090
1927:12–1952:12 −0.012 1.884 58.054 0.690 0.094 101 69.98
Standard error (0.020) (0.401) (19.197) (0.072) (0.072)
p-value .554 .000 .002 .000 .189
Bootstrap p .012
1955:3–2011:12 −0.025 6.337 17.208 0.178 0.588 228 246.31
Standard error (0.043) (5.320) (7.183) (0.104) (0.064)
p-value .565 .234 .017 .086 .000
Bootstrap p .098

Note: The table shows estimation results for the Basic GARCHmodel, using non-overlapping
monthly and quarterly returns. The bootstrapped p-values are based on 5,000 simulations
with γ = 0, keeping the remaining parameters at their estimated values.
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Table 5: MIDAS Estimation Results and Bootstrapped p-values

Panel A: Monthly Alternative MIDAS model with β-weights
Period µ γ ω × 10,000 φ κ Obs LLF
1927:10–2011:12 0.006 −0.149 0.351 0.693 5.550 1011 1655.76
Standard error (0.003) (1.318) (0.057) (0.050) (3.433)
p-value .015 .910 .000 .000 .106
Bootstrap p .789
1927:10–1952:12 0.013 −1.544 0.304 0.811 2.929 303 420.14
Standard error (0.004) (1.693) (0.090) (0.056) (1.137)
p-value .004 .362 .001 .000 .010
Bootstrap p .285
1955:1–2011:12 0.005 0.209 0.396 0.557 43.312 684 1204.40
Standard error (0.003) (1.694) (0.062) (0.070) (17.418)
p-value .102 .902 .000 .000 .013
Bootstrap p .904

Panel B: Quarterly Alternative MIDAS model with β-weights
Period µ γ ω × 10,000 φ κ Obs LLF
1927:12–2011:12 0.015 0.620 0.401 0.650 6.427 337 320.18
Standard error (0.012) (2.044) (0.115) (0.100) (7.859)
p-value .222 .762 .000 .000 .414
Bootstrap p .774
1927:12–1952:12 0.036 −1.111 0.165 0.897 3.365 101 70.41
Standard error (0.013) (2.017) (0.174) (0.108) (1.312)
p-value .007 .582 .344 .000 .010
Bootstrap p .390
1955:3–2011:12 −0.004 3.564 0.488 0.454 9.431 228 244.96
Standard error (0.017) (3.016) (0.134) (0.150) (4.750)
p-value .816 .237 .000 .003 .047
Bootstrap p .172

Note: The table presents estimation results for the alternative MIDAS specification of the
conditional variance in equation (9) with beta-polynomial weights as in equation (10). The
estimates of µ have been multiplied by 22 (66) for the monthly (quarterly) results to make
them comparable to the GARCH estimates. The bootstrapped p-values are based on 5,000
simulations with γ = 0, keeping the remaining parameters as their estimated values.
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Figure 5: The weight functions in the MIDAS models.

ditional variance, Figure 5 shows the estimated weight functions. The importance of the

recent past is much higher in the second sub-sample than in the whole sample or the first

sub-sample. While the weight functions are all declining, this is simply due to the fact that

we use the beta-polynomial with one parameter, which ensures monotonicity. Nothing in

the data inherently makes the weight functions decline. We impose it as a modeling assump-

tion. Using the exponential weight function in equation (8) produces estimates of κ2 that

are positive and induces U-shaped weight functions.

Figure 6 presents the conditional standard deviations for the GARCH and MIDAS mod-

els, in annualized values. For the full sample period, 1927-2011, the two estimates are very

similar although the volatility-of-volatility is smaller for the MIDAS model. For the first

sub-period 1927-1952, the conditional standard deviation in the MIDAS model is smoother

and reacts less quickly to new innovations, due to the flatter weight function as seen in

Figure 5. On the other hand, for the second sub-period 1955-2011, the conditional standard

34



deviation from the MIDAS model is much more ‘choppy’ than that of the GARCH model,

which is seen most clearly for the 2004-2010 period. This is due to the steep weight function

shown in Figure 5.

6 Estimating the ODIN Models

The results of the ODIN-GARCH estimation are presented in Table 6 with the results for

monthly and quarterly data in Panels A and B, respectively. Table 7 presents the comparable

ODIN-MIDAS results. Each panel contains results for the three sample periods examined

above: the full sample, 1927:10-2011:12; the first sub-sample, 1927:10-1952:12; and the sec-

ond sub-sample, 1955:1-2011:12. Standard errors are presented in parenthesis below the

point estimates with p-values below the standard errors.

In Table 6, the γ̂’s for the monthly samples are similar to the basic GARCH model. The

γ̂ for the full sample ODIN model is 1.678 with a p-value of .210 compared to a γ̂ of 1.331

with a p-value of .146 for the basic model. The γ̂ for the first sub-sample ODIN model is

0.654 with a p-value of .684 compared to a γ̂ of 0.443 with a p-value of .663 for the basic

model. The γ̂ for the second sub-sample ODIN model is now 3.354 with a p-value of .022

compared to 3.011 and .114 for the basic model.

For the quarterly results, the γ̂ in the full sample decreases from 1.747 to 1.572, and

the p-value increases from .083 to .097. The p-value for γ̂ in the first sub-sample increases

substantially from .012 to .666, while the estimates of α and β now have the more traditional

values expected in a GARCH (1,1) model. This suggests that the calendar results from the

first sub-sample are spuriously significant. The γ̂ for the second sub-sample ODIN model is

now 4.894 with a p-value of .213 compared to 6.337 and .234 for the basic model.

The results for the ODIN-MIDAS model show some improvements in the standard errors

for the quarterly data relative to the results in Table 5, but the standard errors of the
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Figure 6: Conditional standard deviations in the MIDAS and GARCH models, for the three
different sample periods.
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Table 6: Estimation Results for ODIN GARCH Model.

Panel A: Monthly ODIN-GARCH
Period µ γ α β Obs LLF
1927:9:30–2011:12:8 0.004 1.678 0.122 0.841 22220 35509.63
Standard error (0.003) (1.340) (0.024) (0.033)
p-value .159 .210 .000 .000
1927:9:30–1952:12:12 0.008 0.654 0.109 0.869 7370 10374.01
Standard error (0.005) (1.608) (0.034) (0.044)
p-value .136 .684 .001 .000
1955:1:26–2011:12:13 0.001 3.354 0.133 0.783 14300 24114.36
Standard error (0.004) (1.464) (0.026) (0.037)
p-value .853 .022 .000 .000

Panel B: Quarterly ODIN-GARCH
Period µ γ α β Obs LLF
1927:9:30–2011:12:8 0.011 1.572 0.220 0.655 22176 21532.11
Standard error (0.009) (0.947) (0.062) (0.099)
p-value .244 .097 .000 .000
1927:9:30–1952:12:12 0.022 0.439 0.133 0.856 7326 5540.65
Standard error (0.014) (1.017) (0.066) (0.092)
p-value .111 .666 .043 .000
1955:1:26–2011:12:13 −0.013 4.894 0.170 0.500 14256 15508.53
Standard error (0.031) (3.931) (0.101) (0.098)
p-value .687 .213 .092 .000

Note: The table presents results from estimation of the GMM estimation of the ODIN-
GARCH model specified in the orthogonality conditions of equation (19). Standard errors
are in parenthesis with p-values below.
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Table 7: Estimation Results for ODIN MIDAS Model.

Panel A: Monthly ODIN-MIDAS
Period µ γ φ κ Obs LLF
1927:9:30–2011:12:8 0.005 0.483 0.656 21.520 22220 35721.81
Standard error (0.002) (1.230) (0.058) (13.577)
p-value .048 .695 .000 .113
1927:9:30–1952:12:12 0.012 −1.359 0.804 3.319 7370 10562.47
Standard error (0.005) (1.741) (0.065) (1.388)
p-value .010 .435 .000 .017
1955:1:26–2011:12:13 0.004 0.868 0.534 64.657 14300 24311.54
Standard error (0.003) (1.708) (0.064) (27.948)
p-value .219 .611 .000 .021

Panel A: Quarterly ODIN-MIDAS
Period µ γ φ κ Obs LLF
1927:9:30–2011:12:8 0.019 −0.011 0.620 5.035 22176 21917.19
Standard error (0.009) (1.502) (0.083) (1.383)
p-value .046 .994 .000 .000
1927:9:30–1952:12:12 0.036 −1.331 0.776 3.571 7326 5811.72
Standard error (0.015) (1.812) (0.115) (1.264)
p-value 0.016 0.463 0.000 0.005
1955:1:26–2011:12:13 0.001 2.619 0.454 7.762 14256 15587.65
Standard error (0.015) (2.710) (0.152) (2.411)
p-value .954 .334 .003 .001

Note: The table presents results from the GMM estimation of the ODIN-MIDAS model.
The values of µ in the MIDAS model have been multiplied by 22 (66) to measure them
in monthly (quarterly) values, making them comparable to the estimates in the GARCH
model. Standard errors are in parenthesis with p-values below.

38



monthly models are actually larger for the two sub-samples. None of the γ̂’s has a p-value

smaller than .334. The first sub-sample ODIN model γ̂′s for both the monthly and quarterly

samples are negative. For monthly data, the full sample γ̂ is now positive, but for quarterly

data, the full sample γ̂ is now negative. The estimate of γ that is the most comparable to

the ODIN-GARCH model is the second sub-sample in which γ̂ = 2.619 with a p-value of

.334.

We next examine the differences in the individual estimates of the various non-overlapping

samples to determine whether the reason we do not see uniform improvement in the standard

errors of the ODIN models relative to their basic counterparts can be traced to instability

in the parameters.15

6.1 Individual Estimations vs. ODIN

Realizing that the starting date of the sample does not matter raises the question of how

different can the various non-overlapping estimates be. The surprising answer is, quite

different. Figures 7, 8, and 9 illustrate the differences between the 22 possible basic, non-

overlapping, monthly estimations and the ODIN estimations for the three sample periods:

the full sample, labeled A; the first sub-sample, labeled B; and the second sub-sample, labeled

C.

Figure 7 shows the results for the full sample, 1927–2011. The top four plots present the

estimates of the four parameters in the GARCH model, and the bottom four plots present

the results for the MIDAS model. The solid black line shows the 22 point estimates from

estimating the basic GARCH model on 22 day returns, shifting the sampling start date one

day at a time. The shaded gray area shows the 95% confidence intervals for the estimates.

15It is also possible to do ODIN estimation with alternative conditional density functions, such as Student’s
t-distribution. We did not find that allowing for this alternative specification improved the performance of
the conditional CAPM. These results are available in the Online Appendix, which also presents results for
models in which the conditional variance responds asymmetrically to the innovation in returns. When we
allow for this asymmetry, we find that the risk-return trade-off is imprecisely estimated.
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These 22 estimates are obviously not independent as they are based on the same data, which

are just sampled differently, and as expected the estimate moves slowly with the sampling

start date. Next, the ‘Basic’ estimates represent the parameter estimates from the basic

models estimated from monthly calendar returns, with horizontal lines showing the 95%

confidence intervals. Finally, the ODIN estimate is shown together with its 95% confidence

interval.

The top right plot presents γ̂ in the GARCH model, and the (3,2) plot presents γ̂ in

the MIDAS model. One clearly sees the negative correlation between µ̂ and γ̂ for both the

GARCH and MIDAS models, as the starting date varies. The individual γ̂’s vary from 1 to

3 for the GARCH model, and between −0.1 and 0.8 for the MIDAS model. For the GARCH

model, one sees a negative correlation between α̂ and β̂, and for the MIDAS model, one sees

a negative correlation between φ̂ and κ̂ because increasing either of these parameters gives

rise to higher volatility-of-volatility. None of the 22 individual γ̂’s are significantly different

from zero, for either the GARCH or the MIDAS model. For the GARCH model, the ODIN

standard error of γ̂ is actually larger than that of the basic monthly GARCH model. This

situation arises because of the variation in γ̂ that comes from varying the starting date.

For some starting dates, the basic non-overlapping standard error is much larger than for

other starting dates. While the basic monthly model does not ‘see’ this variation, the ODIN

model recognizes the variation that comes from changing the starting date resulting in a

larger standard error. Also, note that the point estimate from the ODIN model is closer to

the average value of the individual estimates than is the point estimate for the basic monthly

model.

Figure 8 presents the results for the first sub-sample, 1927–1952. Again, none of the

individual γ̂’s are significantly different from zero, for either of the models. The γ̂’s vary

between −0.1 and 2.4 for the GARCH model, and between −1.5 and −0.8 for the MIDAS

model. As for the full sample, the standard error of γ̂ is actually larger in the ODIN
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Figure 7: Monthly Estimates, Sample A: 1927–2011. The plots show the 22 individual
estimates obtained by shifting the start-date and their 95% confidence interval in shaded
grey. The top four plots show the GARCH estimates, the bottom four plots show the
MIDAS estimates. The ‘basic monthly’ estimate is based on calendar months and the 95%
confidence interval is indicated with horizontal lines. Finally, the ODIN estimate is shown
along with its 95% confidence interval.
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GARCH model than for the basic GARCH model, again due to the variation in the γ̂’s and

their standard errors as the starting date changes.

Figure 9 presents results for the second sub-sample, 1955–2011. For the GARCH model,

most of the individual γ̂’s are significantly different from zero, even though the estimate

from the basic model estimated on calendar month returns happens not to be significantly

different from zero. Nevertheless, the ODIN estimation recognizes that it is highly unlikely

that the true γ is zero because so many of the individual estimates are significantly different

from zero. For the MIDAS model, none of the individual γ̂’s are significantly different from

zero.

Note that there are some similarities between the GARCH and MIDAS estimates. The

γ̂’s are lowest for sample B, slightly higher for sample A, and highest for sample C. The

Online Appendix shows similar plots for quarterly estimations. As might be anticipated

from the variation in the monthly samples, the variation in the quarterly estimates as the

sample starting date changes is much larger for the quarterly estimations. For instance, for

the second sub-sample, the GARCH γ̂’s vary between 2 and 20, and the MIDAS γ̂’s vary

between 0 and 14. These plots also indicate that the basic models fail to converge for some

of the starting dates.

6.2 The Average of the Individual Estimates

ODIN constrains the various non-overlapping estimates to have the same value. One could

also consider the estimator that is the average of the individual estimates from the correlated

non-overlapping samples. In the Online Appendix, we demonstrate that the standard error

of this estimator is the same asymptotically as the standard error for the ODIN estimator.

For monthly data, the averages of the γ̂’s for samples A, B, and C, with the ODIN standard

errors in parenthesis for the basic GARCH model are 1.699 (1.340), 0.498 (1.608), and 3.302

(1.464), respectively. For the basic MIDAS model, the averages of the γ̂’s for samples A, B,
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Figure 8: Monthly Estimates, Sample B: 1927–1952. The plots show the 22 individual
estimates obtained by shifting the start-date and their 95% confidence interval in shaded
grey. The top four plots show the GARCH estimates, the bottom four plots show the
MIDAS estimates. The ‘basic monthly’ estimate is based on calendar months and the 95%
confidence interval is indicated with horizontal lines. Finally, the ODIN estimate is shown
along with its 95% confidence interval.
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Figure 9: Monthly Estimates, Sample C: 1955–2011. The plots show the 22 individual
estimates obtained by shifting the start-date and their 95% confidence interval in shaded
grey. The ‘basic monthly’ estimate is based on calendar months and the 95% confidence
interval is indicated with horizontal lines. Finally, the ODIN estimate is shown along with
its 95% confidence interval.
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and C, with the ODIN standard errors in parenthesis, are 0.277 (1.230), −1.396 (1.741), and

0.768 (1.708), respectively.

7 Conclusions

When financial economists empirically investigate the predictions of their models, they must

choose the horizon over which the agents in the model act. For example, Merton’s (1973)

ICAPM is a theoretical continuous time model, but empirical researchers usually choose a

one-month or one-quarter horizon as the most appropriate test environment even though

daily data are available. The most popular methods for modeling the conditional variances

and covariances that are the sources of risk in these models are GARCH and MIDAS, which

are usually implemented with MLE by sampling the data at the same frequency as the

horizon chosen for the model. Here we demonstrate that when the data are sampled more

finely than the horizon of the model, we can use all of the available data to lower the

standard errors of the estimates and improve the power of the tests of the theories by using

overlapping data inference (ODIN). Our insight is to use the first order conditions of MLE

as orthogonality conditions of GMM. We estimate the parameters of the model from the

average of the overlapping MLE samples and construct appropriate standard errors that

account for the serial correlation induced by the overlapping data.

We apply this ODIN methodology to investigate the risk-return trade-off implied by the

conditional CAPM using GARCH and MIDAS modeling of the conditional variance of the

market return. Simulations of the ODIN methodology indicate that decreases in standard

errors and increases in power can be substantial and correspond to large increases in the

sample size. For example, with a 1,000 month sample of daily data, a horizon of 22 days,

and γ = 3; the average standard error for the ODIN-GARCH model is 84.8% of its basic

counterpart. Because standard errors decrease linearly in the square root of the sample
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length, a 15.2% reduction in the standard error corresponds to a 38.9% increase in the

sample length, which is effectively an additional 389 months of non-overlapping data or

more than 32 years. For quarterly horizons and quarterly sampling of the data in the basic

model, we find that ODIN cuts standard errors by approximately 30%, which corresponds

to more than doubling the non-overlapping sample length.

The simulations indicate that if the true model were the conditional CAPM with a one-

month horizon, the ODIN approach would be substantially more powerful than the basic

approach. When we examine actual data, the basic GARCH approach produces a positive

conditional risk-return trade-off for the sample period 1955:1 to 2011:12 that has a p-value

of .08. When we use the ODIN methodology, the p-value falls to .022. As with much of the

literature, though, we find insignificant or even negative trade-offs in other samples and with

asymmetric responses to shocks.

Of course, the conditional CAPM is the simplest specification of the ICAPM. Many

authors, including Campbell (1996), Scruggs (1998), Guo and Whitelaw (2006), Bali and

Engle (2010), and Campbell, Giglio, Polk, and Turley (2012) estimate ICAPMs that include

additional state variables.

Some of these papers could be done with ODIN. For example, Scruggs (1998) uses

monthly data on the excess market return, the excess return on a long-term bond index,

and the risk free rate with QMLE. Monthly measurements of these variables are all available

at a daily frequency. Campbell, Giglio, Polk, and Turley (2012) use quarterly data and a

six variable vector autoregression. The variables are the quarterly real stock return, the

within-quarter realized return volatility from daily data, the price-earnings ratio measured

as the price of the S&P 500 index divided by a ten-year trailing moving average of aggregate

earnings of companies in the S&P 500 index, the term spread, the small-stock value spread,

and the default spread. Only the aggregate earnings variable is truly only measured at the

quarterly frequency, and the use of the ten-year moving average of earnings implies that the
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earnings part changes very slowly. Thus, one could change the stock price across days within

a quarter while keeping the earnings constant throughout the quarter without much loss of

content or induced measurement error. This model could therefore be estimated with ODIN,

either at the quarterly frequency or the monthly frequency.

We certainly agree that additional state variables, such as the change in the interest

rate, are no doubt necessary to adequately capture the changing investment environment

faced by investors. We plan to include the conditional covariances of returns with such state

variables in future research that investigates the conditional expected returns on assets. More

generally, any study that estimates betas with financial data that are available at the daily

frequency is a candidate for the ODIN modeling strategy.

A Data and Returns

We start with daily rates of returns, rdt+1, on the value-weighted stock index as well as

monthly returns, Rf
tm , on one-month T-bills from CRSP. As the MIDAS model uses daily

returns, we proceed as follows: 1) For each month, we construct daily risk-free returns as

rft = (Rf
tm)

(1/Nm) − 1, where Nm is the number of trading days in the month. Hence, we get

Nm daily risk-free returns, which are all the same within the month. 2) For the conditional

variances of the MIDAS model, we construct daily excess returns as rt+1 = rdt+1 − rft . 3)

For the monthly excess returns that are the dependent variable in the MIDAS and GARCH

models, we first compute monthly stock returns and monthly risk-free returns as Rm
tm =

(1+ rdt+1)(1+ rdt+2) · · · (1+ rdt+N ) and Rf
tm = (1+ rft )(1 + rft+1) · · · (1 + rft+N−1) and then take

the difference, Rtm = Rm
tm −Rf

tm .

When we estimate the basic monthly or quarterly GARCH-M and MIDAS models, we use

actual calendar periods as this has been the standard in the literature. For the ODIN models,

we construct returns over 22-day periods, or 66-day periods, for any given starting date and
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always estimate the GARCH-M and MIDAS models on the same dependent variable excess

returns.

B Simulation and Bootstrapping

B.1 Simulation and Bootstrapping from the GARCH-M Model

Simulating from the GARCH-M model is straightforward. To bootstrap the model, we first

construct standardized residuals as

ε̂tm+1 =
Rtm+1 − µ̂− γ̂σ̂2

tm

σ̂tm

where µ̂ and γ̂ are the estimated parameters, and σ̂2
tm is the estimated conditional variance

of Rtm+1. Because the process of standardized residuals does not necessarily have a sample

mean of zero and variance of one, we ensure the standardized residuals have mean zero and

variance one by calculating utm = (ε̂tm − µε̂tm )/σε̂tm , where µε̂tm and σε̂tm are the sample

mean and standard deviation of the ε̂tm . We then simulate from the GARCH-M model using

innovations drawn with replacement from u1, u2, . . . , uT . Estimating the GARCH-M model

based on real or bootstrapped data with non-normal innovations can be viewed as quasi-

maximum-likelihood (QMLE) and is thus consistent. Note that simulating from the model

using innovations that do not have mean zero and variance one would not provide consistent

parameter estimates.

B.2 Simulation and Bootstrapping from the MIDAS Model

The MIDAS model is harder to simulate than the GARCH-M model because the MIDAS

model is based on daily returns but is estimated on monthly or quarterly returns. When

simulating using normal innovations, each daily return is drawn from a standard normal
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distribution and is scaled by the conditional standard deviation for that month. We proceed

as follows: 1) The conditional variance is based on the previous 500 daily returns. Hence,

we first draw 500 standard normal variables and scale them by the unconditional standard

deviation of the model,
√
ω/(1− φ). 2) We next calculate the conditional variance for the

daily returns over the next month, σ2
tm = V MIDAS

tm as in equation (7). 3) If there are Nm days

in the next month, we draw Nm standard normal variables ud, d = 1, . . . , Nm and calculate

daily returns as rm,d = µ+ γσ2
tm +

√
σ2
tmud, d = 1, . . . , Nm, where rm,d is the return on day d

in month m. 4) We repeat steps 2-3 for the following months. The result is a series of daily

returns, and the MIDAS model is then calibrated to these daily returns.

To bootstrap the MIDAS model we need daily innovations for the simulation, even though

the model is estimated based on monthly data. To obtain this, we ‘interpolate’ daily means

and variances in the following way: 1) For each day, we use the estimated parameters

to construct a daily forecast of the conditional variance of the daily return, σ̂2
t = ω̂ +

φ̂
∑500

d=1 w(κ̂)r
2
t−d. 2) For each day, we use the estimated parameters to construct a daily

forecast of the conditional mean of the daily return: µ̂t = µ̂ + γ̂σ̂2
t . 3) For each day, we

obtain the residual for the daily return as ε̂t+1 =
rt+1−µ̂t√

σ̂2
t

.

As above for the GARCH-M model, this process of standardized residuals does not neces-

sarily have a sample mean of zero and a variance of one. Hence, we ensure the standardized

residuals have mean zero and variance one by calculating ut = (ε̂t−µε̂t)/σε̂t , and we simulate

from the MIDAS model using innovations drawn with replacement from u1, u2, . . . , uT .
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C Online Appendix

C.1 Basic Monthly GARCH model

For the basic monthly GARCH model analyzed in Section 4, this section presents additional

figures showing the convergence of the parameter estimates and t-statistics. Figure 10 shows

density plots of γ̂ for the sample lengths T = 500, 2000, and 5000 months under the null of

γ = 0 in the left plots and under the alternative γ = 2 in the right plot. Similarly, Figure 11

shows density plots of the t-statistics under the null γ = 0 in the left plot, and under the

alternative γ = 2 in the right plot.

To further assess the convergence of the t-statistics, Figure 12 shows QQ-plots of sim-

ulated t-statistics under the null γ = 0 for different sample lengths. The convergence is

excellent for all sample sizes. Further, Figure 13 to 15 show QQ-plots of the t-statistics for

the test γ = γ0, where γ0 is the true parameter, under the alternatives γ0 = 1, 2, 3. Here, we

focus on the ‘centralized’ t-statistics

tc =
γ̂ − γ0
σ̂(γ̂)

instead of the actual t-statistics

t =
γ̂

σ̂(γ̂)

since we know the former should asymptotically follow a standard normal distribution. The

convergence is excellent for sample sizes larger than T = 500.
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Figure 10: Density Plots of Simulated γ̂ in the Basic Monthly GARCH Model.
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Figure 11: Density Plots of Simulated t-Statistics in the Basic Monthly GARCH Model.
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Figure 12: QQ-Plots of Simulated t-Statistics in the Basic Monthly GARCH Model for the
test γ = γ0, γ0 = 0.
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Figure 13: QQ-Plots of Simulated t-Statistics in the Basic Monthly GARCH Model for the
test γ = γ0, γ0 = 1.
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Figure 14: QQ-Plots of Simulated t-Statistics in the Basic Monthly GARCH Model for the
test γ = γ0, γ0 = 2.

−5 0 5
−10

−5

0

5

10
t−stats for T =500

Si
m

ul
at

ed
 Q

ua
nt

ile
s

−5 0 5
−5

0

5
t−stats for T =1000

−5 0 5
−5

0

5
t−stats for T =2000

−5 0 5
−5

0

5
t−stats for T =3000

Si
m

ul
at

ed
 Q

ua
nt

ile
s

Normal Quantiles
−5 0 5

−5

0

5
t−stats for T =4000

Normal Quantiles
−5 0 5

−5

0

5
t−stats for T =5000

Normal Quantiles

Figure 15: QQ-Plots of Simulated t-Statistics in the Basic Monthly GARCH Model for the
test γ = γ0, γ0 = 3.
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C.2 Basic Monthly MIDAS model

This section presents QQ-plots of the t-statistics for the test γ = γ0, γ0 = 0, 1, 2,and 3 for

the basic monthly MIDAS model. For small sample sizes, the distributions of the t-statistics

have slightly thinner tails than the normal distribution.
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Figure 16: QQ-Plots of Simulated t-Statistics in the Basic Monthly MIDAS Model for the
test γ = γ0, γ0 = 0.
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Figure 17: QQ-Plots of Simulated t-Statistics in the Basic Monthly MIDAS Model for the
test γ = γ0, γ0 = 1.
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Figure 18: QQ-Plots of Simulated t-Statistics in the Basic Monthly MIDAS Model for the
test γ = γ0, γ0 = 2.
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Figure 19: QQ-Plots of Simulated t-Statistics in the Basic Monthly MIDAS Model for the
test γ = γ0, γ0 = 3.
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C.3 The Equivalence of the Standard Errors of ODIN and Average

of Individual Estimates

Section 6 considers the estimator that is the average of the individual estimates from the

correlated non-overlapping samples. Here we prove that the standard error of this estimator

is the same as the standard error of the ODIN estimator.

C.3.1 The ODIN Estimator

Let yt+k represent a dependent variable realized at time t + k; let xt represent a vector of

exogenous or predetermined variables that are in the time t information set; and let θ be the

vector of parameters to be estimated. Then, for some vector of functions of the data and the

parameters, g(yt+k, xt; θ), the orthogonality conditions of the model can be represented as

Et [g(yt+k, xt; θ0)] = 0

where θ0 is the true parameter. Observations on yt+k and xt are assumed to be available for

a sample t = 1, 2, ..., T .

In the ODIN-GMM version of MLE, the model is just identified, so the dimension of

g(yt+k, xt; θ) is the same as the dimension of θ, which is taken to be n. We simplify the

presentation by letting gt represent g(yt+k, xt; θ). The sample average of the orthogonality

conditions is

GT (θ) =
1

T

T∑

t=1

gt.

The GMM estimator of θ, denoted θ̂, sets GT (θ̂) = 0 because the system is just identified.

Let

DT (θ̂) = ∇θGT (θ̂)

be the gradient of GT (θ̂) with respect to θ evaluated at θ̂ . From Hansen’s (1982) GMM it
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can be demonstrated that the asymptotic distribution of the estimator is characterized by

√
T
(
θ̂ − θ0

)
→ N

(
0, DT (θ̂)

−1SD⊺

T (θ̂)
−1
)

(21)

where

S =
k−1∑

j=−k+1

C
(
gt, g

⊺

t−j

)
(22)

and the matrixes, C
(
gt, g

⊺

t−j

)
, are the unconditional autocovariances of gt. For ease of

exposition in what follows, let C(j) denote C(gt, g
⊺

t−j). These covariances may be estimated

with their sample counterparts. As in Hansen and Hodrick (1980), the covariances are non-

zero until the realization of the dependent variable enters the information set that forms the

conditional expectation. Thus, the gt process is a k − 1 order vector moving average. This

approach uses all of the data.

C.3.2 The Sampled Estimators

Now, consider sampling the data to form a new process gt∗ that is serially uncorrelated.

There are k different such processes depending on the starting date, so we index them by

their starting date, gt∗ (j) , j = 1, ..., k. Given that there are T total observations, there

are T ∗ = T/k observations on each of the gt∗ (j), where for simplicity and without loss of

generality we assume that T ∗ is an integer. The notation indicates that gt∗(j) is observed at

t∗ = 1, 2, ...T ∗ which corresponds to observing gt at t = j, k+ j, 2k+ j, ..., T − k+ j. For any

particular non-overlapping sample, it remains true that

Et∗ [gt∗(j)] = 0.

Using these orthogonality conditions, one would estimate θ̂(j), and for any individual
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estimator, its asymptotic distribution would be

√
T
(
θ̂(j)− θ0

)
→ N

(
0, kDT ∗(θ̂(j))−1S(j)D⊺

T ∗(θ̂(j))−1
)

where

S(j) = C(0)

for each j = 1, ..., k, and the probability limit ofDT ∗(θ̂(j)) is the same as the probability limit

of DT (θ̂), which we denote D. Hansen and Hodrick (1980) demonstrate that kC(0) exceeds

S in equation (22) by a positive definite matrix except in the rare situation in which the

parameters of the covariance generating function of gt are equal. This is the sense in which

the ODIN estimator has a smaller asymptotic covariance matrix than any given sampling of

the data.

C.3.3 The Average Estimator

Now, let the average of the k different non-overlapping samples be

θ =

∑k
j=1 θ̂(j)

k

which is clearly consistent for θ0. To derive the asymptotic distribution of the average esti-

mator, consider a GMM estimation which stacks the k vectors of parameters into an nk × 1

vector

Θ̂ = (θ̂(1)⊺, ..., θ̂(k)⊺)⊺

and stacks the k sets of orthogonality conditions into

Gt∗ = (gt∗(1)
⊺, ...gt∗(k)

⊺)⊺ .
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To derive the asymptotic distribution of Θ̂, define a to be the k−dimensional vector of

ones, a = (1, ..., 1)⊺ and define A to be the matrix that has k identity matrixes each of

dimension n stacked vertically, A = (I, I, ...I)⊺. Then, define Θ0 = a⊗θ0; define the nk×nk

matrix of gradients

D∗ = (I ⊗D)

and define

S∗ =
1∑

j=−1

E
(
Gt∗G

⊺

t∗−j

)

which is also nk×nk. In defining S∗ we sum one lagged covariance in each direction because

although each of the elements of Gt∗ is not individually serially correlated, lagged cross-

covariances are present. The S∗ matrix is composed of three matrixes:

E (Gt∗G
⊺

t∗) =




C(0) C(−1) C(−2) · · C(−k + 1)

C(1) C(0) C(−1) · · C(−k + 2)

· · · · · ·

· · · · · ·

· · · · · ·

C(k − 1) C(k − 2) · · · C(0)




E
(
Gt∗G

⊺

t∗+1

)
=




0 0 · · · 0

C(−k + 1) 0 · · · 0

C(−k + 2) C(−k + 1) 0 · · ·

· · · · · ·

· · · · 0 ·

C(−1) C(−2) · · C(−k + 1) 0



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E
(
Gt∗G

⊺

t∗−1

)
=




0 C(k − 1) C(k − 2) · · C(1)

0 0 C(k − 1) · · C(2)

· · 0 · · ·

· · · · · ·

· · · · 0 C(k − 1)

0 0 · · · 0




Then, the joint asymptotic distribution of the k sampled estimators is

√
T
(
Θ̂−Θ0

)
→ N

(
0, kD∗−1S∗D⊺∗−1

)
.

The average of the k non-overlapping estimators is

θ =
A⊺Θ̂

k

in which case the asymptotic distribution of θ is

√
T
(
θ − θ0

)
→ N

(
0,

kA⊺D∗−1S∗D⊺∗−1A

k2

)
.

Multiplying out the matrixes implies that

√
T
(
θ − θ0

)
→ N

(
0, D−1SD⊺−1

)

which is the same asymptotic variance as the asymptotic variance of the ODIN estimator in

equation (21).
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C.4 Asymmetric Specifications

It has long been noted that volatility seems to increase more in response to negative shocks

to returns than to positive shocks. Modeling this asymmetry was introduced by Nelson

(1991) and Engle and Ng (1993). While there are many possible asymmetric models, we

adopt the straightforward specification of Glosten, Jagannathan, and Runkle (1993) for the

asymmetric GARCH model by allowing for a different response parameter controlled by the

dummy variable,1(εt+22,t<0), which takes the value 1 if εt+22,t < 0, and is 0 otherwise:

σ2
t+22,t+44 = ω + αε2t+22,t + βσ2

t,t+22 + ρε2t+22,t1(εt+22,t<0).

The parameter α is thus the base impact of positive squared innovations in returns, and ρ is

the additional effect of the squared innovation when the innovation is negative. The estimate

of ω is now variance-targeted as ω = V ar(R)(1−α− β − 0.5ρ) where V ar(R) is the sample

variance of the monthly data.

The specification for the asymmetric MIDAS model is

V MIDAS
t,t+22 = 22

(
ω + φ1

D∑

d=0

wt−d(κ)r
2
t−d + φ2

D∑

d=0

wt−d(κ)r
2
t−d1(rt−d<0)

)
.

The estimate of ω is also variance-targeted. Note that the two weight functions are param-

eterized by the same κ. Although Ghysels, Santa Clara, and Valkanov (2005) use different

weight functions for positive and negative shocks, we find it is difficult to identify different

weight functions.

Table ?? presents estimation results for the asymmetric ODIN-GARCH and asymmetric

ODIN-MIDAS models. Note that in both models the conditional variances are primarily

driven by negative returns. With these asymmetric specifications, none of the γ̂’s are sig-

nificant. If the γ̂’s are positive, they are smaller than their standard errors, and one of the
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Table 8: Estimation Results for asymmetric ODIN Models.

Asymmetric ODIN-GARCH
Period µ γ α β ρ Obs Sum LLF
1927:9:30–2011:12:8 0.005 0.935 0.048 0.813 0.169 22220 35684.62
Standard error (0.003) (1.325) (0.023) (0.052) (0.077)
p-value .133 .480 .038 .000 .028
1927:9:30–1952:12:12 0.008 0.095 0.043 0.871 0.122 7370 10427.29
Standard error (0.006) (1.973) (0.038) (0.061) (0.067)
p-value .178 .962 .258 .000 .070
1955:1:26–2011:12:13 0.005 0.447 −0.026 0.717 0.333 14300 24349.28
Standard error (0.003) (1.134) (0.037) (0.068) (0.094)
p-value .099 .693 .477 .000 .000

Asymmetric ODIN-MIDAS
Period µ γ φ1 φ2 κ Obs Sum LLF
1927:9:30–2011:12:8 0.005 0.289 0.261 0.818 19.473 22220 35798.07
Standard error (0.002) (1.209) (0.186) (0.396) (14.359)
p-value .026 .811 .159 .039 .175
1927:9:30–1952:12:12 0.012 −1.358 0.833 −0.057 3.320 7370 10562.52
Standard error (0.005) (1.745) (0.630) (1.244) (1.356)
p-value .010 .436 .186 .963 .014
1955:1:26–2011:12:13 0.004 0.453 0.160 0.743 53.709 14300 24392.73
Standard error (0.003) (1.557) (0.105) (0.215) (18.834)
p-value .103 .771 .129 .001 .004

Note: The table present estimates for the asymmetric ODIN-GARCH and ODIN-MIDAS
models. Standard errors are in parenthesis.

MIDAS estimates is negative.
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C.5 The Continuous Time GARCH Simulations

C.5.1 Strong and Weak GARCH Processes

Consider the stochastic error process εt, t ∈ Z and let the sequence ht, t ∈ Z be given by

ht = ω + αε2t−1 + βht−1. (23)

We follow Drost and Nijman (1993) and define strong and weak GARCH processes as

follows:

Definition 1. εt, t ∈ Z is a strong GARCH process if

εt√
ht

∼ i.i.d. D(0, 1) (24)

where D(0, 1) specifies a distribution with mean 0 and variance 1.

Definition 2. εt, t ∈ Z is a weak GARCH process if the best linear predictor of εt and ε2t

are, respectively

P (εt|εt−1, εt−2, . . . ) = 0 (25)

P
(
ε2t |εt−1, εt−2, . . .

)
= ht, i ≥ 0, r = 0, 1, 2 (26)

where P (xt|εt−1, εt−2, . . . ) denotes the best linear predictor of xt in terms of 1, εt−1, εt−2, . . . , ε
2
t−1, ε

2
t−2, . . .

Drost and Nijman (1993) show that the classical strong GARCH definition is not closed

under temporal aggregation (Example 3), but that the class of symmetric weak GARCH

models is (Example 1).
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C.5.2 The Continuous Time Limit

Alexander and Lazar (2012) discuss several continuous time limits of the GARCH(1,1) model.

They argue that to sensibly take the continuous-time limit, the original model must be time-

aggregating, and that when sampling the continuous-time process the original discrete-time

process should be reproduced. They refer to Drost and Nijman (1993), who show that the

weak GARCH process and the continuous-time process defined by

dσ2
t = θ(ω − σ2

t )dt+
√
2λθσ2

t dWσ,t. (27)

satisfy these requirements. The weak GARCH process is time-aggregating, and when sam-

pling the above continuous-time process, the discretely sampled observations satisfy a weak

GARCH process.

C.5.3 Simulations

We start with the continuous-time GARCH-in-mean process

dpt = λσ2
t dt+ σtdWp,t. (28)

where the volatility process is given by

dσ2
t = θ(ω − σ2

t )dt+
√
2λθσ2

t dWσ,t. (29)

HereWp,t andWσ,t are independent Brownian motions (see Andersen and Bollerslev (1998) as

well as Alexander and Lazar (2012) who show that the Brownian motions are uncorrelated

in the case of a symmetric return distribution). Letting m denote the intraday sampling
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frequency, consider the intraday return

r(m),t = pt − pt−1/m. (30)

The transformation between the parameters (δ0, α, β) in the discrete-time GARCH(1,1)

model, estimated based on m intradaily returns, and the parameters (θ, ω, λ) in the con-

tinuous time diffusion in (29) is given by equations (10)-(12) in Andersen and Bollerslev

(1998) (see Section C.5.5). This transformation is a limiting result of a relationship between

the parameters of a weak GARCH process at two frequencies, as one of the frequencies ap-

proaches continuous sampling. Since we simulate in 5-minute increments below, we use the

limiting result for the parameters.

Since the GARCH(1,1) model in Lundblad (2007) is estimated based on monthly obser-

vations, this corresponds to m = 1/22 (less than one observation per day). Using monthly

GARCH(1,1) parameters of δ0 = 0.0002, α = 0.1, β = 0.85, and using formulas (10)-(12) in

Andersen and Bollerslev (1998) (note that there is a typo in equation (12)), the continuous

time parameters become

θ = 0.0023, ω = 1.8182 · 10−4, λ = 0.459 (31)

which is close to what Lundblad (2007) reports (θ = 0.0023, ω = 0.0001, λ = 0.459).

We then simulate from the continuous time model given by (28) and (29) using a standard

Euler scheme:

∆pt = λσ2
t∆+ σt

√
∆Wp,t (32)

∆σ2
t = θ(ω − σ2

t )∆ +
√
2λθσ2

t

√
∆Wσ,t (33)

where Wp,t,Wσ,t ∼ N(0, 1). As in Lundblad (2007), we simulate 5 minute returns, hence
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∆ = 1/288.

Finally, sample the process to get daily log prices: pdaily = p(288 : 288 : end), i.e.,

we use every 288th observations. These are the daily log-prices, so daily returns are e.g.

r(1) = pdaily(2) − pdaily(1). Summing these gives monthly returns for any given start date,

and these returns satisfy a weak GARCH model.

C.5.4 Estimation

As mentioned above, Andersen and Bollerslev (1998) and Drost and Nijman (1993) show

how discretely sampling the continuous time GARCH process results in observations that

satisfy a weak GARCH(1,1) model. We estimate the parameters using the usual QMLE

procedure which is based on the likelihood function for the strong GARCH model with

normal innovations. The first-order conditions arising from this likelihood function are not

necessarily satisfied for the weak GARCH model, and as a result, the usual QMLE theory

does not apply: There is no guarantee that the parameter estimates converge in probability

to the values used in the data generating process as the sample size is increased. Drost and

Nijman (1993) note that they’ve conducted extensive simulation experiments showing that

the asymptotic bias of QMLE, if any, is small. This is in agreement with our findings that

when simulating from a continuous-time GARCH model, and subsequently estimating Basic

Monthly GARCH and ODIN GARCH on discretely sampled observations, there is a small

bias in the estimate of γ. Note that this caveat applies to both the basic and the ODIN

GARCH models.

C.5.5 The Transformation Equations

Suppose the econometrician estimates a GARCH model based on m observations per day

(so m = 1/22 for monthly observations). Andersen and Bollerslev (1998) show that the

exact one-to-one relationship between the discrete-time weak GARCH(1,1) parameters and

70



the continuous-time stochastic volatility parameters are (note the typo in the second line for

λ: it should be +α(m)

[
1− β(m)

(
α(m) + β(m)

)]
) as here)

θ = −m log(α(m) + β(m)) (34)

ω = mω(m)

(
1− α(m) − β(m)

)
−1

(35)

λ = 2α(m) log
2
(
α(m) + β(m)

) [
1− β(m)

(
α(m) + β(m)

)]
(36)

{[
1−

(
α(m) + β(m)

)2] (
1− β(m)

)2
+ α(m)

[
1− β(m)

(
α(m) + β(m)

)]
(37)

[
6 log

(
α(m) + β(m)

)
+ 2 log2

(
α(m) + β(m)

)
+ 4

(
1− α(m) − β(m)

)] }−1

(38)

That is, to transform from daily GARCH parameters to continuous-time parameters, set

m = 1. To transform from monthly parameters, set m = 1/22.

C.6 ODIN Estimations

C.6.1 Point Estimates: Box Plots

Figure 20, 21, 22, and 23 show box-plots of γ̂ for γ = 0, 1, 2, and 3, respectively. For each

sampling frequency, the left blue box-plot shows the results for the basic GARCH, and the

right green box-plot shows the results for the ODIN GARCH. In the right figure, showing

sampling frequencies 33-66, the values have been truncated at 50.

Beneath each box-plot is the number of estimations that did not converge (out of 10,000).

For instance, for γ = 0 and a 33 day sampling frequency, 88 of the basic estimations did not

converge, and 5 of the ODIN estimations did not converge (note that they’re estimated on

exactly the same simulated data).

It is clear from the figure that the precision of the ODIN GARCH estimates is much

higher than the precision of the basic GARCH estimates for all sampling frequencies and

all values of γ. Further, the increase in precision increases with the sampling frequency.
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Looking at the figures for the different values of γ, it is also clear that the estimates from

the basic model become increasingly skewed with fat right tails. For instance, compare the

box-plots for sampling frequency 66. When γ = 0, the distribution of γ̂ is roughly symmetric

around 0. But for γ = 3, there are no estimates below 30, and many more estimates above

50.
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Figure 20: Box-plots of γ̂ when γ = 0, for different sampling frequencies. For each sampling
frequency, the left box-plots shows the results for the basic GARCH, and the right box-plot
shows the results for the ODIN GARCH. In the right, the values have been truncated at 50.
Beneath each box-plot is the number of estimations that did not converge (out of 10,000).
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Figure 21: Box-plots of γ̂ when γ = 1, for different sampling frequencies. For each sampling
frequency, the left box-plots shows the results for the basic GARCH, and the right box-plot
shows the results for the ODIN GARCH. In the right, the values have been truncated at 50.
Beneath each box-plot is the number of estimations that did not converge (out of 10,000).
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Figure 22: Box-plots of γ̂ when γ = 2, for different sampling frequencies. For each sampling
frequency, the left box-plots shows the results for the basic GARCH, and the right box-plot
shows the results for the ODIN GARCH. In the right, the values have been truncated at 50.
Beneath each box-plot is the number of estimations that did not converge (out of 10,000).
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Figure 23: Box-plots of γ̂ when γ = 3, for different sampling frequencies. For each sampling
frequency, the left box-plots shows the results for the basic GARCH, and the right box-plot
shows the results for the ODIN GARCH. In the right, the values have been truncated at 50.
Beneath each box-plot is the number of estimations that did not converge (out of 10,000).
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C.6.2 Point Estimates: QQ-Plots

Figure 24–27 show QQ-plots of γ̂ for the basic model and the ODIN model, for γ = 0, 1, 2,

and 3, respectively. On each page, the top figure shows QQ-plots for the basic model, and

the bottom figure shows QQ-plots for the ODIN model.

Comparing the QQ-plots for basic GARCH and ODIN GARCH for a given sampling

frequency, it’s clear that the distribution of γ̂ is closer to a normal distribution for the ODIN

model. The distributions of the estimates for the basic model have much fatter tails.
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Figure 24: QQ-plots of γ̂ when γ = 0, for different sampling frequencies.
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Figure 25: QQ-plots of γ̂ when γ = 0, for different sampling frequencies.
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Figure 26: QQ-plots of γ̂ when γ = 0, for different sampling frequencies.
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Figure 27: QQ-plots of γ̂ when γ = 0, for different sampling frequencies.
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C.6.3 Standard Errors: Precision

Here, we compare the estimated standard errors to the empirical standard deviations of γ̂.

Table 9 shows the results for the standard error estimates. The first two lines of the table

show the empirical standard deviation of γ̂ for the basic and ODIN models. The next two

lines show the average of the 10,000 estimated standard errors. The last two rows show the

bias in the estimated standard errors. As we saw above, the standard deviation of the 10,000

estimates of γ is much smaller for the ODIN model which we now see in rows 1 and 2. Next,

the estimated standard errors, σ̂ (γ̂), are also smaller for the ODIN model, as seen in rows

3 and 4 where I calculate the average estimated standard error. Finally, rows 5 and 6 show

that the standard error estimates are generally too small, but more so for the basic model

(the basic model has a higher bias).

Table 10-12 show the results for γ = 1, 2, 3. These tables show that the bias of the ODIN

standard errors are generally smaller than the bias of the standard errors for the basic model.
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Table 9: Table for γ = 0. The first two lines of the table shows the empirical standard
deviation of γ̂i for the basic and ODIN models, based on all 10,000 estimates. The next two
lines show the average of the 10,000 estimated standard errors. The last two rows shows the
bias in the estimated standard errors.

Sampling Frequency 1 5 10 22 33 44 55 66
Empirical Std of γ̂, Basic 1.05 1.19 1.33 1.71 2.98 4.34 9.78 10.66
Empirical Std of γ̂, ODIN 1.05 1.15 1.26 1.49 1.72 1.94 2.13 2.25
Average of σ̂ (γ̂), Basic 1.02 1.15 1.28 1.61 2.28 3.86 7.70 9.40
Average of σ̂ (γ̂), ODIN 1.02 1.11 1.20 1.41 1.60 1.78 1.93 2.06
Basic Bias -0.03 -0.04 -0.04 -0.05 -0.24 -0.11 -0.21 -0.12
ODIN Bias -0.03 -0.04 -0.04 -0.06 -0.07 -0.08 -0.09 -0.09

Table 10: Table for γ = 1. The first two lines of the table shows the empirical standard
deviation of γ̂i for the basic and ODIN models, based on all 10,000 estimates. The next two
lines show the average of the 10,000 estimated standard errors. The last two rows shows the
bias in the estimated standard errors.

Sampling Frequency 1 5 10 22 33 44 55 66
Empirical Std of γ̂, Basic 1.05 1.20 1.33 1.71 2.67 4.08 5.46 10.97
Empirical Std of γ̂, ODIN 1.05 1.16 1.26 1.49 1.71 1.92 2.10 2.23
Average of σ̂ (γ̂), Basic 1.01 1.15 1.28 1.61 2.26 3.73 5.16 14.45
Average of σ̂ (γ̂), ODIN 1.02 1.11 1.20 1.40 1.59 1.77 1.91 2.01
Basic Bias -0.03 -0.04 -0.04 -0.06 -0.15 -0.09 -0.05 0.32
ODIN Bias -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09 -0.10

Table 11: Table for γ = 2. The first two lines of the table shows the empirical standard
deviation of γ̂i for the basic and ODIN models, based on all 10,000 estimates. The next two
lines show the average of the 10,000 estimated standard errors. The last two rows shows the
bias in the estimated standard errors.

Sampling Frequency 1 5 10 22 33 44 55 66
Empirical Std of γ̂, Basic 1.05 1.20 1.34 1.73 2.36 3.96 6.65 11.97
Empirical Std of γ̂, ODIN 1.05 1.16 1.26 1.48 1.69 1.87 2.04 2.15
Average of σ̂ (γ̂), Basic 1.01 1.15 1.27 1.61 2.07 3.02 5.98 13.68
Average of σ̂ (γ̂), ODIN 1.01 1.11 1.20 1.39 1.56 1.73 1.86 1.95
Basic Bias -0.04 -0.04 -0.05 -0.07 -0.12 -0.24 -0.10 0.14
ODIN Bias -0.04 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09 -0.09
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Table 12: Table for γ = 3. The first two lines of the table shows the empirical standard
deviation of γ̂i for the basic and ODIN models, based on all 10,000 estimates. The next two
lines show the average of the 10,000 estimated standard errors. The last two rows shows the
bias in the estimated standard errors.

Sampling Frequency 1 5 10 22 33 44 55 66
Empirical Std of γ̂, Basic 1.05 1.20 1.35 1.75 2.59 4.42 8.63 10.82
Empirical Std of γ̂, ODIN 1.05 1.16 1.25 1.47 1.65 1.82 1.97 2.05
Average of σ̂ (γ̂), Basic 1.01 1.14 1.27 1.58 2.14 3.24 7.24 14.40
Average of σ̂ (γ̂), ODIN 1.01 1.10 1.19 1.36 1.52 1.67 1.78 1.85
Basic Bias -0.04 -0.05 -0.06 -0.09 -0.17 -0.27 -0.16 0.33
ODIN Bias -0.04 -0.05 -0.05 -0.07 -0.08 -0.09 -0.10 -0.10
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C.6.4 t-Statistics: QQ-plots

This section presents QQ-plots of the t-statistics for the test used to construct Figure 4.

Each Figure shows 8 QQ-plots for the sampling frequencies 1, 5, 10, 22, 33, 44, 55, and 66

days. The data generating process is a continuous time GARCH process. For each value of

γ = 0, 1, 2, 3, there are two figures. The first shows QQ-plots for the basic (non-overlapping)

GARCH model which samples the data at the above frequencies. The second shows QQ-plots

for the ODIN model that uses all of the available data.

Figure 28 shows a slight asymmetry in the t-statistics for the basic GARCH model,

and the 97.5th percentile is actually lower than 1.96. When constructing Figure 4 we use

the empirical quantiles, and using 1.96 instead would therefore decrease the power of the

basic GARCH model and thus increase the improvement of the ODIN model over the basic

GARCH model.
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Figure 28: QQ-Plots of Simulated t-Statistics in the Basic GARCH Model for different
sampling frequencies. The model is estimated to data simulated from a continuous time
GARCH model as described in the text. The t-statistics are for the test γ = γ0, γ0 = 0.
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Figure 29: QQ-Plots of Simulated t-Statistics in the ODIN GARCH Model for different
sampling frequencies. The model is estimated to data simulated from a continuous time
GARCH model as described in the text. The t-statistics are for the test γ = γ0, γ0 = 0.
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Figure 30: QQ-Plots of Simulated t-Statistics in the Basic GARCH Model for different
sampling frequencies. The model is estimated to data simulated from a continuous time
GARCH model as described in the text. The t-statistics are for the test γ = γ0, γ0 = 1.
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Figure 31: QQ-Plots of Simulated t-Statistics in the ODIN GARCH Model for different
sampling frequencies. The model is estimated to data simulated from a continuous time
GARCH model as described in the text. The t-statistics are for the test γ = γ0, γ0 = 1.
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Figure 32: QQ-Plots of Simulated t-Statistics in the Basic GARCH Model for different
sampling frequencies. The model is estimated to data simulated from a continuous time
GARCH model as described in the text. The t-statistics are for the test γ = γ0, γ0 = 2.
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Figure 33: QQ-Plots of Simulated t-Statistics in the ODIN GARCH Model for different
sampling frequencies. The model is estimated to data simulated from a continuous time
GARCH model as described in the text. The t-statistics are for the test γ = γ0, γ0 = 2.
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Figure 34: QQ-Plots of Simulated t-Statistics in the Basic GARCH Model for different
sampling frequencies. The model is estimated to data simulated from a continuous time
GARCH model as described in the text. The t-statistics are for the test γ = γ0, γ0 = 3.

−4 −2 0 2 4
−6

−4

−2

0

2

4
Sampling Frequency = 1

Sim
ula

ted
 Q

ua
nti

les

−4 −2 0 2 4
−6

−4

−2

0

2

4
Sampling Frequency = 5

−4 −2 0 2 4
−6

−4

−2

0

2

4
Sampling Frequency = 10

−4 −2 0 2 4
−6

−4

−2

0

2

4
Sampling Frequency = 22

Sim
ula

ted
 Q

ua
nti

les

−4 −2 0 2 4
−6

−4

−2

0

2

4
Sampling Frequency = 33

−4 −2 0 2 4
−6

−4

−2

0

2

4
Sampling Frequency = 44

Normal Quantiles

−4 −2 0 2 4
−8

−6

−4

−2

0

2

4
Sampling Frequency = 55

Sim
ula

ted
 Q

ua
nti

les

Normal Quantiles
−4 −2 0 2 4

−15

−10

−5

0

5
Sampling Frequency = 66

Normal Quantiles

Figure 35: QQ-Plots of Simulated t-Statistics in the ODIN GARCH Model for different
sampling frequencies. The model is estimated to data simulated from a continuous time
GARCH model as described in the text. The t-statistics are for the test γ = γ0, γ0 = 3.
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C.6.5 Large Sample Properties: 5,000 Months
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Table 13: Empirical Means.

Forecast Horizon 1 5 10 22 33 44 55 66
Panel A: 1,000 Months

γ = 0
Basic GARCH 0.0273 0.0353 0.0371 0.0215 0.0042 0.0739 0.1118 −0.0222
ODIN GARCH 0.0273 0.0273 0.0258 0.0228 0.0229 0.0360 0.0393 0.0434

γ = 1
Basic GARCH 0.9808 0.9777 0.9791 0.9889 1.0621 1.1657 1.2817 1.5190
ODIN GARCH 0.9808 0.9752 0.9686 0.9702 0.9795 1.0003 1.0149 1.0031

γ = 2
Basic GARCH 1.9305 1.9139 1.9100 1.9302 2.0185 2.1966 2.4449 2.8619
ODIN GARCH 1.9305 1.9189 1.9023 1.8943 1.8997 1.9182 1.9195 1.8949

γ = 3
Basic GARCH 2.8722 2.8379 2.8194 2.8235 2.9354 3.1225 3.4697 3.7735
ODIN GARCH 2.8722 2.8542 2.8185 2.7750 2.7535 2.7412 2.7100 2.6651

Panel B: 5,000 Months

γ = 0
Basic GARCH 0.0103 0.0073 0.0076 0.0129 0.0086 0.0486 0.0302 0.0256
ODIN GARCH 0.0103 0.0102 0.0124 0.0213 0.0277 0.0319 0.0336 0.0388

γ = 1
Basic GARCH 0.9772 0.9516 0.9415 0.9434 0.9396 0.9791 0.9686 0.9747
ODIN GARCH 0.9772 0.9558 0.9475 0.9460 0.9493 0.9524 0.9553 0.9605

γ = 2
Basic GARCH 1.9429 1.8914 1.8652 1.8474 1.8272 1.8480 1.8275 1.8288
ODIN GARCH 1.9429 1.8974 1.8727 1.8445 1.8284 1.8139 1.8020 1.7924

γ = 3
Basic GARCH 2.9060 2.8224 2.7691 2.7013 2.6357 2.6116 2.5575 2.5244
ODIN GARCH 2.9060 2.8310 2.7788 2.6936 2.6300 2.5711 2.5190 2.4708

Note: The table shows the empirical means of γ̂ in the basic and ODIN models when
estimating the models on simulated data from a continuous time GARCH model. In Panel
A, the models are estimated on 1,000 months of simulated data, and in Panel B they are
estimated on 5,000 months of data. The value of γ used in the simulations varies from 0 to
3, and the forecast horizon varies from 1 to 66 days.
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C.7 Quarterly Individual vs. ODIN Estimates
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Figure 36: GARCH, Sample A
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Figure 37: MIDAS, Sample A
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Figure 38: GARCH, Sample B
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Figure 39: MIDAS, Sample B
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Figure 40: GARCH, Sample C
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Figure 41: MIDAS, Sample C
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